10,637 research outputs found

    A delay differential model of ENSO variability: Parametric instability and the distribution of extremes

    Get PDF
    We consider a delay differential equation (DDE) model for El-Nino Southern Oscillation (ENSO) variability. The model combines two key mechanisms that participate in ENSO dynamics: delayed negative feedback and seasonal forcing. We perform stability analyses of the model in the three-dimensional space of its physically relevant parameters. Our results illustrate the role of these three parameters: strength of seasonal forcing bb, atmosphere-ocean coupling κ\kappa, and propagation period τ\tau of oceanic waves across the Tropical Pacific. Two regimes of variability, stable and unstable, are separated by a sharp neutral curve in the (b,τ)(b,\tau) plane at constant κ\kappa. The detailed structure of the neutral curve becomes very irregular and possibly fractal, while individual trajectories within the unstable region become highly complex and possibly chaotic, as the atmosphere-ocean coupling κ\kappa increases. In the unstable regime, spontaneous transitions occur in the mean ``temperature'' ({\it i.e.}, thermocline depth), period, and extreme annual values, for purely periodic, seasonal forcing. The model reproduces the Devil's bleachers characterizing other ENSO models, such as nonlinear, coupled systems of partial differential equations; some of the features of this behavior have been documented in general circulation models, as well as in observations. We expect, therefore, similar behavior in much more detailed and realistic models, where it is harder to describe its causes as completely.Comment: 22 pages, 9 figure

    A phenomenological model of weakly damped Faraday waves and the associated mean flow

    Full text link
    A phenomenological model of parametric surface waves (Faraday waves) is introduced in the limit of small viscous dissipation that accounts for the coupling between surface motion and slowly varying streaming and large scale flows (mean flow). The primary bifurcation of the model is to a set of standing waves (stripes, given the functional form of the model nonlinearities chosen here). Our results for the secondary instabilities of the primary wave show that the mean flow leads to a weak destabilization of the base state against Eckhaus and Transverse Amplitude Modulation instabilities, and introduces a new longitudinal oscillatory instability which is absent without the coupling. We compare our results with recent one dimensional amplitude equations for this system systematically derived from the governing hydrodynamic equations.Comment: Complete paper with embedded figures (PostScript, 3 Mb) http://www.csit.fsu.edu/~vinals/mss/jmv1.p

    Pole dynamics for the Flierl-Petviashvili equation and zonal flow

    Full text link
    We use a systematic method which allows us to identify a class of exact solutions of the Flierl-Petvishvili equation. The solutions are periodic and have one dimensional geometry. We examine the physical properties and find that these structures can have a significant effect on the zonal flow generation.Comment: Latex 40 pages, seven figures eps included. Effect of variation of g_3 is studied. New references adde

    On the Stability of Periodic Solutions of the Generalized Benjamin-Bona-Mahony Equation

    Full text link
    We study the stability of a four parameter family of spatially periodic traveling wave solutions of the generalized Benjamin-Bona-Mahony equation to two classes of perturbations: periodic perturbations with the same periodic structure as the underlying wave, and long-wavelength localized perturbations. In particular, we derive necessary conditions for spectral instability to perturbations to both classes of perturbations by deriving appropriate asymptotic expansions of the periodic Evans function, and we outline a nonlinear stability theory to periodic perturbations based on variational methods which effectively extends our periodic spectral stability results.Comment: 27 pages, 3 figure

    Pattern formation for the Swift-Hohenberg equation on the hyperbolic plane

    Full text link
    We present an overview of pattern formation analysis for an analogue of the Swift-Hohenberg equation posed on the real hyperbolic space of dimension two, which we identify with the Poincar\'e disc D. Different types of patterns are considered: spatially periodic stationary solutions, radial solutions and traveling waves, however there are significant differences in the results with the Euclidean case. We apply equivariant bifurcation theory to the study of spatially periodic solutions on a given lattice of D also called H-planforms in reference with the "planforms" introduced for pattern formation in Euclidean space. We consider in details the case of the regular octagonal lattice and give a complete descriptions of all H-planforms bifurcating in this case. For radial solutions (in geodesic polar coordinates), we present a result of existence for stationary localized radial solutions, which we have adapted from techniques on the Euclidean plane. Finally, we show that unlike the Euclidean case, the Swift-Hohenberg equation in the hyperbolic plane undergoes a Hopf bifurcation to traveling waves which are invariant along horocycles of D and periodic in the "transverse" direction. We highlight our theoretical results with a selection of numerical simulations.Comment: Dedicated to Klaus Kirchg\"assne

    An introduction to the Ginzburg-Landau theory of phase transitions and nonequilibrium patterns

    Full text link
    This paper presents an introduction to phase transitions and critical phenomena on the one hand, and nonequilibrium patterns on the other, using the Ginzburg-Landau theory as a unified language. In the first part, mean-field theory is presented, for both statics and dynamics, and its validity tested self-consistently. As is well known, the mean-field approximation breaks down below four spatial dimensions, where it can be replaced by a scaling phenomenology. The Ginzburg-Landau formalism can then be used to justify the phenomenological theory using the renormalization group, which elucidates the physical and mathematical mechanism for universality. In the second part of the paper it is shown how near pattern forming linear instabilities of dynamical systems, a formally similar Ginzburg-Landau theory can be derived for nonequilibrium macroscopic phenomena. The real and complex Ginzburg-Landau equations thus obtained yield nontrivial solutions of the original dynamical system, valid near the linear instability. Examples of such solutions are plane waves, defects such as dislocations or spirals, and states of temporal or spatiotemporal (extensive) chaos
    • …
    corecore