Cyclic codes are a subclass of linear codes and have applications in consumer
electronics, data storage systems, and communication systems as they have
efficient encoding and decoding algorithms. In this paper, monomials and
trinomials over finite fields with even characteristic are employed to
construct a number of families of binary cyclic codes. Lower bounds on the
minimum weight of some families of the cyclic codes are developed. The minimum
weights of other families of the codes constructed in this paper are
determined. The dimensions of the codes are flexible. Some of the codes
presented in this paper are optimal or almost optimal in the sense that they
meet some bounds on linear codes. Open problems regarding binary cyclic codes
from monomials and trinomials are also presented.Comment: arXiv admin note: substantial text overlap with arXiv:1206.4687,
arXiv:1206.437