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Abstract

This survey gives an introduction to redundant signal representations
called frames. These representations have recently emerged as yet
another powerful tool in the signal processing toolbox and have become
popular through use in numerous applications. Our aim is to familiar-
ize a general audience with the area, while at the same time giving a
snapshot of the current state-of-the-art.
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1
Introduction

Redundancy is a common tool in our daily lives. We double- and triple-
check that we turned off gas and lights, took our keys, money, etc.
(at least those worrywarts among us do). When an important date is
coming up, we drive our loved ones crazy by confirming “just once
more” they are on top of it.

The same idea of removing doubt is present in signal representa-
tions. Given a signal, we represent it in another system, typically a
basis, where its characteristics are more readily apparent in the trans-
form coefficients. However, these representations are typically nonre-
dundant, and thus corruption or loss of transform coefficients can be
serious. In comes redundancy; we build a safety net into our represen-
tation so that we can avoid those disasters. The redundant counterpart
of a basis is called a frame.1

It is generally acknowledged2 that frames were born in 1952 in
the work of Duffin and Schaeffer [78]. Despite being over half a cen-
tury old, frames gained popularity only in the last decade, due mostly
to the work of the three wavelet pioneers — Daubechies et al. [67].

1 No one seems to know why they are called frames, perhaps because of the bounds in (3.8).
2 At least in the signal processing and harmonic analysis communities.
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Frame-like ideas, that is, building redundancy into a signal expan-
sion, can be found in pyramid coding [33], resilience to noise [18,
19, 60, 64, 65, 93, 98, 133], denoising [53, 77, 88, 110, 177], robust
transmission [20, 21, 22, 25, 41, 92, 105, 139, 157, 165], CDMA
systems [131, 161, 168, 169], multiantenna code design [100, 104], seg-
mentation [69, 124, 162], classification [48, 124, 162], prediction of
epileptic seizures [16, 17], restoration and enhancement [113], motion
estimation [128], signal reconstruction [6], coding theory [101, 143],
operator theory [2], quantum theory and computing [80, 151, 153], and
many others.

While frames are often associated with wavelet frames, frames are
more general than that. Wavelet frames possess structure; frames are
redundant representations that only need to represent signals in a given
space with a certain amount of redundancy. The simplest frame, appro-
priately named Mercedes-Benz, is introduced in Figure 3.2; just have
a peek now, we will go into more details later.

Why and where would one use frames? The answer is simple: any-
where where redundancy is a must. The host of the applications men-
tioned above and discussed later in the survey illustrate that richly.

Now a word about what you are reading: why an introductory sur-
vey? The sources on frames are the beautiful book by Daubechies [64],
a recent book by Christensen [51] as well as a number of classic papers
[39, 63, 99, 103], among others. Although excellent material, none of
the above sources offer an introduction to frames geared primarily to
engineers and those who just want an introduction into the area. Thus
our emphasis; this is a survey, rather than a comprehensive survey
of the state of the field. Although we will touch upon a number of
applications and theoretical results, we will do so only for the sake
of teaching. We will go slowly, whenever possible using the simplest
examples. Generalizations will follow naturally. We will be selective
and will necessarily give our personal view of frames. We will be rig-
orous when necessary; however, we will not insist upon it at all times.
As often as possible, we will be living in the finite-dimensional world;
it is rich enough to give a flavor of the basic concepts. When we do
venture into the infinite-dimensional one, we will do so only using
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filter banks — structured expansions used in many signal processing
applications.

This treatment is largely reproduced from two tutorials published
in the IEEE Signal Processing Magazine [117, 118]. The aim here is
to present the material in one piece, with more detail and ease of
referencing.



2
Review of Bases

The reason we try to represent our signals in a different domain is,
typically, because certain signal characteristics become obvious in that
other domain, facilitating various signal processing tasks. For example,
we perform Fourier analysis to uncover the harmonic composition of a
signal. If our signal happens to be a sum of a finite number of tones, the
Fourier-domain representation will be nonzero at exactly those tones
and will be zero at all other frequencies. However, if our signal is a sum
of, say a pure frequency and a pulse of very short duration, the Fourier
transform will be an inefficient representation1; the signal energy will
be, more or less, spread evenly across all frequencies. Thus, the right
representation is absolutely critical if we are to perform our signal pro-
cessing task effectively and efficiently.

To understand frames, it helps to go back to what we already know:
bases. In this section, we review essential concepts on bases (we assume
basic notions on vector spaces, inner products, norms). If you are fami-
liar with those, you may skip this section and go directly to the frame
section which comes next. We stress that often, we will forgo formal

1 We assume here that the quality of the representation is measured by its sparsity.

5



6 Review of Bases

language in favor of making the material as accessible as possible. An
introductory treatment is also given in [167].

