50 research outputs found

    Impact of the gate oxide reliability of SiC MOSFETs on the junction temperature estimation using temperature sensitive electrical parameters

    Get PDF
    Bias temperature instability (BTI) is more problematic in SiC power MOSFETs due to the occurrence of higher interface state traps and fixed oxide traps compared to traditional silicon MOS interfaces where there are no carbon atoms degrading the atomically smooth Si/SiO2 interface. The use of temperature sensitive electrical parameters (TSEPs) for measuring the junction temperature and enabling health monitoring based on junction temperature identification is a promising technique for increasing the reliability of power devices, however in the light of increased BTI in SiC devices, this must be carefully assessed. This paper evaluates how BTI of SiC power MOSFETs under high temperature gate bias stresses affects the electrical parameters used as TSEPs and its impact on condition monitoring

    Towards a More Flexible, Sustainable, Efficient and Reliable Induction Cooking: A Power Semiconductor Device Perspective

    Get PDF
    Esta tesis tiene como objetivo fundamental la mejora de la flexibilidad, sostenibilidad, eficiencia y fiabilidad de las cocinas de inducción por medio de la utilización de dispositivos semiconductores de potencia: Dentro de este marco, existe una funcionalidad que presenta un amplio rango de mejora. Se trata de la función de multiplexación de potencia, la cual pretende resolverse de una manera más eficaz por medio de la sustitución de los comúnmente utilizados relés electromecánicos por dispositivos de estado sólido. De entre todas las posibles implementaciones, se ha identificado entre las más prometedoras a aquellas basadas en dispositivos de alta movilidad de electrones (HEMT) de Nitruro de Galio (GaN) y de aquellas basadas en Carburo de Silicio (SiC), pues presentan unas características muy superiores a los relés a los que se pretende sustituir. Por el contrario, otras soluciones que inicialmente parecían ser muy prometedoras, como los MOSFETs de Súper-Unión, han presentado una serie de comportamientos anómalos, que han sido estudiados minuciosamente por medio de simulaciones físicas a nivel de chip. Además, se analiza en distintas condiciones la capacidad en cortocircuito de dispositivos convencionalmente empleados en cocinas de inducción, como son los IGBTs, tratándose de encontrar el equilibrio entre un comportamiento robusto al tiempo que se mantienen bajas las pérdidas de potencia. Por otra parte, también se estudia la robustez y fiabilidad de varios GaN HEMT de 600- 650 V tanto de forma experimental como por medio de simulaciones físicas. Finalmente se aborda el cálculo de las pérdidas de potencia en convertidores de potencia resonantes empleando técnicas de termografía infrarroja. Por medio de esta técnica no solo es posible medir de forma precisa las diferentes contribuciones de las pérdidas, sino que también es posible apreciar cómo se distribuye la corriente a nivel de chip cuando, por ejemplo, el componente opera en modo de conmutación dura. Como resultado, se obtiene información relevante relacionada con modos de fallo. Además, también ha sido aprovechar las caracterizaciones realizadas para obtener un modelo térmico de simulación.This thesis is focused on addressing a more flexible, sustainable, efficient and reliable induction cooking approach from a power semiconductor device perspective. In this framework, this PhD Thesis has identified the following activities to cover such demands: In view of the growing interest for an effective power multiplexing in Induction Heating (IH) applications, improved and efficient Solid State Relays (SSRs) as an alternative to the electromechanical relays (EMRs) are deeply investigated. In this context, emerging Gallium Nitride (GaN) High‐Electron‐Mobility Transistors (GaN HEMTs) and Silicon Carbide (SiC) based devices are identified as potential candidates for the mentioned application, featuring several improved characteristics over EMRs. On the contrary, other solutions, which seemed to be very promising, resulted to suffer from anomalous behaviors; i.e. SJ MOSFETs are thoroughly analysed by electro‐thermal physical simulations at the device level. Additionally, the Short Circuit (SC) capability of power semiconductor devices employed or with potential to be used in IH appliances is also analysed. On the one hand, conventional IGBTs SC behavior is evaluated under different test conditions so that to obtain the trade‐off between ruggedness and low power losses. Moreover, ruggedness and reliability of several normally‐off 600‐650 V GaN HEMTs are deeply investigated by experimentation and physics‐based simulation. Finally, power losses calculation at die‐level is performed for resonant power converters by means of using Infrared Thermography (IRT). This method assists to determine, at the die‐level, the power losses and current distribution in IGBTs used in resonant soft‐switching power converters when functioning within or outside the Zero Voltage Switching (ZVS) condition. As a result, relevant information is obtained related to decreasing the power losses during commutation in the final application, and a thermal model is extracted for simulation purposes.<br /

