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A FAMILY OF CHEBYSHEV-HALLEY TYPE METHODS
IN BANACH SPACES

J.M. GUTIERREZ AND M.A. HERNANDEZ

A family of third-order iterative processes (that includes Chebyshev and Halley's
methods) is studied in Banach spaces. Results on convergence and uniqueness of
solution are given, as well as error estimates. This study allows us to compare the
most famous third-order iterative processes.

INTRODUCTION

Let X, Y be Banach spaces and F : £1 C. X —* Y be a nonlinear twice Frechet
differentiable operator in an open convex domain (1Q C fl. Let us assume that
F'(xo) G C(Y,X) exists at some x<> € fio, where C(Y, X) is the set of bounded
linear operators from Y into X .

Among the third-order methods for solving the equation

(1) F{x) = 0

we have:
• Chebyshev's method [3, 5, 15],

'(zn)-1^(«„), n ^ 0,

• Halley's method (or method of tangent hyperbolas) [1, 2, 4, 6, 7, 10, 13, 15,
20],

-LF{xn) I - -LF{xn)
z L z J

- l

"^(Xn), n^O,

and
• convex acceleration of Newton's method (or super-Halley's method) [8, 12, 14],

+ \LF{xn) [I - LF(xn)rA F'ixn)-1 F{xn), n>0.
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114 J.M. Gutierrez and M.A. Hernandez [2]

We have denoted by / the identity operator on X and by Lp(x) the hnear operator
defined by

LF(x) = F'(x)-1F"(x)F'(x)-1F(x), x G X,

provided than F'(«)~2 exists. This operator and its connection with Newton's method
were studied in [11]. For a real function / , the expression

is a measure of the convexity of / at t, the degree of logarithmic convexity [13].

In view of these methods, we define for a G [0,1], xQlo = s:o S f2o and n ^ 0 the
following one-parameter family of iterative processes

(2) xa<n+1 = xa<n - \l + ^LF(xatn) [I - a£F(xQ,n)]- a I ^ ( ^ n ) " 1 ^ ^ , ™ ) .

This family extends the family of scalar iterative processes considered by Hernandez
and Salanova in [15], and includes, as particular cases, Chebyshev's method (a = 0),
Halley's method ( a = 1/2) and convex acceleration of Newton's method (a = 1).

In this paper, we obtain results on existence and uniqueness of solution of (1),
convergence of the sequences (2) to this solution under Kantorovich-type assumptions
(see [16, 17, 18]) and error estimates. Finally, we give some examples to illustrate
the previous results, analysing the velocity of convergence of different methods and
comparing our error bounds with those that have been given by other authors.

PRELIMINARIES

Following Yamamoto [20], we assume throughout this paper that

(i) There exists a continous linear operator To = F'(xo) , XQ G fio.
(ii) \\ro(F"(x)-F"(y))\\^k\\x-y\\,x,yeno, k>0.

(iii) \\T0F(x0)\\ < a, ||r0.F"(zo)|| ^ b.
(iv) The equation

t3 + t 2 t + 0(3) p ( t ) t +

has one negative root and two positive roots r\ and r^ (r\ ^ r^ ) if k > 0,

or has two positive roots ri and r-i ( T\ ^ r^) if k = 0. Equivalently,

if k > 0,
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[3] Chebyshev-Halley type methods 115

For each a £ [0,1], let us define the scalar sequence {ta,n} by

(4) ta,o -t0 -0, ta,n+i - ta<n - 1 +
2(1 - aLp{tain

where p is the polynomial defined by (3).

We write r a , n = .F'^a.n)"1 and HQyn = [/ - aif(xQ)Tl)]~1, when they exist.
Under the assumptions (i)-(iv) we prove that the sequences {ta,n} and {a:a,n},

are well-defined, converge to ri and a solution x* of (1) respectively, and

||za,n+l — Xa,n\\ ^ ta,n+l ~ ta,n, « ^ 0,

11** -Za.nll < n -ta,n, n ^ 0.

