18,055 research outputs found

    Recurrence relations for a third-order family of methods in Banach Spaces

    Get PDF
    Recently, PArida and Gupta (J. Comp. Appl.Math. 2-6 (2007), 873-877) used Rall's recurrence relations approach (from 1961) to approximate roots of nonlinear equations, by developing several methods, the latest of which is free of second derivative and it is of third order. In this paper, we use an idea of Kou and Li (appl. Math. Comp. 187 (2007), 1027-1032) and modify the approach of Parida and Gupta, obtaining yet another third-order method to approximate a solution of a non-linear equation in a Banach space. We give several applications to our method

    A family of Chebyshev-Halley type methods in Banach spaces

    Get PDF
    A family of third-order iterative processes (that includes Chebyshev and Halley's methods) is studied in Banach spaces. Results on convergence and uniqueness of solution are given, as well as error estimates. This study allows us to compare the most famous third-order iterative processes

    Semilocal Convergence Analysis of an Iteration of Order Five Using Recurrence Relations in Banach Spaces

    Full text link
    [EN] Semilocal convergence for an iteration of order five for solving nonlinear equations in Banach spaces is established under second-order Fr,chet derivative satisfying the Lipschitz condition. It is done by deriving a number of recurrence relations. A theorem for the existence-uniqueness along with the estimation of error bounds of the solution is established. Its R-order is shown to be equal to five. Both efficiency and computational efficiency indices are given. A variety of examples are worked out to show its applicability. In comparison to existing methods having similar R-orders, improved results in terms of computational efficiency index and error bounds are found using our methodology.The authors thank the referees for their valuable comments which have improved the presentation of the paper. The authors thankfully acknowledge the financial assistance provided by Council of Scientific and Industrial Research (CSIR), New Delhi, India.Singh, S.; Gupta, D.; Martínez Molada, E.; Hueso Pagoaga, JL. (2016). Semilocal Convergence Analysis of an Iteration of Order Five Using Recurrence Relations in Banach Spaces. Mediterranean Journal of Mathematics. 13(6):4219-4235. doi:10.1007/s00009-016-0741-5S42194235136Cordero A., Hueso J.L., Martinez E., Torregrosa J.R.: Increasing the convergence order of an iterative method for nonlinear systems. Appl. Math. Lett. 25, 2369–2374 (2012)Chen, L., Gu, C., Ma Y.: Semilocal convergence for a fifth order Newton’s method using Recurrence relations in Banach spaces. J. Appl. Math. 2011, 1–15 (2011)Wang X., Kou J., Gu C.: Semilocal convergence of a sixth order Jarrat method in Banach spaces. Numer. Algorithms 57, 441–456 (2011)Zheng L., Gu C.: Semilocal convergence of a sixth order method in Banach spaces. Numer. Algorithms 61, 413–427 (2012)Zheng L., Gu C.: Recurrence relations for semilocal convergence of a fifth order method in Banach spaces. Numer. Algorithms 59, 623–638 (2012)Proinov P.D., Ivanov S.I.: On the convergence of Halley’s method for multiple polynomial zeros. Mediterr. J. Math. 12, 555–572 (2015)Ezquerro, J.A., Hernández-Verón M.A.: On the domain of starting points of Newton’s method under center lipschitz conditions. Mediterr. J. Math. (2015). doi: 10.1007/s00009-015-0596-1Cordero A., Hernández-Verón M.A., Romero N., Torregrosa J.R.: Semilocal convergence by using recurrence relations for a fifth-order method in Banach spaces. J. Comput. Appl. Math. 273, 205–213 (2015)Parida P.K., Gupta D.K.: Recurrence relations for a Newton-like method in Banach spaces. J. Comput. Appl. Math. 206, 873–887 (2007)Hueso J.L., Martínez E.: Semilocal convergence of a family of iterative methods in Banach spaces. Numer. Algorithms 67, 365–384 (2014)Argyros, I.K., Hilout S.: Numerical methods in nonlinear analysis. World Scientific Publ. Comp., New Jersey (2013)Argyros, I.K., Hilout, S., Tabatabai, M.A.: Mathematical modelling with applications in biosciences and engineering. Nova Publishers, New York (2011)Argyros I.K., Khattri S.K.: Local convergence for a family of third order methods in Banach spaces. J. Math. 46, 53–62 (2004)Argyros I.K., Hilout A.S.: On the local convergence of fast two-step Newton-like methods for solving nonlinear equations. J. Comput. Appl. Math. 245, 1–9 (2013)Kantorovich, L.V., Akilov G.P.: Functional analysis. Pergamon Press, Oxford (1982)Argyros I.K., George S., Magreñán A.A.: Local convergence for multi-point-parametric Chebyshev-Halley-type methods of higher convergence order. J. Comput. Appl. Math. 282, 215–224 (2015)Argyros I.K., Magreñán A.A.: A study on the local convergence and the dynamics of Chebyshev-Halley-type methods free from second derivative. Numer. Algorithms 71, 1–23 (2015)Amat S., Hernández M.A., Romero N.: A modified Chebyshev’s iterative method with at least sixth order of convergence. Appl. Math. Comput. 206, 164–174 (2008)Chun, C., St a˘{\breve{a}} a ˘ nic a˘{\breve{a}} a ˘ , P., Neta, B.: Third-order family of methods in Banach spaces. Comput. Math. Appl. 61, 1665–1675 (2011)Ostrowski, A.M.: Solution of equations in Euclidean and Banach spaces, 3rd edn. Academic Press, New-York (1977)Jaiswal J.P.: Semilocal convergence of an eighth-order method in Banach spaces and its computational efficiency. Numer. Algorithms 71, 933–951 (2015)Traub, J.F.: Iterative methods for the solution of equations. Prentice-Hall, Englewood Cliffs (1964

