534 research outputs found

    Filter Bank Fusion Frames

    Get PDF
    In this paper we characterize and construct novel oversampled filter banks implementing fusion frames. A fusion frame is a sequence of orthogonal projection operators whose sum can be inverted in a numerically stable way. When properly designed, fusion frames can provide redundant encodings of signals which are optimally robust against certain types of noise and erasures. However, up to this point, few implementable constructions of such frames were known; we show how to construct them using oversampled filter banks. In this work, we first provide polyphase domain characterizations of filter bank fusion frames. We then use these characterizations to construct filter bank fusion frame versions of discrete wavelet and Gabor transforms, emphasizing those specific finite impulse response filters whose frequency responses are well-behaved.Comment: keywords: filter banks, frames, tight, fusion, erasures, polyphas

    Computation of the para-pseudoinverse for oversampled filter banks: Forward and backward Greville formulas

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2008 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.Frames and oversampled filter banks have been extensively studied over the past few years due to their increased design freedom and improved error resilience. In frame expansions, the least square signal reconstruction operator is called the dual frame, which can be obtained by choosing the synthesis filter bank as the para-pseudoinverse of the analysis bank. In this paper, we study the computation of the dual frame by exploiting the Greville formula, which was originally derived in 1960 to compute the pseudoinverse of a matrix when a new row is appended. Here, we first develop the backward Greville formula to handle the case of row deletion. Based on the forward Greville formula, we then study the computation of para-pseudoinverse for extended filter banks and Laplacian pyramids. Through the backward Greville formula, we investigate the frame-based error resilient transmission over erasure channels. The necessary and sufficient condition for an oversampled filter bank to be robust to one erasure channel is derived. A postfiltering structure is also presented to implement the para-pseudoinverse when the transform coefficients in one subband are completely lost

    Approximation of dual Gabor frames, window decay, and wireless communications

    Full text link
    We consider three problems for Gabor frames that have recently received much attention. The first problem concerns the approximation of dual Gabor frames in L2(R)L_2(R) by finite-dimensional methods. Utilizing Wexler-Raz type duality relations we derive a method to approximate the dual Gabor frame, that is much simpler than previously proposed techniques. Furthermore it enables us to give estimates for the approximation rate when the dimension of the finite model approaches infinity. The second problem concerns the relation between the decay of the window function gg and its dual γ\gamma. Based on results on commutative Banach algebras and Laurent operators we derive a general condition under which the dual γ\gamma inherits the decay properties of gg. The third problem concerns the design of pulse shapes for orthogonal frequency division multiplex (OFDM) systems for time- and frequency dispersive channels. In particular, we provide a theoretical foundation for a recently proposed algorithm to construct orthogonal transmission functions that are well localized in the time-frequency plane

    Introduction to frames

    Get PDF
    This survey gives an introduction to redundant signal representations called frames. These representations have recently emerged as yet another powerful tool in the signal processing toolbox and have become popular through use in numerous applications. Our aim is to familiarize a general audience with the area, while at the same time giving a snapshot of the current state-of-the-art

    Smooth tight frame wavelets and image microanalyis in the fourier domain

    Get PDF
    AbstractGeneral results on microlocal analysis and tight frames in R2 are summarized. To perform microlocal analysis of tempered distributions, orthogonal multiwavelets, whose Fourier transforms consist of characteristic functions of squares or sectors of annuli, are constructed in the Fourier domain and are shown to satisfy a multiresolution analysis with several choices of scaling functions. To have good localization in both the x and Fourier domains, redundant smooth tight wavelet frames, with frame bounds equal to one, called Parseval wavelet frames, are obtained in the Fourier domain by properly tapering the above characteristic functions. These nonorthogonal frame wavelets can be generated by two-scale equations from a multiresolution analysis. A natural formulation of the problem is by means of pseudodifferential operators. Singularities, which are added to smooth images, can be localized in position and direction by means of the frame coefficients of the filtered images computed in the Fourier domain. Using Plancherel's theorem, the frame expansion of the filtered images is obtained in the x domain. Subtracting this expansion from the scarred images restores the original images

    Rates of convergence for the approximation of dual shift-invariant systems in l2(Z)l_2(Z)

    Full text link
    A shift-invariant system is a collection of functions {gm,n}\{g_{m,n}\} of the form gm,n(k)=gm(kan)g_{m,n}(k) = g_m(k-an). Such systems play an important role in time-frequency analysis and digital signal processing. A principal problem is to find a dual system γm,n(k)=γm(kan)\gamma_{m,n}(k) = \gamma_m(k-an) such that each function ff can be written as f=gm,nf = \sum g_{m,n}. The mathematical theory usually addresses this problem in infinite dimensions (typically in L2(R)L_2(R) or l2(Z)l_2(Z)), whereas numerical methods have to operate with a finite-dimensional model. Exploiting the link between the frame operator and Laurent operators with matrix-valued symbol, we apply the finite section method to show that the dual functions obtained by solving a finite-dimensional problem converge to the dual functions of the original infinite-dimensional problem in l2(Z)l_2(Z). For compactly supported gm,ng_{m,n} (FIR filter banks) we prove an exponential rate of convergence and derive explicit expressions for the involved constants. Further we investigate under which conditions one can replace the discrete model of the finite section method by the periodic discrete model, which is used in many numerical procedures. Again we provide explicit estimates for the speed of convergence. Some remarks on tight frames complete the paper

    Weyl-Heisenberg Spaces for Robust Orthogonal Frequency Division Multiplexing

    Full text link
    Design of Weyl-Heisenberg sets of waveforms for robust orthogonal frequency division multiplex- ing (OFDM) has been the subject of a considerable volume of work. In this paper, a complete parameterization of orthogonal Weyl-Heisenberg sets and their corresponding biorthogonal sets is given. Several examples of Weyl-Heisenberg sets designed using this parameterization are pre- sented, which in simulations show a high potential for enabling OFDM robust to frequency offset, timing mismatch, and narrow-band interference

    Parity-check matrix calculation for paraunitary oversampled DFT filter banks

    No full text
    International audienceOversampled filter banks, interpreted as error correction codes, were recently introduced in the literature. We here present an efficient calculation and implementation of the parity-check polynomial matrices for oversampled DFT filter banks. If desired, the calculation of the partity-check polynomials can be performed as part of the prototype filter design procedure. We compare our method to those previously presented in the literature

    Linear phase cosine modulated maximally decimated filter banks with perfect reconstruction

    Get PDF
    We propose a novel way to design maximally decimated FIR cosine modulated filter banks, in which each analysis and synthesis filter has a linear phase. The system can be designed to have either the approximate reconstruction property (pseudo-QMF system) or perfect reconstruction property (PR system). In the PR case, the system is a paraunitary filter bank. As in earlier work on cosine modulated systems, all the analysis filters come from an FIR prototype filter. However, unlike in any of the previous designs, all but two of the analysis filters have a total bandwidth of 2π/M rather than π/M (where 2M is the number of channels in our notation). A simple interpretation is possible in terms of the complex (hypothetical) analytic signal corresponding to each bandpass subband. The coding gain of the new system is comparable with that of a traditional M-channel system (rather than a 2M-channel system). This is primarily because there are typically two bandpass filters with the same passband support. Correspondingly, the cost of the system (in terms of complexity of implementation) is also comparable with that of an M-channel system. We also demonstrate that very good attenuation characteristics can be obtained with the new system
    corecore