That is, {ta,n} is a majorising sequence of {xa,n} (see [16, 19]).
First, we give a general result on convergence of scalar sequences that includes, as

a particular case, the family {ta,n} defined by (4).

LEMMA 2 . 1 . Let p be the polynomial defined in (3) with two positive roots
ri ^ f2 • Then the sequences

Sa,0 = 0, 8atn+i = Ga{sain), n ^ 0,

where

said

converge to r%. Moreover these sequences axe increasing to r j .

PROOF: Under the previous assumptions for p, it is well known, [2], that

Therefore we have sQ)n+1 ^ sa>n.
On the other hand, we can write

~, for t€[0 , r i ] .

~ a ) + a < 2 a -2(1 - aLp(s))

Taking into account that Lpi is negative and increasing for s £ [0,ri], we have that
G'a(s) > 0, s G [0,7-i] and the result follows. D

Besides, the convergence of the sequences {<a,ra} is of third order. That follows as
a consequence of the following result of Gander [10].
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116 J.M. Gutierrez and M.A. Hernandez [4]

LEMMA 2 . 2 . Let T\ be a simple zero of p and A any function satisfying A(0) =
1, A'(0) = 1/2, |A"(0)| < oo. The iteration

tn+i =tn-A (Lp(tn)) ?^-

is of third order.

Although the convergence is cubic in general, in [12] it was established that the
sequence {^i,n} (called convex acceleration of Newton's method) has convergence of
order four when p is a quadratic polynomial. Moreover, in this case, two iterations of
Newton's method are equal to one iteration of the sequence {<i,n}.

Now, we center our study on obtaining error expressions for the sequences (4).
When p is a quadratic polynomial, following Ostrowski [17], we derive the following
error bounds.

LEMMA 2 . 3 . Let p be the polynomial given by (3) with k = 0, that is

* ) = £*'-« + «.
We assume that p has two positive roots rj ^ 7*2. Let {tain} be the sequence defined
in (4).

(a) When r± <T2, put 0 = — and Ra = - ^ ^-. Then we have:
7*2 1 + 2(1 — Ot)0

(a i ) If a G [0,1/2) and ab <
, ,

^ (r2 - ri)
^2(1 - a) - f^/2(l - a)0J

(a2) If a = 1/2,

3" •

2,n = l'-2 -Tlt

(as) if a 6 (1/2,1),
13"

- a) - [^2(1 - a)

( r ' "
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[5] Chebyshev-Halley type methods 117

(a4 ) Finally, if a = 1,

ri - tl,n - j _ g4n •

(b) When ri = r2 , we iave

3-2a V

PROOF: Let us write aQiTl = rx — ta<n, 6OiTl = r 2 — ta<n, n ^ 0 . Thus

P(*a,n) = -Oa,n6a,n, P'(*a,n) = - r ( a a , n + &a,n)-

By (4) we have

,(.-, . 3 aa,n + 2(1 - a)bat7l
(O; aQ,n+l = n - ta,n+l = aan- — -i— —— —— r ,

(aa,n + ba,n){a2
an + b2

an + 2(1 - a)aa>nbain)

and similarly
Oa,n+1 — T2 — 'a ,n+l — "a.

3 bg,n + 2(1 - a)aa,n
^ T \7i TTi To7i \ I \ -

{aa,n + 6a,n) (o | , n + &a,n + 2(1 - a)aa,n6Q,n)

If ri < r2, we put 0 — T\/r2 < 1 and fialTl = , ° ' " to obtain

3 Ka,n + 2(1 - a)

Taking into account that the function

as+2(1-a )
l + 2 ( l - a ) s e

is decreasing when a G [0,1/2), is constant when a = 1/2, is increasing when a £
(1/2,1) and is the identity when a = 1, we obtain the first part.

If ri = r2, then oa)Tl = ba<n. Therefore, from (6), we have

3 - 2 a
°a"+1-aa'"4(2^0"

By recurrence, the second part holds. U

When k > 0 the real sequences {ta,n} in (4) are obtained from a cubic polynomial.
In this case, it is difficult to obtain error bounds following Ostrowski's method. In
the next lemma, we establish estimates for the error in this situation by using a new
procedure.
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118 J.M. Gutierrez and M.A. Hernandez [6]

LEMMA 2 . 4 . Let p be the polynomial given by (3) with k > 0, that is

P(t) = g<3 + ^t2-t + a.