When modeling a problem, one needs to identify a space of objects
on which certain operations will be performed. For example, in image
compression, our objects are images, while in some other tasks, our
objects can be audio signals, movies, and many others. Initially, we
will assume that these objects are vectors in a vector space. In this
survey, we consider almost exclusively finite-dimensional vector spaces
R

n and C
n, as well as the infinite-dimensional vector space �2(Z) (com-

monly used in discrete-time signal processing). By itself, a vector space
will not afford much, except for the ability to add two vectors to form
a new vector in the same vector space and to multiply a vector by a
scalar. To do anything meaningful, we must equip such a space with
an inner product and a norm, which will allow us to “measure” things.
These functions turn the vector space into an inner product space. By
introducing the distance between two vectors, as the norm of the differ-
ence between those two vectors, we get a precise measurement tool and
turn our inner product space into a metric space. Finally, by consider-
ing the question of completeness, that is, whether a representative set
of vectors can describe every other vector from our space, we reach the
Hilbert space stage, which we denote by H. This progression allows us
to do things such as measure similarity between two images by finding
the distance between them, a step present in compression algorithms,
systems for retrieval and matching, and many others.

We need even more: tools which will allow us to look at all the
vectors in a common representation system. These tools already exist
as bases in a Hilbert space. Bases are sets of vectors used to uniquely
represent any vector in a given Hilbert space in terms of the basis
vectors. An orthonormal basis, in particular, will allow us not only to
represent vectors but to approximate them as well.2 This is useful when
resources do not allow us to deal with the object directly, but rather
with its approximation only. For example, an “instant” approximation
of a natural image is just its lowpassed version — we get a blurry
image.

2 Note that approximations are possible in all types of bases, not just orthogonal ones.
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A subset Φ = {ϕi}i∈I of a finite-dimensional vector space V (where
I is some index set) is called a basis for V, if V = span(Φ)3 and the
vectors in Φ are linearly independent. If I = {1, . . . ,n}, we say that V

has dimension n.
A vector space V is infinite dimensional if it contains an infinite

linearly independent set of vectors.4 If V is equipped with a norm, then
a subset Φ = {ϕi}i∈I of V is called a basis5 if for every x in V, there
exist unique scalars Xi such that x =

∑
i∈IXiϕi.

As we already mentioned, in this survey, we consider exclusively
the finite-dimensional Hilbert spaces H = R

n,Cn with I = {1, . . . ,n},
as well as the infinite-dimensional space of square-summable sequences
H = �2(Z) with I = Z.

R
n and C

n are the most intuitive Hilbert spaces which we deal with
on a daily basis. Their dimension is n. For example, the complex space
C

n is the set of all n-tuples x = (x1, . . . ,xn)T , with xi in C (similarly
for R

n) and where T denotes the transpose.
In discrete-time signal processing we deal almost exclusively with

sequences x having finite square sum or finite energy, where x =
(. . . ,x−1,x0,x1, . . .) is, in general, complex-valued. Such a sequence x
is a vector in the Hilbert space �2(Z).

For the above spaces, the inner product between two vectors x and
y is defined as6:

〈x,y〉 =
∑
i∈I

xiy
∗
i ,

3 Given S ⊂ V, the span of S is the subspace of V consisting of all finite linear combinations
of vectors in S.

4 Many subtleties arise in infinite dimensions that are not present in finite dimensions, such
as the proper use of “span” and “independence” as both of these words imply finite linear
combinations. We do not address these issues here; instead, we refer the reader to [102].

5 Also called a Schauder basis. Note that here we need a normed vector space because the
definition implicitly uses the notion of convergence: the series converges to the vector x
in the norm of V. Again, in the definition of a basis, we have to pay attention to the use
of terms “span” and “independence” when we deal with infinite-dimensional spaces. For
instance, the infinite set {δi−k}k∈Z is a Schauder basis for �2(Z) but does not span �2(Z)
because we cannot write every square-summable sequence as a finite linear combination
of δi’s. For more details, we refer the reader to [102].

6 We have used the convention that is dominant in mathematics, where the inner product
is linear in the first argument and conjugate-linear in the second argument.
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where ∗ denotes Hermitian transposition, while the norm is

‖x‖ =
√

〈x,x〉 =
√∑

i∈I

|xi|2.

2.1 Orthonormal Bases

A basis Φ = {ϕi}i∈I , where the vectors are orthonormal:

〈ϕi,ϕj〉 = δi−j ,

is called an orthonormal basis. Here δi denotes the Kronecker delta,
where δi = 1 for i = 0, and is 0 otherwise. In other words, an orthonor-
mal system is called an orthonormal basis for H, if for every x in H,

x =
∑
i∈I

Xiϕi, (2.1)

for some scalars Xi. These scalars are called the transform or expansion
coefficients of x with respect to Φ, and it follows from orthonormality
that they are given by

Xi = 〈x,ϕi〉, (2.2)

for all i ∈ I. In fact, (2.2) can be derived from (2.1) by taking the inner
products on both sides of (2.1) with respect to ϕj .

We now discuss a few properties of orthonormal bases.