    Local convergence of a family of iterative methods for Hammerstein equations

    Full text link
    [EN] In this paper we give a local convergence result for a uniparametric family of iterative methods for nonlinear equations in Banach spaces. We assume boundedness conditions involving only the first Fr,chet derivative, instead of using boundedness conditions for high order derivatives as it is usual in studies of semilocal convergence, which is a drawback for solving some practical problems. The existence and uniqueness theorem that establishes the convergence balls of these methods is obtained. We apply this theory to different examples, including a nonlinear Hammerstein equation that have many applications in chemistry and appears in problems of electro-magnetic fluid dynamics or in the kinetic theory of gases. With these examples we illustrate the advantages of these results. The global convergence of the method is addressed by analysing the behaviour of the methods on complex polynomials of second degree.This research was supported by Ministerio de Ciencia y Tecnologia MTM2014-52016-C2-02.This research was supported by Ministerio de Ciencia y Tecnología MTM2014-52016-C2-02.Martínez Molada, E.; Singh, S.; Hueso Pagoaga, JL.; Gupta, D. (2016). Local convergence of a family of iterative methods for Hammerstein equations. Journal of Mathematical Chemistry. 54(7):1370-1386. https://doi.org/10.1007/s10910-016-0602-2S13701386547I.K. Argyros, S. Hilout, M.A. Tabatabai, Mathematical Modelling with Applications in Biosciences and Engineering (Nova Publishers, New York, 2011)J.F. Traub, Iterative Methods for the Solution of Equations (Prentice-Hall, Englewood Cliffs, New Jersey, 1964)A.M. Ostrowski, Solutions of Equations in Euclidean and Banach Spaces (Academic Press, New York, 1973)I.K. Argyros, J.A. Ezquerro, J.M. Gutiárrez, M.A. Hernández, S. Hilout, On the semilocal convergence of efficient ChebyshevSecant-type methods. J. Comput. Appl. Math. 235, 3195–3206 (2011)José L. Hueso, E. Martínez, Semilocal convergence of a family of iterative methods in Banach spaces. Numer. Algorithms 67, 365–384 (2014)X. Wang, C. Gu, J. Kou, Semilocal convergence of a multipoint fourth-order super-Halley method in Banach spaces. Numer. Algorithms 54, 497–516 (2011)J. Kou, Y. Li, X. Wang, A variant of super Halley method with accelerated fourth-order convergence. Appl. Math. Comput. 186, 535–539 (2007)L. Zheng, C. Gu, Recurrence relations for semilocal convergence of a fifth-order method in Banach spaces. Numer. Algorithms 59, 623–638 (2012)S. Amat, M.A. Hernández, N. Romero, A modified Chebyshevs iterative method with at least sixth order of convergence. Appl. Math. Comput. 206, 164–174 (2008)X. Wang, J. Kou, C. Gu, Semilocal convergence of a sixth-order Jarratt method in Banach spaces. Numer. Algorithms 57, 441–456 (2011)A. Cordero, J.A. Ezquerro, M.A. Hernández-Verón, J.R. Torregrosa, On the local convergence of a fifth-order iterative method in Banach spaces. Appl. Math. Comput. 251, 396–403 (2015)I.K. Argyros, S. Hilout, On the local convergence of fast two-step Newton-like methods for solving nonlinear equations. J. Comput. Appl. Math. 245, 1–9 (2013)S. Weerakoon, T.G.I. Fernando, A variant of Newton’s method with accelerated third-order convergence. Appl. Math. Lett. 13(8), 87–93 (2000)X. Feng, Y. He, High order oterative methods without derivatives for solving nonlinear equations. Appl. Math. Comput. 186, 1617–1623 (2007)X. Wang, J. Kou, Y. Li, Modified Jarratt method with sixth-order convergence. Appl. Math. Lett. 22, 1798–1802 (2009)A.D. Polyanin, A.V. Manzhirov, Handbook of Integral Equations (CRC Press, Boca Raton, 1998)S. Plaza, N. Romero, Attracting cycles for the relaxed Newton’s method. J. Comput. Appl. Math. 235(10), 3238–3244 (2011)A. Cordero, J.R. Torregrosa, P. Vindel, Study of the dynamics of third-order iterative methods on quadratic polynomials. Int. J. Comput. Math. 89(13–14), 1826–1836 (2012)Gerardo Honorato, Sergio Plaza, Natalia Romero, Dynamics of a higher-order family of iterative methods. J. Complex. 27(2), 221–229 (2011)J.M. Gutirrez, M.A. Hernández, N. Romero, Dynamics of a new family of iterative processes for quadratic polynomials. J. Comput. Appl. Math. 233(10), 2688–2695 (2010)I.K. Argyros, A.A. Magreñan, A study on the local convergence and dynamics of Chebyshev-Halley-type methods free from second derivative. Numer. Algorithms. doi: 10.1007/s11075-015-9981-xI.K. Argyros, S. George, Local convergence of modified Halley-like methods with less computation of inversion (Novi Sad J. Math, Draft version, 2015