Let us assume that p has two positive roots ri ^ r2 and a negative root, —TQ . Let
{ta,n} be the sequence defined in (4). Then, if TX < r2 and 6 = V/A^r1/r2 < 1,

where

If ri — r2, we have
. 3-2a\"

tr.

PROOF: The polynomial p defined above can be written in the form

Let us write <!„,„ = r^ — ta<n, 6a|Tl — r2 — ta,n and

(r2 — Gr
a(fa,n))(''l — ta,n)

with Ga defined by (5).
As Gain) = ri, G ^ n ) = G^(T-I) = 0, we have for t close to rx

Q{t) ~ (r2 - n ) 2 Hm

6p'(ri)

_ ( r 2 - r 1 ) ( r o + r 1 ) + 2 ( l - t t ) ( r o + 2 r i - r 2 ) 2 _

Since <„,„ —»• ri when n —• oo, we obtain

3

— 1 ^ a ^
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[7] Chebyshev-Halley type methods 119

and the first part holds.

If r i = r 2 , let
\ a<*,n+l _ r l - Gg{ta,n)
) - :n) :

da,n rl — ta,n

Notice that for t close to r\

By recurrence, the second part also follows. D

We center now our study on the sequences {xQ)n}, a £ [0,1], defined in Banach
spaces.

LEMMA 2 . 5 . With the above notation and assumptions, we can write F( i a | B + 1)
in tie following way:

[F"{x) - F"(x«.n)](*«,n+i - x) dx,

where

(8) yo,» = LF{xa,n)Ha,nTa,nF{xatn).

PROOF: By Taylor's formula, and using (2), we deduce

1 2
, r 2

Jl"(x)-F"(xa,f,)](a!a,n+i-*)«fa!

= -iF"(xa,n)rQ)nJF(xQ>n)JQ,nrQ)nF(xa>n) + \F"{xatn)(TatnF{xa>n)f

+ eF"{xa,n)y2 + -F"(za,n)Ta<nF{xa,n)yatn

As JQ)n = I + a£F(xa,n)-Ha,ni the result holds. u

LEMMA 2 . 6 . The iterates (2) are well defined for a £ [0,1] and n > 0, converge
to x*, a solution of (1), and

(9) l|xa n+l — X II ^ t n+l —tan

(10) | | * ' - * a , » K r 1 - « a , n .

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0004972700030586
Downloaded from https://www.cambridge.org/core. Universidad de la Rioja, on 24 Oct 2019 at 17:19:54, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0004972700030586
https://www.cambridge.org/core


120 J.M. Gutierrez and M.A. Hernandez [8]

PROOF: For each a £ [0,1] we prove for n > 0:

[In] r a > n = F(x a , n ) - X exists (ra,o = To = F'(xo)-1 )•

[IVn] \\T0F{xa,n)\\^-&*£.

[Vn] Ha,n = [ I - a l F ^ n ) ] ' 1 exists and ||JJ«,n|| ̂  }
1 — ahp(tain)

Since p denned in (3) satisfies LT(t) ^ 1/2, (see [2]), then [Vn + 1] follows as a
consequence of [IIn+i] , [ IH n + i ] and [IVn +i] . Thus, we prove [ I n + i ] - [ IV n + 1 ] using
induction. Applying Altman's technique, (see [2] or [20]), [In+i] , [IIn+i] and [IIIn+i]
follow immediately.

To prove [ I V n + l ] , let us write va<n — Lp(tain). Then

were ya,n is given by (8). Therefore, from Lemma 2.5,

8 ( 1 — aVa^n) 2 1 — &Va,n 6

Repeating the same process for the polynomial p, we obtain

») k,.

and consequently,

/•"Ml IIFn F(T

So we conclude the induction.

