217 research outputs found

    Effective radiation attenuation calibration for breast density: compression thickness influences and correction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Calibrating mammograms to produce a standardized breast density measurement for breast cancer risk analysis requires an accurate spatial measure of the compressed breast thickness. Thickness inaccuracies due to the nominal system readout value and compression paddle orientation induce unacceptable errors in the calibration.</p> <p>Method</p> <p>A thickness correction was developed and evaluated using a fully specified two-component surrogate breast model. A previously developed calibration approach based on effective radiation attenuation coefficient measurements was used in the analysis. Water and oil were used to construct phantoms to replicate the deformable properties of the breast. Phantoms consisting of measured proportions of water and oil were used to estimate calibration errors without correction, evaluate the thickness correction, and investigate the reproducibility of the various calibration representations under compression thickness variations.</p> <p>Results</p> <p>The average thickness uncertainty due to compression paddle warp was characterized to within 0.5 mm. The relative calibration error was reduced to 7% from 48-68% with the correction. The normalized effective radiation attenuation coefficient (planar) representation was reproducible under intra-sample compression thickness variations compared with calibrated volume measures.</p> <p>Conclusion</p> <p>Incorporating this thickness correction into the rigid breast tissue equivalent calibration method should improve the calibration accuracy of mammograms for risk assessments using the reproducible planar calibration measure.</p

    Semi-automated and fully automated mammographic density measurement and breast cancer risk prediction

    Full text link
    The task of breast density quantification is becoming increasingly relevant due to its association with breast cancer risk. In this work, a semi-automated and a fully automated tools to assess breast density from full-field digitized mammograms are presented. The first tool is based on a supervised interactive thresholding procedure for segmenting dense from fatty tissue and is used with a twofold goal: for assessing mammographic density(MD) in a more objective and accurate way than via visual-based methods and for labeling the mammograms that are later employed to train the fully automated tool. Although most automated methods rely on supervised approaches based on a global labeling of the mammogram, the proposed method relies on pixel-level labeling, allowing better tissue classification and density measurement on a continuous scale. The fully automated method presented combines a classification scheme based on local features and thresholding operations that improve the performance of the classifier. A dataset of 655 mammograms was used to test the concordance of both approaches in measuring MD. Three expert radiologists measured MD in each of the mammograms using the semi-automated tool (DM-Scan). It was then measured by the fully automated system and the correlation between both methods was computed. The relation between MD and breast cancer was then analyzed using a case-control dataset consisting of 230 mammograms. The Intraclass Correlation Coefficient (ICC) was used to compute reliability among raters and between techniques. The results obtained showed an average ICC = 0.922 among raters when using the semi-automated tool, whilst the average correlation between the semi-automated and automated measures was ICC = 0.838. In the case-control study, the results obtained showed Odds Ratios (OR) of 1.38 and 1.50 per 10% increase in MD when using the semi-automated and fully automated approaches respectively. It can therefore be concluded that the automated and semi-automated MD assessments present a good correlation. Both the methods also found an association between MD and breast cancer risk, which warrants the proposed tools for breast cancer risk prediction and clinical decision making. A full version of the DM-Scan is freely available. (C) 2014 Elsevier Ireland Ltd. All rights reserved.This work was supported by research grants from Gent per Gent Fund (EDEMAC Project); Spain's Health Research Fund (Fondo de Investigacion Santiaria) (PI060386 & FIS PS09/00790); Spanish MICINN grants TIN2009-14205-C04-02 and Consolider-Ingenio 2010: MIPRCV (CSD2007-00018); Spanish Federation of Breast Cancer Patients (Federacion Espanola de Cancer de Mama) (FECMA 485 EPY 1170-10). The English revision of this paper was funded by the Universitat Politecnica de Valencia, Spain.Llobet Azpitarte, R.; Pollán, M.; Antón Guirao, J.; Miranda-García, J.; Casals El Busto, M.; Martinez Gomez, I.; Ruiz Perales, F.... (2014). Semi-automated and fully automated mammographic density measurement and breast cancer risk prediction. Computer Methods and Programs in Biomedicine. 116(2):105-115. https://doi.org/10.1016/j.cmpb.2014.01.021S105115116