    Semilocal convergence of a family of iterative methods in Banach spaces

    Full text link
    [EN] In this work, we prove a third and fourth convergence order result for a family of iterative methods for solving nonlinear systems in Banach spaces. We analyze the semilocal convergence by using recurrence relations, giving the existence and uniqueness theorem that establishes the R-order of the method and the priori error bounds. Finally, we apply the methods to two examples in order to illustrate the presented theory.This work has been supported by Ministerio de Ciencia e Innovaci´on MTM2011-28636-C02-02 and by Vicerrectorado de Investigaci´on. Universitat Polit`ecnica de Val`encia PAID-SP-2012-0498Hueso Pagoaga, JL.; Martínez Molada, E. (2014). Semilocal convergence of a family of iterative methods in Banach spaces. Numerical Algorithms. 67(2):365-384. https://doi.org/10.1007/s11075-013-9795-7S365384672Traub, J.F.: Iterative Methods for the Solution of Nonlinear Equations. Prentice Hall, New York (1964)Kantorovich, L.V.: On the newton method for functional equations. Doklady Akademii Nauk SSSR 59, 1237–1240 (1948)Candela, V., Marquina, A.: Recurrence relations for rational cubic methods, I: The Halley method. Computing 44, 169–184 (1990)Candela, V., Marquina, A.: Recurrence relations for rational cubic methods, II: The Chebyshev method. Computing 45, 355–367 (1990)Hernández, M.A.: Reduced recurrence relations for the Chebyshev method. J. Optim. Theory Appl. 98, 385–397 (1998)Gutiérrez, J.M., Hernández, M.A.: Recurrence relations for super-Halley method. J. Comput. Math. Appl. 7, 1–8 (1998)Ezquerro, J.A., Hernández, M.A.: Recurrence relations for Chebyshev-like methods. Appl. Math. Optim. 41, 227–236 (2000)Ezquerro, J.A., Hernández, M.A.: New iterations of R-order four with reduced computational cost. BIT Numer. Math. 49, 325–342 (2009)Argyros, I., K., Ezquerro, J.A., Gutiérrez, J.M., Hernández, M.A., Hilout, S.: On the semilocal convergence of efficient Chebyshev Secant-type methods. J. Comput. Appl. Math. 235–10, 3195–3206 (2011)Argyros, I.K., Hilout, S.: Weaker conditions for the convergence of Newtons method. J. Complex. 28(3), 364–387 (2012)Wang, X., Gu, C., Kou, J.: Semilocal convergence of a multipoint fourth-order super-Halley method in Banach spaces. Numer. Algoritm. 54, 497–516 (2011)Kou, J., Li, Y., Wang, X.: A variant of super Halley method with accelerated fourth-order convergence. Appl. Math. Comput. 186, 535–539 (2007)Zheng, L., Gu, C.: Recurrence relations for semilocal convergence of a fifth-order method in Banach spaces. Numer. Algoritm. 59, 623–638 (2012)Amat, S., Hernández, M.A., Romero, N.: A modified Chebyshevs iterative method with at least sixth order of convergence. Appl. Math. Comput. 206, 164–174 (2008)Wang, X., Kou, J., Gu, C.: Semilocal convergence of a sixth-order Jarratt method in Banach spaces. Numer. Algoritm. 57, 441–456 (2011)Hernández, M.A.: The newton method for operators with hlder continuous first derivative. J. Optim. Appl. 109, 631–648 (2001)Ye, X., Li, C.: Convergence of the family of the deformed Euler-Halley iterations under the Hlder condition of the second derivative. J. Comput. Appl. Math. 194, 294–308 (2006)Zhao, Y., Wu, Q.: Newton-Kantorovich theorem for a family of modified Halleys method under Hlder continuity conditions in Banach spaces. Appl. Math. Comput. 202, 243–251 (2008)Argyros, I.K.: Improved generalized differentiability conditions for Newton-like methods. J. Complex. 26, 316–333 (2010)Hueso, J.L., Martínez. E., Torregrosa, J.R.: Third and fourth order iterative methods free from second derivative for nonlinear systems. Appl. Math. Comput. 211, 190–197 (2009)Taylor, A.Y., Lay, D.: Introduction to Functional Analysis, 2nd edn.New York, Wiley (1980)Jarrat, P.: Some fourth order multipoint iterative methods for solving equations. Math. Comput. 20, 434–437 (1966)Cordero, A., Torregrosa, J.R.: Variants of Newtons method using fifth-order quadrature formulas. Appl. Math. Comput. 190, 686–698 (2007

