1,615 research outputs found

    Neuroplasticity of language networks in aphasia: advances, updates, and future challenges

    Get PDF
    Researchers have sought to understand how language is processed in the brain, how brain damage affects language abilities, and what can be expected during the recovery period since the early 19th century. In this review, we first discuss mechanisms of damage and plasticity in the post-stroke brain, both in the acute and the chronic phase of recovery. We then review factors that are associated with recovery. First, we review organism intrinsic variables such as age, lesion volume and location and structural integrity that influence language recovery. Next, we review organism extrinsic factors such as treatment that influence language recovery. Here, we discuss recent advances in our understanding of language recovery and highlight recent work that emphasizes a network perspective of language recovery. Finally, we propose our interpretation of the principles of neuroplasticity, originally proposed by Kleim and Jones (1) in the context of extant literature in aphasia recovery and rehabilitation. Ultimately, we encourage researchers to propose sophisticated intervention studies that bring us closer to the goal of providing precision treatment for patients with aphasia and a better understanding of the neural mechanisms that underlie successful neuroplasticity.P50 DC012283 - NIDCD NIH HHSPublished versio

    Magnetoencephalography in Stroke Recovery and Rehabilitation

    Get PDF
    Magnetoencephalography (MEG) is a non-invasive neurophysiological technique used to study the cerebral cortex. Currently, MEG is mainly used clinically to localize epileptic foci and eloquent brain areas in order to avoid damage during neurosurgery. MEG might, however, also be of help in monitoring stroke recovery and rehabilitation. This review focuses on experimental use of MEG in neurorehabilitation. MEG has been employed to detect early modifications in neuroplasticity and connectivity, but there is insufficient evidence as to whether these methods are sensitive enough to be used as a clinical diagnostic test. MEG has also been exploited to derive the relationship between brain activity and movement kinematics for a motor-based brain-computer interface. In the current body of experimental research, MEG appears to be a powerful tool in neurorehabilitation, but it is necessary to produce new data to confirm its clinical utility

    Behavioural clusters and predictors of performance during recovery from stroke

    Get PDF
    We examined the patterns and variability of recovery post-stroke in multiple behavioral domains. A large cohort of first time stroke patients with heterogeneous lesions was studied prospectively and longitudinally at 1-2 weeks, 3 months and one year post-injury with structural MRI to measure lesion anatomy and in-depth neuropsychological assessment. Impairment was described at all timepoints by a few clusters of correlated deficits. The time course and magnitude of recovery was similar across domains, with change scores largely proportional to the initial deficit and most recovery occurring within the first three months. Damage to specific white matter tracts produced poorer recovery over several domains: attention and superior longitudinal fasciculus II/III, language and posterior arcuate fasciculus, motor and corticospinal tract. Finally, after accounting for the severity of the initial deficit, language and visual memory recovery/outcome was worse with lower education, while the occurrence of multiple deficits negatively impacted attention recovery

    The role of the cognitive control system in recovery from bilingual aphasia: a multiple single-case fMRI study

    Get PDF
    Aphasia in bilingual patients is a therapeutic challenge since both languages can be impacted by the same lesion. Language control has been suggested to play an important role in the recovery of first (L1) and second (L2) language in bilingual aphasia following stroke. To test this hypothesis, we collected behavioral measures of language production (general aphasia evaluation and picture naming) in each language and language control (linguistic and nonlinguistic switching tasks), as well as fMRI during a naming task at one and four months following stroke in five bilingual patients suffering from poststroke aphasia. We further applied dynamic causal modelling (DCM) analyses to the connections between language and control brain areas. Three patients showed parallel recovery in language production, one patient improved in L1, and one improved in L2 only. Language-control functions improved in two patients. Consistent with the dynamic view of language recovery, DCM analyses showed a higher connectedness between language and control areas in the language with the better recovery. Moreover, similar degrees of connectedness between language and control areas were found in the patients who recovered in both languages. Our data suggest that engagement of the interconnected language-control network is crucial in the recovery of languages

    Value and efficacy of transcranial direct current stimulation in the rehabilitation of neurocognitive disorders: A critical review since 2000.