    A review on automatic mammographic density and parenchymal segmentation

    Get PDF
    Breast cancer is the most frequently diagnosed cancer in women. However, the exact cause(s) of breast cancer still remains unknown. Early detection, precise identification of women at risk, and application of appropriate disease prevention measures are by far the most effective way to tackle breast cancer. There are more than 70 common genetic susceptibility factors included in the current non-image-based risk prediction models (e.g., the Gail and the Tyrer-Cuzick models). Image-based risk factors, such as mammographic densities and parenchymal patterns, have been established as biomarkers but have not been fully incorporated in the risk prediction models used for risk stratification in screening and/or measuring responsiveness to preventive approaches. Within computer aided mammography, automatic mammographic tissue segmentation methods have been developed for estimation of breast tissue composition to facilitate mammographic risk assessment. This paper presents a comprehensive review of automatic mammographic tissue segmentation methodologies developed over the past two decades and the evidence for risk assessment/density classification using segmentation. The aim of this review is to analyse how engineering advances have progressed and the impact automatic mammographic tissue segmentation has in a clinical environment, as well as to understand the current research gaps with respect to the incorporation of image-based risk factors in non-image-based risk prediction models

    Towards breast tomography with synchrotron radiation at Elettra: First images

    Get PDF
    The aim of the SYRMA-CT collaboration is to set-up the first clinical trial of phase-contrast breast CT with synchrotron radiation (SR). In order to combine high image quality and low delivered dose a number of innovative elements are merged: a CdTe single photon counting detector, state-of-the-art CT reconstruction and phase retrieval algorithms. To facilitate an accurate exam optimization, a Monte Carlo model was developed for dose calculation using GEANT4. In this study, high isotropic spatial resolution (120 μm)3 CT scans of objects with dimensions and attenuation similar to a human breast were acquired, delivering mean glandular doses in the range of those delivered in clinical breast CT (5-25 mGy). Due to the spatial coherence of the SR beam and the long distance between sample and detector, the images contain, not only absorption, but also phase information from the samples. The application of a phase-retrieval procedure increases the contrast-to-noise ratio of the tomographic images, while the contrast remains almost constant. After applying the simultaneous algebraic reconstruction technique to low-dose phase-retrieved data sets (about 5 mGy) with a reduced number of projections, the spatial resolution was found to be equal to filtered back projection utilizing a four fold higher dose, while the contrast-to-noise ratio was reduced by 30%. These first results indicate the feasibility of clinical breast CT with SR

    Mammography

    Get PDF
    In this volume, the topics are constructed from a variety of contents: the bases of mammography systems, optimization of screening mammography with reference to evidence-based research, new technologies of image acquisition and its surrounding systems, and case reports with reference to up-to-date multimodality images of breast cancer. Mammography has been lagged in the transition to digital imaging systems because of the necessity of high resolution for diagnosis. However, in the past ten years, technical improvement has resolved the difficulties and boosted new diagnostic systems. We hope that the reader will learn the essentials of mammography and will be forward-looking for the new technologies. We want to express our sincere gratitude and appreciation?to all the co-authors who have contributed their work to this volume

    Joint AAPM Task Group 282/EFOMP Working Group Report: Breast dosimetry for standard and contrast‐enhanced mammography and breast tomosynthesis

    Get PDF
    : Currently, there are multiple breast dosimetry estimation methods for mammography and its variants in use throughout the world. This fact alone introduces uncertainty, since it is often impossible to distinguish which model is internally used by a specific imaging system. In addition, all current models are hampered by various limitations, in terms of overly simplified models of the breast and its composition, as well as simplistic models of the imaging system. Many of these simplifications were necessary, for the most part, due to the need to limit the computational cost of obtaining the required dose conversion coefficients decades ago, when these models were first implemented. With the advancements in computational power, and to address most of the known limitations of previous breast dosimetry methods, a new breast dosimetry method, based on new breast models, has been developed, implemented, and tested. This model, developed jointly by the American Association of Physicists in Medicine and the European Federation for Organizations of Medical Physics, is applicable to standard mammography, digital breast tomosynthesis, and their contrast-enhanced variants. In addition, it includes models of the breast in both the cranio-caudal and the medio-lateral oblique views. Special emphasis was placed on the breast and system models used being based on evidence, either by analysis of large sets of patient data or by performing measurements on imaging devices from a range of manufacturers. Due to the vast number of dose conversion coefficients resulting from the developed model, and the relative complexity of the calculations needed to apply it, a software program has been made available for download or online use, free of charge, to apply the developed breast dosimetry method. The program is available for download or it can be used directly online. A separate User's Guide is provided with the software

    Mammography Techniques and Review

    Get PDF
    Mammography remains at the backbone of medical tools to examine the human breast. The early detection of breast cancer typically uses adjunct tests to mammogram such as ultrasound, positron emission mammography, electrical impedance, Computer-aided detection systems and others. In the present digital era it is even more important to use the best new techniques and systems available to improve the correct diagnosis and to prevent mortality from breast cancer. The first part of this book deals with the electrical impedance mammographic scheme, ultrasound axillary imaging, position emission mammography and digital mammogram enhancement. A detailed consideration of CBR CAD System and the availability of mammographs in Brazil forms the second part of this book. With the up-to-date papers from world experts, this book will be invaluable to anyone who studies the field of mammography
    corecore