    Third-order iterative methods with applications to Hammerstein equations: A unified approach

    Get PDF
    AbstractThe geometrical interpretation of a family of higher order iterative methods for solving nonlinear scalar equations was presented in [S. Amat, S. Busquier, J.M. Gutiérrez, Geometric constructions of iterative functions to solve nonlinear equations. J. Comput. Appl. Math. 157(1) (2003) 197–205]. This family includes, as particular cases, some of the most famous third-order iterative methods: Chebyshev methods, Halley methods, super-Halley methods, C-methods and Newton-type two-step methods. The aim of the present paper is to analyze the convergence of this family for equations defined between two Banach spaces by using a technique developed in [J.A. Ezquerro, M.A. Hernández, Halley’s method for operators with unbounded second derivative. Appl. Numer. Math. 57(3) (2007) 354–360]. This technique allows us to obtain a general semilocal convergence result for these methods, where the usual conditions on the second derivative are relaxed. On the other hand, the main practical difficulty related to the classical third-order iterative methods is the evaluation of bilinear operators, typically second-order Fréchet derivatives. However, in some cases, the second derivative is easy to evaluate. A clear example is provided by the approximation of Hammerstein equations, where it is diagonal by blocks. We finish the paper by applying our methods to some nonlinear integral equations of this type

    Local convergence of a parameter based iteration with Holder continuous derivative in Banach spaces