Next, we have

2(1 -
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[9] Chebyshev-Halley type methods 121

then (9) holds, and {ta,n} majorises {ssa.n} • The convergence of {<a,n} (see Lemma

2.1 and its note) implies the convergence of {xa>n} to a limit x*. By letting n —• oo

in (11), we deduce F(x*) = 0.

Finally, for p ^ 0,

and by letting p —> oo we obtain (10).

LEMMA 2 . 7 . Under the previous assumptions we have, for 0 ^ a ^ 1/2

IK - *Q,n+1|| ^ (n - ta,n+1)

and for 1/2 ^ a ^ 1,

I I 1 * —
II <r * ,{\\**-*a,n\\Y

+ l|| ^ (7l — la,n+lj I r I •

PROOF: The argument of Yamamoto (see [12] or [20] for details), and using

I + ^LF{xa>n)Ha<n = Ha<n h-(a- iJ LF(xain)\ ,

shows that

x* - xa<n+1 = -Ha,nTain [X [F"(x) - F"(xa,n)](x* - x) dx

\T — TT MT* — T 1 — - 7 7 P F"(x \(T* — T I2

-HainLF(xatn)TatnF(xatn).

Since I — Hain = -aHainLF(xa>n), we obtain

x* - xa<n+1 = -Ha,nTa<n / [F"(x) - *"'(*«,«)](*• - x) dx

Jza.n

+ [I- Hain](x* - xa,n) + aHatnLF{xa,n)Ta,n / F"(x){x* - x) dx

(12) + ijy«lBra,nF"(*ain) [(ra,»F(*a,B))a - (*• - * a , n ) 2 ] .
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122 J.M. Gutierrez and M.A. Hernandez [10]

Then, for 0 ̂  a < 1/2 it follows that

x* - xn+1 = - J7Q,nrQ,n / [F"(x) - F"(xain)}(x* - x) dx
J

F"(x)(x* - x) dx

^ Ta<n J F"(x)(x* -x)dx\ (x* - x).

For 1/2 ^ a < 1, writing

in (12), we deduce

x — "(x) - F"(xa>n)](x* - x) dx

- ( a - \ ) HatnTatnF"(xa,n) Ta<n [' F"(x)(x* -

+ (1 - a)HatnTa,nF"{xa<n) ra,n [' F"{x){x* - x) dx

-I 2

Consequently, for 0 ^ a < 1/2,

* II

^ [~ 6(1-aLp(tain))p'(ta,n)

+ 2(1-aLp{ta<n))p'(ta,n)
2

LP(ta,n)

_z)dz]
1 \

~ 2) (l-
l«*-*a

- tg,n) p"(tQ,n)(n - *«,»)
6(1 - aLp(ta<n))p'(tain) 2(1 -

- ta,n+l)
1 la,n
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[11] Chebyshev-Halley type methods 123

In a similar way, we obtain for 1/2 ^ a ^ 1

MAIN THEOREM

We are now ready to prove the following Kantorovich-type theorem.

THEOREM 3 . 1 . Let us assume that conditions (i)-(iv) hold and also

(13) Ba = B(xaA,ri -ta,i) = {xeX;\\x-xail\\ ^ rj - taA} <Z n0.

Then:

(a) The sequences (2) are well-defined for a € [0,1] and n ^ 0, lie in Ba (the

interior of Ba) for n ^ 1 and converge to a solution x* of the equation (1).

(b) The solution is unique in B{XQ,T2) PI Oo if J*i < T-L or in B(xo,ri) fi f2o if

r i = T-2 .

(c) The following error estimates hold:

(c i ) For a 6 [0,1/2), let TQ)n and <ra<n be the unique positive root and the
smallest positive root of the polynomials

ipa,n(t) = ka,nt
2 - t + Sa,n

and

<l>a,n{i) = ka,n* +t — t>a,n,

respectively, where

^ "̂1 'ot,n-fl r II II ^ A

(n - t*,n)

Then we have

Ta,n < ||s;* - a:a,n|| ^ cra,n ^ n - <a,n.