    TSV placement optimization for liquid cooled 3D-ICs with emerging NVMs

    Get PDF
    Three dimensional integrated circuits (3D-ICs) are a promising solution to the performance bottleneck in planar integrated circuits. One of the salient features of 3D-ICs is their ability to integrate heterogeneous technologies such as emerging non-volatile memories (NVMs) in a single chip. However, thermal management in 3D-ICs is a significant challenge, owing to the high heat flux (~ 250 W/cm2). Several research groups have focused either on run-time or design-time mechanisms to reduce the heat flux and did not consider 3D-ICs with heterogeneous stacks. The goal of this work is to achieve a balanced thermal gradient in 3D-ICs, while reducing the peak temperatures. In this research, placement algorithms for design-time optimization and choice of appropriate cooling mechanisms for run-time modulation of temperature are proposed. Specifically, an architectural framework which introduce weight-based simulated annealing (WSA) algorithm for thermal-aware placement of through silicon vias (TSVs) with inter-tier liquid cooling is proposed for design-time. In addition, integrating a dedicated stack of emerging NVMs such as RRAM, PCRAM and STTRAM, a run-time simulation framework is developed to analyze the thermal and performance impact of these NVMs in 3D-MPSoCs with inter-tier liquid cooling. Experimental results of WSA algorithm implemented on MCNC91 and GSRC benchmarks demonstrate up to 11 K reduction in the average temperature across the 3D-IC chip. In addition, power density arrangement in WSA improved the uniformity by 5%. Furthermore, simulation results of PARSEC benchmarks with NVM L2 cache demonstrates a temperature reduction of 12.5 K (RRAM) compared to SRAM in 3D-ICs. Especially, RRAM has proved to be thermally efficient replacement for SRAM with 34% lower energy delay product (EDP) and 9.7 K average temperature reduction

    Restabilizing mechanisms after the onset of thermal instability in bipolar transistors

    Full text link

    3D-ICE: a Compact Thermal Model for Early-Stage Design of Liquid-Cooled ICs

    Get PDF
    Liquid-cooling using microchannel heat sinks etched on silicon dies is seen as a promising solution to the rising heat fluxes in two-dimensional and stacked three-dimensional integrated circuits. Development of such devices requires accurate and fast thermal simulators suitable for early-stage design. To this end, we present 3D-ICE, a compact transient thermal model (CTTM), for liquid-cooled ICs. 3D-ICE was first advanced by incorporating the 4-resistor model based CTTM (4RM-based CTTM). It was enhanced to speed up simulations and to include complex heat sink geometries such as pin fins using the new 2 resistor model (2RM-based CTTM). In this paper, we extend the 3D-ICE model to include liquid-cooled ICs with multi-port cavities, i.e., cavities with more than one inlet and one outlet ports, and non-straight microchannels. Simulation studies using a realistic 3D multiprocessor system-on-chip (MPSoC) with a 4-port microchannel cavity highlight the impact of using 4-port cavity on temperature and also demonstrate the superior performance of 2RM-based CTTM compared to 4RM-based CTTM. We also present an extensive review of existing literature and the derivation of the 3D-ICE model, creating a comprehensive study of liquid-cooled ICs and their thermal simulation from the perspective of computer systems design. Finally, the accuracy of 3D-ICE has been evaluated against measurements from a real liquid-cooled 3D IC, which is the first such validation of a simulator of this genre. Results show strong agreement (average error<10%), demonstrating that 3D-ICE is an effective tool for early-stage thermal-aware design of liquid-cooled 2D/3D ICs

    Étude de la dynamique thermique dans un processeur massif à haut niveau de débit

    Get PDF

    Temperature Variation Aware Energy Optimization in Heterogeneous MPSoCs

    Get PDF
    Thermal effects are rapidly gaining importance in nanometer heterogeneous integrated systems. Increased power density, coupled with spatio-temporal variability of chip workload, cause lateral and vertical temperature non-uniformities (variations) in the chip structure. The assumption of an uniform temperature for a large circuit leads to inaccurate determination of key design parameters. To improve design quality, we need precise estimation of temperature at detailed spatial resolution which is very computationally intensive. Consequently, thermal analysis of the designs needs to be done at multiple levels of granularity. To further investigate the flow of chip/package thermal analysis we exploit the Intel Single Chip Cloud Computer (SCC) and propose a methodology for calibration of SCC on-die temperature sensors. We also develop an infrastructure for online monitoring of SCC temperature sensor readings and SCC power consumption. Having the thermal simulation tool in hand, we propose MiMAPT, an approach for analyzing delay, power and temperature in digital integrated circuits. MiMAPT integrates seamlessly into industrial Front-end and Back-end chip design flows. It accounts for temperature non-uniformities and self-heating while performing analysis. Furthermore, we extend the temperature variation aware analysis of designs to 3D MPSoCs with Wide-I/O DRAM. We improve the DRAM refresh power by considering the lateral and vertical temperature variations in the 3D structure and adapting the per-DRAM-bank refresh period accordingly. We develop an advanced virtual platform which models the performance, power, and thermal behavior of a 3D-integrated MPSoC with Wide-I/O DRAMs in detail. Moving towards real-world multi-core heterogeneous SoC designs, a reconfigurable heterogeneous platform (ZYNQ) is exploited to further study the performance and energy efficiency of various CPU-accelerator data sharing methods in heterogeneous hardware architectures. A complete hardware accelerator featuring clusters of OpenRISC CPUs, with dynamic address remapping capability is built and verified on a real hardware
    corecore