    Full text link
    [EN] The local convergence analysis of a parameter based iteration with Hölder continuous first derivative is studied for finding solutions of nonlinear equations in Banach spaces. It generalizes the local convergence analysis under Lipschitz continuous first derivative. The main contribution is to show the applicability to those problems for which Lipschitz condition fails without using higher order derivatives. An existence-uniqueness theorem along with the derivation of error bounds for the solution is established. Different numerical examples including nonlinear Hammerstein equation are solved. The radii of balls of convergence for them are obtained. Substantial improvements of these radii are found in comparison to some other existing methods under similar conditions for all examples considered.The authors thank the referees for their valuable comments which have improved the presentation of the paper. The authors thankfully acknowledge the financial assistance provided by Council of Scientific and Industrial Research (CSIR), New Delhi, India.Singh, S.; Gupta, DK.; Badoni, RP.; Martínez Molada, E.; Hueso Pagoaga, JL. (2017). Local convergence of a parameter based iteration with Holder continuous derivative in Banach spaces. CALCOLO. 54(2):527-539. doi:10.1007/s10092-016-0197-9S527539542Argyros, I.K., Hilout, S.: Numerical methods in nonlinear analysis. World Scientific Publ. Comp, New Jersey (2013)Argyros, I.K., Hilout, S., Tabatabai, M.A.: Mathematical modelling with applications in biosciences and engineering. Nova Publishers, New York (2011)Singh, S., Gupta, D.K., Martínez, E., Hueso, J.L.: Semilocal and local convergence of a fifth order iteration with Fréchet derivative satisfying Hölder condition. Appl. Math. Comput. 276, 266–277 (2016)Traub, J.F.: Iterative methods for the solution of equations. Prentice-Hall, Englewood Cliffs (1964)Rall, L.B.: Computational solution of nonlinear operator equations, reprint edn. R. E. Krieger, New York (2007)Cordero, A., Ezquerro, J.A., Hernández-Verón, M.A., Torregrosa, J.R.: On the local convergence of a fifth-order iterative method in Banach spaces. Appl. Math. Comput. 251, 396–403 (2015)Argyros, I.K., Hilout, A.S.: On the local convergence of fast two-step Newton-like methods for solving nonlinear equations. J. Comput. Appl. Math. 245, 1–9 (2013)Argyros, I.K., Behl, R., Motsa, S.S.: Local convergence of an efficient high convergence order method using hypothesis only on the first derivative. Algorithms 8, 1076–1087 (2015)Kantorovich, L.V., Akilov, G.P.: Functional analysis. Pergamon Press, Oxford (1982)Argyros, I.K., Magreñán, A.A.: A study on the local convergence and dynamics of Chebyshev-Halley-type methods free from second derivative. Numer. Algorithms 71, 1–23 (2016)Li, D., Liu, P., Kou, J.: An improvement ofthe Chebyshev-Halley methods free from second derivative. Appl. Math. Comput. 235, 221–225 (2014)Argyros, I.K., George, S.: Local convergence of deformed Halley method in Banach space under Holder continuity conditions. J. Nonlinear Sci. Appl. 8, 246–254 (2015)Argyros, I.K., Khattri, S.K.: Local convergence for a family of third order methods in Banach spaces. J. Math. 46, 53–62 (2014)Argyros, I.K., George, S., Magreñán, A.A.: Local convergence for multi-point-parametric Chebyshev-Halley-type methods of higher convergence order. J. Comput. Appl. Math. 282, 215–224 (2015)Argyros, I.K., George, S.: Local convergence of modified Halley-like methods with less computation of inversion. Novi. Sad. J. Math. 45, 47–58 (2015)Xiao, X.Y., Yin, H.W.: Increasing the order of convergence for iterative methods to solve nonlinear systems. Calcolo (2015). doi: 10.1007/s10092-015-0149-9Martínez, E., Singh, S., Hueso, J.L., Gupta, D.K.: Enlarging the convergence domain in local convergence studies for iterative methods in Banach spaces. Appl. Math. Comput. 281, 252–265 (2016

    On the â„“s\ell^s-boundedness of a family of integral operators

    Full text link
    In this paper we prove an â„“s\ell^s-boundedness result for integral operators with operator-valued kernels. The proofs are based on extrapolation techniques with weights due to Rubio de Francia. The results will be applied by the first and third author in a subsequent paper where a new approach to maximal LpL^p-regularity for parabolic problems with time-dependent generator is developed.Comment: Minor revision. Accepted for publication in Rev. Mat. Iberoamerican

    Rich families and elementary submodels

    Full text link
    We compare two methods of proving separable reduction theorems in functional analysis -- the method of rich families and the method of elementary submodels. We show that any result proved using rich families holds also when formulated with elementary submodels and the converse is true in spaces with fundamental minimal system an in spaces of density ℵ1\aleph_1. We do not know whether the converse is true in general. We apply our results to show that a projectional skeleton may be without loss of generality indexed by ranges of its projections

    Stochastic equations with boundary noise

    Get PDF
    We study the wellposedness and pathwise regularity of semilinear non-autonomous parabolic evolution equations with boundary and interior noise in an LpL^p setting. We obtain existence and uniqueness of mild and weak solutions. The boundary noise term is reformulated as a perturbation of a stochastic evolution equation with values in extrapolation spaces.Comment: submitte
    • …
    corecore