    Get PDF
    open3siNon-invasive brain stimulation techniques, including transcranial direct current stimulation (t-DCS) have been used in the rehabilitation of cognitive function in a spectrum of neurological disorders. The present review outlines methodological communalities and differences of t-DCS procedures in neurocognitive rehabilitation. We consider the efficacy of tDCS for the management of specific cognitive deficits in four main neurological disorders by providing a critical analysis of recent studies that have used t-DCS to improve cognition in patients with Parkinson’s Disease, Alzheimer’s Disease, Hemi-spatial Neglect and Aphasia. The evidence from this innovative approach to cognitive rehabilitation suggests that tDCS can influence cognition. However, the results show a high variability between studies both on the methodological approach adopted and the cognitive functions aspects. The review also focuses both on methodological issues such as technical aspects of the stimulation ( electrodes position and dimension; current intensity; duration of protocol) and on the inclusion of appropriate assessment tools for cognition. A further aspect considered is the best timing to administer tDCS: before, during after cognitive rehabilitation. We conclude that more studies with shared methodology are needed to have a better understanding of the efficacy of tDCS as a new tool for rehabilitation of cognitive disorders in a range of neurological disordersopenCappon, D; Jahanshahi, M; Bisiacchi, PCappon, Davide; Jahanshahi, M; Bisiacchi, Patrizi

    The Intensive Cognitive-Communication Rehabilitation Program for young adults with acquired brain injury

    Full text link
    PURPOSE: This study investigated the effects of an intensive cognitive-communication rehabilitation (ICCR) program for young individuals with chronic acquired brain injury. METHOD: ICCR included classroom lectures; metacognitive instruction, modeling, and application; technology skills training; and individual cognitive-linguistic therapy. Four individuals participated in the intensive program (6 hr with 1-hr lunch break Ă— 4 days Ă— 12 weeks of treatment): 3 participants completed 3 consecutive semesters, and 1 participant completed 1 semester. Two controls did not receive treatment and completed assessments before and after the 12-week treatment interval only. RESULTS: All 4 experimental participants demonstrated significant improvements on at least 1 standardized cognitive-linguistic measure, whereas controls did not. Furthermore, time point significantly predicted participants' scores on 2 of the 4 standardized outcome measures, indicating that as duration in ICCR increased, scores also increased. Participants who completed multiple semesters of ICCR also improved in their therapy and personal goals, classroom behavior, life participation, and quality of life. CONCLUSION: After ICCR, participants showed gains in their cognitive-linguistic functioning, classroom participation, and individual therapy. They also demonstrated improvements outside the classroom and in their overall well-being. There is a gap between the large population of young adults with acquired brain injury who wish to return to higher education and a lack of rehabilitation programs supporting reentry into academic environments; ICCR is a first step in reducing that gap.T32 DC013017 - NIDCD NIH HHSAccepted manuscrip

    Early aphasia rehabilitation is associated with functional reactivation of the left inferior frontal gyrus a pilot study

    Get PDF
    Background and Purpose—Early poststroke aphasia rehabilitation effects and their functional MRI (fMRI) correlates were investigated in a pilot, controlled longitudinal study. Methods—Twelve patients with mild/moderate aphasia (8 Broca, 3 anomic, and 1 Wernicke) were randomly assigned to daily language rehabilitation for 2 weeks (starting 2.2 [mean] days poststroke) or no rehabilitation. The Aachen Aphasia Test and fMRI recorded during an auditory comprehension task were performed at 3 time intervals: mean 2.2 (T1), 16.2 (T2), and 190 (T3) days poststroke. Results—Groups did not differ in terms of age, education, aphasia severity, lesions volume, baseline fMRI activations, and in task performance during fMRI across examinations. Rehabilitated patients significantly improved in naming and written language tasks (P<0.05) compared with no rehabilitation group both at T2 and T3. Functional activity at T1 was reduced in language-related cortical areas (right and left inferior frontal gyrus and middle temporal gyrus, right inferior parietal lobule and superior temporal gyrus) in patients compared with controls. T2 and T3 follow-ups revealed a cortical activation increase, with significantly greater activation in the left hemisphere areas in rehabilitated patients at T2 and T3, and a time×treatment effect at T2 in the left inferior Broca area after rehabilitation. Left inferior frontal gyrus activation at T2 significantly correlated with naming improvement. Conclusions—Early poststroke aphasia treatment is useful, has durable effects, and may lead to early enhanced recruitment of brain areas, particularly the left inferior frontal gyrus, which persists in the chronic phase

