663 research outputs found

    Establishing a Performance Testing Approach for E-Learning Applications

    Get PDF
    Most of the E-Learning applications perform poorly in motivating employees to learn. To solve this problem, we need to examine what workplace e-learning requires and how workplace e-learning systems should be developed in line with those requirements. We investigated the problem by identifying the fundamental elements of the workplace learning environment including the learner, organization, learning content and social context, and their relationships. We found that workplace e-learning should align individual and organizational learning needs, connect learning and work performance, and support social interaction among individuals. To achieve this, a performance testing approach is proposed. Key performance indicators are utilized to clarify organizational goals, make sense of work context and requests on work performance, and accordingly help employees set up rational learning objectives and enhance their learning process. Using this approach, prototype system has been developed and a set of experiments have been conducted to demonstrate the effectiveness of the approach. This paper also presents the use of software verification, validation and testing technique, traditionally used in the software development, in the design and implementation of E-Learning products. We examine the ways one can apply testing techniques in E-Learning life cycle. This includes the strategy adoption for the selection of testing technique along with tool acquisition and measurement. The objective is to develop a collaborative approach involving software testing and educational methodology

    Inertial gyroscope system application considerations

    Get PDF
    Criteria for designing inertial gyroscope system

    Specification, space station program (modular)

    Get PDF
    The modular concepts of a long-term manned scientific laboratory in earth orbit using the space shuttle for orbital buildup and logistics delivery are presented. The specifications defining the performance, design and verification requirements for the Modular Space Program are included

    Towards reliable and scalable robot communication

    Get PDF
    The Robot Operating System (ROS) is the de facto standard platform for modern robots. However, communication between ROS nodes has scalability and reliability issues in practice. In this paper, we investigate whether Erlang’s lightweight concurrency and reliability mechanisms have the potential to address these issues. The basis of the investigation is a pair of simple but typical robotic control applications, namely two face-trackers: one using ROS publish/subscribe messaging, and the other a bespoke Erlang communication framework. We report experiments that compare five key aspects of the ROS and Erlang face trackers. We find that Erlang communication scales better, supporting at least 3.5 times more active processes (700 processes) than its ROS-based counterpart (200 nodes) while consuming half of the memory. However, while both face tracking prototypes exhibit similar detection accuracy and transmission latencies with 10 or fewer workers, Erlang exhibits a continuous increase in the total time taken to process a frame as more agents are added, and we identify the cause. A reliability study shows that while both ROS and Erlang restart failed computations, the Erlang processes restart 1000–1500 times faster than ROS nodes, reducing robot component downtime and mitigating the impact of the failures

    Simulation and control engineering studies of NASA-Ames 40 foot by 80 foot/80 foot by 120 foot wind tunnels

    Get PDF
    The development and use of a digital computer simulation of the proposed wind tunnel facility is described. The feasibility of automatic control of wind tunnel airspeed and other parameters was examined. Specifications and implementation recommendations for a computer based automatic control and monitoring system are presented

    Testing Strategies for Model-Based Development

    Get PDF
    This report presents an approach for testing artifacts generated in a model-based development process. This approach divides the traditional testing process into two parts: requirements-based testing (validation testing) which determines whether the model implements the high-level requirements and model-based testing (conformance testing) which determines whether the code generated from a model is behaviorally equivalent to the model. The goals of the two processes differ significantly and this report explores suitable testing metrics and automation strategies for each. To support requirements-based testing, we define novel objective requirements coverage metrics similar to existing specification and code coverage metrics. For model-based testing, we briefly describe automation strategies and examine the fault-finding capability of different structural coverage metrics using tests automatically generated from the model

    Causal reasoning about distributed programs

    Get PDF
    We present an integrated approach to the specification, verification and testing of distributed programs. We show how global properties defined by transition axiom specifications can be interpreted as definitions of causal relationships between process states. We explain why reasoning about causal rather than global relationships yields a clearer picture of distributed processing.;We present a proof system for showing the partial correctness of CSP programs that places strict restrictions on assertions. It admits no global assertions. A process annotation may reference only local state. Glue predicates relate pairs of process states at points of interprocess communication. No assertion references auxiliary variables; appropriate use of control predicates and vector clock values eliminates the need for them. Our proof system emphasizes causality. We do not prove processes correct in isolation. We instead track causality as we write our annotations. When we come to a send or receive, we consider all the statements that could communicate with it, and use the semantics of CSP message passing to derive its postcondition. We show that our CSP proof system is sound and relatively complete, and that we need only recursive assertions to prove that any program in our fragment of CSP is partially correct. Our proof system is, therefore, as powerful as other proof systems for CSP.;We extend our work to develop proof systems for asynchronous communication. For each proof system, our motivation is to be able to write proofs that show that code satisfies its specification, while making only assertions we can use to define the aspects of process state that we should trace during test runs, and check during postmortem analysis. We can trace the assertions we make without having to modify program code or add synchronization or message passing.;Why, if we verify correctness, would we want to test? We observe that a proof, like a program, is susceptible to error. By tracing and analyzing program state during testing, we can build our confidence that our proof is valid

    Developer Driven and User Driven Usability Evaluations

    Get PDF

    Deep Space Network information system architecture study

    Get PDF
    The purpose of this article is to describe an architecture for the Deep Space Network (DSN) information system in the years 2000-2010 and to provide guidelines for its evolution during the 1990s. The study scope is defined to be from the front-end areas at the antennas to the end users (spacecraft teams, principal investigators, archival storage systems, and non-NASA partners). The architectural vision provides guidance for major DSN implementation efforts during the next decade. A strong motivation for the study is an expected dramatic improvement in information-systems technologies, such as the following: computer processing, automation technology (including knowledge-based systems), networking and data transport, software and hardware engineering, and human-interface technology. The proposed Ground Information System has the following major features: unified architecture from the front-end area to the end user; open-systems standards to achieve interoperability; DSN production of level 0 data; delivery of level 0 data from the Deep Space Communications Complex, if desired; dedicated telemetry processors for each receiver; security against unauthorized access and errors; and highly automated monitor and control
    • …
    corecore