(c2) For a G [1/2,1], let r^ n and o-^n be the smallest positive root and the
unique positive root of the polynomials

and
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124 J.M. Gutierrez and M.A. Hernandez [12]

respectively, where

i»* — * K — ll^i T II ^ n

Then we have

PROOF: (a) follows as a consequence of Lemmas 2.1, 2.6 and the condition (13).
To prove (b), let x** be a solution of (1) in B(x0, r2) D flo or in B(xo,r2)r\Clo. Then,
replacing x* and r\ by x** and r2 in Lemma 2.7, we have for 0 ̂  a < 1/2,

/ n « x B , . - 1 | i y
r2 ~ ta,n-l )

In a similar way, for 1/2 ̂  a ^ 1,

n\x**
\

-Xo\\y )\ , J \ T2

So we deduce for rj < r2 ,

II*** ~ iBa,n|| < (r2 ~ ta,n)Pn,

with

or

For r i = r2

Since />„ —> 0 and {ta,n} converges to T\, we obtain in both cases

a;** — lim xQ,n = x*.
n—>oo

Finally, for a G [0,1/2), we deduce from Lemma 2.7
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[13] Chebyshev-Halley type methods 125

and then ^a,n( | |x* - Za,n||) ^ 0.

On the other hand,

4>a,n(ri - ta,n) = k<x,n{ri - ta,n) - (»"1 - ta,n) + *a,n = &a,n ~ (*a,n+l ~ ta,n) < 0,

and consequently

||x* — Xa,n\\ ^ <7a,n ^ rl ~ ta,n-

To obtain lower bounds notice that, by using Lemma 2.7 again,

5a,n - || =«5* - SBa.nll ^ llx* ~ ^a.n+lll < ka,n \\x* - Xa<n\\ ,

that is, ^>ain(||s:* — Xa,n||) ^ 0. Consequently,

11** - Za,n|| ^ Ta,n-

For a € [1/2,1], we obtain from Lemma 2.7

H~* _ _ II _ « < ||~* _ ~ , , ! !<{• ll-r* — x II3

and

Sa,n - \\x* - Xo,n|| ^ H** - *a,n+l || < ^a,n H** - *a,n || ,

and the result also holds. U

NOTE. The condition (13) can be replaced by B(xo,ri) C fi0. (Notice that Ba

C B(zo,r!) for a 6 [0,1].)

COROLLARY 3 . 2 . Under the previous assumptions, we have

0.86a,n < ( - 2 + v/8)*Q,n ^ ||x* - * a , n | | < 2«a,B, a e [0,1/2),

and

0.89Sa,n ^ \\x* - zOiB|| ^ 1.5^,n, a S [1/2,1].

PROOF: Let a 6 [0,1/2). The polynomial 4>a,n has a minimum when

i = l/(2fca,n). Also

* < °
Consequently ka>nSatn < 1/4. Since 0a,n(2£a,n) < 0, we deduce aa<n < 2Satn.

On the other hand, let

As y>a,n(0 < ^a,n(<) for t > 0, and ^a,n ( ( - 2 + V§)*a,n) = 0, we obtain
( - 2 + v / 8 )« Q > n <r Q , n .

For a £ [1/2,1] the result follows in a similar way (see [20] for details). D
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126 J.M. Gutierrez and M.A. Hernandez [14]

Table 1

n

0

1

2

3

4

5

to,n

0.000000000000000

8.148148148148148

9.936934743362793

9.999995122930333

10.000000000000000

10.000000000000000

*l/2,n

0.000000000000000

8.571428571428571

9.980430528375734

9.999999925494193

10.000000000000000

10.000000000000000

0.000000000000000

9.333333333333333

9.999847409781033

10.000000000000000

10.000000000000000

10.000000000000000

EXAMPLES

EXAMPLE 1. First we consider the real polynomial equation

p(t) = (t- lO){t - 20) = t2 - 30* + 200 = 0.

In Table 1 we compare the sequences {<o,n} (Chebyshev's method), {<i/2,n} (Halley's
method) and {tiin} (convex acceleration of Newton's method), starting from the same
point tofi = ^1/2,0 ~ ^iiO — 0.

EXAMPLE 2. Now we consider the system of equations F[x,y) — 0, where

F(x,y) = (x2 -y-2, y3-x2+y + l).

