115 research outputs found

    Single layer multi-color luminescent display

    Get PDF
    The invention is a multi-color luminescent display comprising an insulator substrate and a single layer of host material which may be a phosphor deposited thereon that hosts one or more differential impurities, therein forming a pattern of selected and distinctly colored phosphors such as blue, green, and red phosphors in a single layer of host material. Transparent electrical conductor means may be provided for subjecting selected portions of the pattern of colored phosphors to an electric field thereby forming a multi-color, single layer electroluminescent display

    Luminescence in sulfides : a rich history and a bright future

    Get PDF
    Sulfide-based luminescent materials have attracted a lot of attention for a wide range of photo-, cathodo- and electroluminescent applications. Upon doping with Ce3+ and Eu2+, the luminescence can be varied over the entire visible region by appropriately choosing the composition of the sulfide host. Main application areas are flat panel displays based on thin film electroluminescence, field emission displays and ZnS-based powder electroluminescence for backlights. For these applications, special attention is given to BaAl2S4:Eu, ZnS:Mn and ZnS:Cu. Recently, sulfide materials have regained interest due to their ability (in contrast to oxide materials) to provide a broad band, Eu2+-based red emission for use as a color conversion material in white-light emitting diodes (LEDs). The potential application of rare-earth doped binary alkaline-earth sulfides, like CaS and SrS, thiogallates, thioaluminates and thiosilicates as conversion phosphors is discussed. Finally, this review concludes with the size-dependent luminescence in intrinsic colloidal quantum dots like PbS and CdS, and with the luminescence in doped nanoparticles

    Alternating current electroluminescence (AC-EL) with organic light emitting material

    Get PDF
    We demonstrate a new approach for fabricating alternating current driven organic electroluminescent devices using the concept of doping in organic semiconductors. Doped charge transport layers are used for generation of charge carriers within the device, hence eliminating the need for injecting charge carriers from external electrodes. The device is an organic-inorganic hybrid: We exploit the mechanical strength and chemical stability of inorganic semiconductors and combine it with better optical properties of organic materials whose emission color can be chemically tuned so that it covers the entire visible spectrum. The device consists of an organic electroluminescence (EL) layer composed of unipolar/ambipolar charge transport materials doped with organic dyes (10 wt% ) as well as molecularly doped charge generation layers enclosed between a pair of transparent insulating metal oxide layers. A transparent indium doped tin oxide (ITO) layer acts as bottom electrode for light outcoupling and Aluminium (Al) as top reflective electrode. The electrodes are for applying field across the device and to charge the device, instead of injection of charge carriers in case of direct current (DC) devices. Bright luminance of up to 5000 cd m-2 is observed when the device is driven with an alternating current (AC) bias. The luminance observed is attributed to charge carrier generation and recombination, leading to formation of excitons within the device, without injection of charge carriers through external electrodes

    Tunnel Thin Film Electroluminescent Device

    Get PDF
    A low voltage tunnel thin film electroluminescent device (10) that comprises a conductive layer (13) that acts as a source of electrons, a first thin barrier layer (14) deposited on the conductive layer, a luminescent layer (16) deposited on the barrier layer a second thin barrier layer (14) deposited on said luminescent layer, and an electrode (18) deposited on the second barrier layer. Electrons from the source layer tunnel through the thin tunnel barrier layer into the luminescent layer which is doped with luminescent centers. The electrons that tunnel through the thin tunnel barrier layer into the luminescent layer have kinetic energy that is within a narrow energy distribution. The material comprising the first barrier layer is preferably chosen to have a positive conduction band off-set (22) with respect to the conductive layer and the material comprising the luminescent layer is chosen to have a negative conduction band off-set (24) with respect to said first barrier layer, wherein the negative conduction band off-set is greater than the positive conduction band off-set. Further, the different material layers are preferably lattice-matched and epitaxially grown in order to make the device more efficient.Georgia Tech Research Corporatio

    White-emission from ZnS:Eu incorporated in AC-driven electroluminescent devices via ultrasonic spray pyrolysis

    Get PDF
    In this work, white-emitting-alternating-current-thin film electroluminescent (w-ACTFEL) devices are demonstrated using europium-doped zinc sulfide (ZnS:Eu) and zirconium oxide (ZrO2) as the emissive and dielectric layers, respectively. These films were deposited by the ultrasonic spray pyrolysis technique on antimony-doped tin oxide glass substrates, forming a standard metal-insulator-semiconductor-insulator-metal (MISIM) architecture. 10 kHz sinusoidal voltages activated the white-EL of the devices. The colorimetric characteristics were investigated for three amplitudes of the applied voltage. The emission of the devices is made up of wide and narrow bands with peaks corresponding to violet, blue, green and red light, which together produce the resulting white light. According to the colorimetric analysis, this white light is close to the standard D65 CIE illuminant with a minimal dominant blue component. The variation in voltage amplitude induces small changes in the visual characteristics of the EL emission. The white-EL emission of these MISIM devices is attributed to the electron-impact excitation and subsequent relaxation of the excited levels of Eu2+ and Eu3+ impurities, and defect levels in the sublayer regions adjacent to the ZrO2–ZnS:Eu interfaces

    Novel Problems in the Solid State Cathodoluminescence of Organic Materials

    Get PDF
    • 

    corecore