    A Review on Treatment-Related Brain Changes in Aphasia

    Get PDF
    Numerous studies have investigated brain changes associated with interventions targeting a range of language problems in patients with aphasia. We strive to integrate the results of these studies to examine (1) whether the focus of the intervention (i.e., phonology, semantics, orthography, syntax, or rhythmic-melodic) determines in which brain regions changes occur; and (2a) whether the most consistent changes occur within the language network or outside, and (2b) whether these are related to individual differences in language outcomes. The results of 32 studies with 204 unique patients were considered. Concerning (1), the location of treatment-related changes does not clearly depend on the type of language processing targeted. However, there is some support that rhythmic-melodic training has more impact on the right hemisphere than linguistic training. Concerning (2), we observed that language recovery is not only associated with changes in traditional language-related structures in the left hemisphere and homolog regions in the right hemisphere, but also with more medial and subcortical changes (e.g., precuneus and basal ganglia). Although it is difficult to draw strong conclusions, because there is a lack of systematic large-scale studies on this topic, this review highlights the need for an integrated approach to investigate how language interventions impact on the brain. Future studies need to focus on larger samples preserving subject-specific information (e.g., lesion effects) to cope with the inherent heterogeneity of stroke-induced aphasia. In addition, recovery-related changes in whole-brain connectivity patterns need more investigation to provide a comprehensive neural account of treatment-related brain plasticity and language recovery

    Music-based interventions in neurological rehabilitation

    Get PDF
    During the past ten years, an increasing number of controlled studies have assessed the potential rehabilitative effects of music-based interventions, such as music listening, singing, or playing an instrument, in several neurological diseases. Although the number of studies and extent of available evidence is greatest in stroke and dementia, there is also evidence for the effects of music-based interventions on supporting cognition, motor function, or emotional wellbeing in people with Parkinson's disease, epilepsy, or multiple sclerosis. Music-based interventions can affect divergent functions such as motor performance, speech, or cognition in these patient groups. However, the psychological effects and neurobiological mechanisms underlying the effects of music interventions are likely to share common neural systems for reward, arousal, affect regulation, learning, and activity-driven plasticity. Although further controlled studies are needed to establish the efficacy of music in neurological recovery, music-based interventions are emerging as promising rehabilitation strategies.Peer reviewe

    Donepezil alone and combined with intensive language-action therapy on depression and apathy in chronic post-stroke aphasia: A feasibility study

    Get PDF
    This study explored the feasibility and effectiveness of a short-term (10-week) intervention trial using Donepezil administered alone and combined with intensive language action therapy (ILAT) for the treatment of apathy and depression in ten people with chronic post-stroke aphasia. Outcome measures were the Western Aphasia Battery and the Stroke Aphasia Depression Questionnaire-21. Structural magnetic resonance imaging and 18fluorodeoxyglucose positron emission tomography were acquired at baseline and after two endpoints (Donepezil alone and Donepezil-ILAT). The intervention was found to be feasible to implement. Large treatment effects were found. Donepezil alone and combined with ILAT reduced aphasia severity, while apathy and depression only improved with Donepezil-ILAT. Structural and functional neuroimaging data did not show conclusive results but provide hints for future research. Given these overall positive findings on feasibility, language and behavioral benefits, further studies in larger sample sizes and including a placebo-control group are indicated.This work was supported as an independent research grant funded by Pfizer and Eisai. The funders were not involved in the study design, collection, analysis, or interpretation of the data. The work was also supported in part by the Ministerio de Economía, Industria y Competitividad, Instituto de Salud Carlos III, Spain (under Grant: PI16/01514; MLB and GD), and the Junta de Andalucía, Spain (under Grant: P20_00501; GD). MLB has been supported by funds from the European Social Fund (FEDER). LE and FJL-G have been funded by a PhD scholarship from the Spanish Ministry of Education, Culture, and Sport under the FPU program (FPU17/04136; FJL-G: FPU17/04470). DL-B was supported by I + D + i Project Andalusia and European Union Funds (FEDER) (UMA18-FEDERJA-221) and by Ramón y Cajal Program (RYC2020-029495-I) from the Spanish Ministry of Science and Innovation. MT-P has been funded by a postdoctoral fellowship under the program Plan Andaluz de Investigación, Desarrollo e Innovación (PAIDI 2020) (DOC_00421). FP and BM were supported by the Deutsche Forschungsgemeinschaft [Pu 97/15-1 and 15-2 to FP, Mo 697/5-2 to BM]. FP was also supported by the European Research Council [ERC-2019-ADG 883811] // Funding for open access charge: Universidad de Málaga / CBUA
    • …
    corecore