Starting at (zo,o,Z/o,o) = (x1/2,o,yi/2,o) = (zi,o,2/i,o) = (6,3) we obtain the se-
quences given in Tables 2-4.

In the previous examples we have analysed the velocity of convergence of different
sequences of the family (2), attaining the best results for a = 1. In Theorem 3.1 we
have only studied the sequences {xa,n} for a £ [0,1]. However, it is possible to obtain
convergent sequences for a > 1, and the convergence could be even faster, as happens
in the real case. It is not difficult to see from (7) that G'"(ri) = 0 for

a = l - -

Then, the order of convergence increases for this value. For instance, when p"(t) is
constant, we obtain a fourth-order method for a = 1, as was remarked in [12]. This
result was extended to Banach spaces in the same paper.

The following example suggest new approaches to the solution of a integral equation
(see also [4, 5, 9]).
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Table 2. Chebyshev's method

n

0

1

2

3

4

5

6

6.000000000000000000

2.719439840217446527

1.830721648025601499

1.733249320860063453

1.732050823057711034

1.732050807568877294

1.732050807568877294

2/0 ,n

3.000000000000000000

1.727937814357567444

1.138820258896789643

1.003038870277247239

1.000000046348271498

1.000000000000000000

1.000000000000000000

Table 3. Halley's method

n

0

1

2

3

4

5

6

6.000000000000000000

2.527771600300525920

1.774166519412615274

1.732099394264064235

1.732050807569220348

1.732050807568877294

1.732050807568877294

2/1/2,n

3.000000000000000000

1.581818181818181818

1.057032561548124306

1.000113501450570644

1.000000000000974628

1.000000000000000000

1.000000000000000000

Table 4. Convex acceleration of Newton's method

n

0

1

2

3

4

5

*l,n

6.000000000000000000

2.195930445526441461

1.726757444904059338

1.732050203990691682

1.732050807568877294

1.732050807568877294

2/1 ,n

3.000000000000000000

1.173690932311621967

0.998981852656109923

1.000000000352888045

1.000000000000000000

1.000000000000000000
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EXAMPLE 3. In the space X = C[O,1] of all continous functions on the interval [0,1]
with the norm

|

we consider the equation F(x) = 0, where

1 f1

F(x)(s) = x(s) -s + - scos(x(t))dt, x G C[0,l], s 6 [0,1].
^ Jo

With the notation of Theorem 3.1 and for xo = XQ(S) = s, we use the definition of the
first and second Frechet derivatives of the operator F to obtain

sin 1
2 — sin 1 + cos 1

, * =
1

2 — sin 1 + cos 1

So the polynomial (3) is

1
p(t) =

6(2-s in 1 + cosl)
[t3 + 3(sin 1)<2 - 6(2 - sin 1 + cos 1)< + 6sin 1].

The positive roots of p are

n = 0.6095694860276291, r2 = 1.70990829134757.

Then, we have that -F(a;) = 0 has a root in B(xo,ri). Besides, this is the unique root
in B(xo,r2). Some error bounds

are shown in Table 5.

Table 5. Error bounds

n

0

1

2

3

4

rl — to,n

0.6095694860276291

0.0534834955243040

0.0001520166774545

0.0000000000042804

0.0000000000000000

rl ~ tl/2,n

0.6095694860276291

0.0495130055348865

0.0000984825547302

0.0000000000009129

0.0000000000000000

n -<i,n

0.6095694860276291

0.0349873303274992

0.0000560164474543

0.0000000000001218

0.0000000000000000
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Notice that the best error bounds are attained when a — 1 (convex acceleration

of Newton's method). For this same equation, and using Halley's method, Doring [9]

obtained the bound

|| 1| < 0.000825.

Later, Candela and Marquina, [4, 5], gave the bounds

\\x* - zo,2|| ^ 0.00037022683427694

and

\\x* - x1/2,2\\ ^ 0.00014987029635502

for Chebyshev's and Halley's methods respectively. Observe that the bounds given in
Table 5 really improve the previous ones.
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