145,041 research outputs found

    Cool Roof Impact on Building Energy Need: The Role of Thermal Insulation with Varying Climate Conditions

    Get PDF
    Cool roof effectiveness in improving building thermal-energy performance is affected by different variables. In particular, roof insulation level and climate conditions are key parameters influencing cool roofs benefits and whole building energy performance. This work aims at assessing the role of cool roof in the optimum roof configuration, i.e., combination of solar reflectance capability and thermal insulation level, in terms of building energy performance in different climate conditions worldwide. To this aim, coupled dynamic thermal-energy simulation and optimization analysis is carried out. In detail, multi-dimensional optimization of combined building roof thermal insulation and solar reflectance is developed to minimize building annual energy consumption for heating-cooling. Results highlight how a high reflectance roof minimizes annual energy need for a small standard office building in the majority of considered climates. Moreover, building energy performance is more sensitive to roof solar reflectance than thermal insulation level, except for the coldest conditions. Therefore, for the selected building, the optimum roof typology presents high solar reflectance capability (0.8) and no/low insulation level (0.00-0.03 m), except for extremely hot or cold climate zones. Accordingly, this research shows how the classic approach of super-insulated buildings should be reframed for the office case toward truly environmentally friendly buildings.The work was partially funded by the Spanish government (RTI2018-093849-B-C31). This work was partially supported by ICREA under the ICREA Academia programme. Dr. Alvaro de Gracia has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 712949 (TECNIOspring PLUS) and from the Agency for Business Competitiveness of the Government of Catalonia. This publication has emanated from research supported (in part) by Science Foundation Ireland (SFI) under the SFI Strategic Partnership Programme Grant Number SFI/15/SPP/E3125

    Riverine ecosystem services and the thermoelectric sector: strategic issues facing the Northeastern United States

    Get PDF
    Major strategic issues facing the global thermoelectric sector include environmental regulation, climate change and increasing electricity demand. We have addressed such issues by modeling thermoelectric generation in the Northeastern United States that is reliant on cooling under five sensitivity tests to evaluate losses/gains in power production, thermal pollution and suitable aquatic habitat, comparing the contemporary baseline (2000–2010) with potential future states. Integral to the analysis, we developed a methodology to quantify river water availability for cooling, which we define as an ecosystem service. Projected climate conditions reduce river water available for efficient power plant operations and the river\u27s capacity to absorb waste heat, causing a loss of regional thermoelectric generation (RTG) (2.5%) in some summers that, compared to the contemporary baseline, is equal to the summertime electricity consumption of 1.3 million Northeastern US homes. Vulnerabilities to warm temperatures and thermal pollution can be alleviated through the use of more efficient natural gas (NG) power plants that have a reduced reliance on cooling water. Conversion of once-through (OT) to cooling tower (CT) systems and the Clean Water Act (CWA) temperature limit regulation, both of which reduce efficiencies at the single plant level, show potential to yield beneficial increases in RTG. This is achieved by obviating the need for large volumes of river water, thereby reducing plant-to-plant interferences through lowering the impact of upstream thermal pollution and preserving a minimum standard of cooling water. The results and methodology framework presented here, which can be extrapolated to other regional assessments with contrasting climates and thermoelectric profiles, can identify opportunities and support decision-making to achieve more efficient energy systems and riverine ecosystem protection

    A novel haptic model and environment for maxillofacial surgical operation planning and manipulation

    Get PDF
    This paper presents a practical method and a new haptic model to support manipulations of bones and their segments during the planning of a surgical operation in a virtual environment using a haptic interface. To perform an effective dental surgery it is important to have all the operation related information of the patient available beforehand in order to plan the operation and avoid any complications. A haptic interface with a virtual and accurate patient model to support the planning of bone cuts is therefore critical, useful and necessary for the surgeons. The system proposed uses DICOM images taken from a digital tomography scanner and creates a mesh model of the filtered skull, from which the jaw bone can be isolated for further use. A novel solution for cutting the bones has been developed and it uses the haptic tool to determine and define the bone-cutting plane in the bone, and this new approach creates three new meshes of the original model. Using this approach the computational power is optimized and a real time feedback can be achieved during all bone manipulations. During the movement of the mesh cutting, a novel friction profile is predefined in the haptical system to simulate the force feedback feel of different densities in the bone

    Advanced structural sizing methodology

    Get PDF
    Research in computerized structural sizing technology was reviewed. Areas covered include: overall design; structural subassembly design; thermal structures; and stiffened panels. In each case, sample results are presented

    Screening of energy efficient technologies for industrial buildings' retrofit

    Get PDF
    This chapter discusses screening of energy efficient technologies for industrial buildings' retrofit

    Response-surface-model-based system sizing for nearly/net zero energy buildings under uncertainty

    Get PDF
    Properly treating uncertainty is critical for robust system sizing of nearly/net zero energy buildings (ZEBs). To treat uncertainty, the conventional method conducts Monte Carlo simulations for thousands of possible design options, which inevitably leads to computation load that is heavy or even impossible to handle. In order to reduce the number of Monte Carlo simulations, this study proposes a response-surface-model-based system sizing method. The response surface models of design criteria (i.e., the annual energy match ratio, self-consumption ratio and initial investment) are established based on Monte Carlo simulations for 29 specific design points which are determined by Box-Behnken design. With the response surface models, the overall performances (i.e., the weighted performance of the design criteria) of all design options (i.e., sizing combinations of photovoltaic, wind turbine and electric storage) are evaluated, and the design option with the maximal overall performance is finally selected. Cases studies with 1331 design options have validated the proposed method for 10,000 randomly produced decision scenarios (i.e., users’ preferences to the design criteria). The results show that the established response surface models reasonably predict the design criteria with errors no greater than 3.5% at a cumulative probability of 95%. The proposed method reduces the number of Monte Carlos simulations by 97.8%, and robustly sorts out top 1.1% design options in expectation. With the largely reduced Monte Carlo simulations and high overall performance of the selected design option, the proposed method provides a practical and efficient means for system sizing of nearly/net ZEBs under uncertainty
    • …
    corecore