2.1.1 Projections

A characteristic of orthonormal bases allowing us to approximate sig-
nals is that an orthogonal projection onto a subspace spanned by a
subset of basis vectors, {ϕi}i∈J (J is the index set of that subset), is

Px =
∑
i∈J

〈x,ϕi〉ϕi, (2.3)

that is, it is a sum of projections onto individual one-dimensional sub-
spaces spanned by each ϕi. Beware that this is not true when {ϕi}i∈J do
not form an orthonormal system. It is easy to show that (2.3) is indeed
a projection by demonstrating that P (Px) = Px and P ∗x = Px; we
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leave it as an exercise. The above is a direct consequence of {ϕi}i∈J

forming an orthonormal system. For example, projecting x onto the
subspace spanned by ϕ1 and ϕ2 would be

Px = 〈x,αϕ1 + βϕ2〉(αϕ1 + βϕ2)

= 〈x,αϕ1 + βϕ2〉αϕ1 + 〈x,αϕ1 + βϕ2〉βϕ2

= α2〈x,ϕ1〉ϕ1 + β2〈x,ϕ2〉ϕ2.

2.1.2 Bessel’s Inequality and Parseval’s Equality

Given an orthonormal system of vectors {ϕi}i∈J in H, then, for every
x in H, the following inequality, known as Bessel’s inequality, holds:∑

i∈J

|〈x,ϕi〉|2 ≤ ‖x‖2.

This inequality follows from (2.3) since its left-hand side is |〈x,Px〉| =
‖Px‖2.

Given an orthonormal system that is complete in H, then we have
an orthonormal basis for H, and Bessel’s relation becomes an equality,
often called Parseval’s equality (or Plancherel’s). This is simply the
norm-preserving property of orthonormal bases. In other words

‖x‖2 =
∑
i∈I

|〈x,ϕi〉|2. (2.4)

As an example, in the case of the Fourier series, (2.4) becomes

‖x‖2 =
∑
k∈Z

|Xk|2, (2.5)

where Xk are Fourier coefficients.

2.1.3 Least-Squares Approximation

Suppose that we want to approximate a vector from a Hilbert space
H by a vector x̂ lying in the (closed) subspace S = span{ϕi}i∈J . The
orthogonal projection of x ∈ H onto S is given by (2.3). The difference
vector d = x − x̂ satisfies d ⊥ S.7 This approximation is best in the

7 d ∈ H is said to be orthogonal to S, denoted by d ⊥ S if 〈d,s〉 = 0 for every s ∈ S.
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least-squares sense, that is, min‖x − y‖ for y in S is attained for
y =

∑
iXiϕi with Xi = 〈x,ϕi〉 being the expansion coefficients. In

other words, the best approximation is our x̂ = Px previously defined
in (2.3). An immediate consequence of this result is the successive
approximation property of orthogonal expansions. Call x̂(k) the best
approximation of x on the subspace spanned by {ϕ1,ϕ2, . . . ,ϕk}. Then
the approximation x̂(k+1) is given by

x̂(k+1) = x̂(k) + 〈x,ϕk+1〉ϕk+1,

that is, the previous approximation plus the projection along the
added vector ϕk+1.

The successive approximation property does not hold for nonorth-
ogonal bases; When calculating the approximation x̂(k+1), one cannot
simply add one term to the previous approximation, but has to recal-
culate the whole approximation.

2.1.4 Matrix View

While we are great fans of equations, we like matrices even better, as
equations can be hard to parse. Moreover, visualizing representations
is more intuitive and helps us understand the concepts better. Thus,
we rephrase our basis notions in matrix notation.

Example 2.1. Suppose we are given an orthonormal basis Φ =
{(1,−1)T /

√
2,(1,1)T /

√
2}. Given this basis and an arbitrary vector

x in the plane, what is this point in this new basis (new coordi-
nate system)? We answer this question by projecting x onto the
new basis. Suppose that x = (1,0)T . Then, xΦ1 = 〈x,ϕ1〉 = 1/

√
2 and

xΦ2 = 〈x,ϕ2〉 = 1/
√

2. Thus, in this new coordinate system, our point
(1,0)T becomes xΦ = (xΦ1 ,xΦ2)

T = (1,1)T /
√

2. It is still the same point
in the plane, we only read its coordinates depending on which basis we
are considering. We can express the above process of figuring out the
coordinates in the new coordinate system a bit more elegantly:

X = xΦ =
(
xΦ1

xΦ2

)
=

(〈x,ϕ1〉
〈x,ϕ2〉

)
=

(
ϕ11x1 + ϕ12x2

ϕ21x1 + ϕ22x2

)

=
(
ϕ11 ϕ12

ϕ21 ϕ22

)(
x1

x2

)
=

1√
2

(
1 −1
1 1

)(
x1

x2

)
= Φ∗x.
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Observe that the matrix Φ describes an orthonormal basis in the real
plane.8 The columns of the matrix are the basis vectors (the rows are
as well), that is, the process of finding coordinates of a vector in a
different coordinate system can be conveniently represented using a
matrix Φ whose columns are the new basis vectors, xΦ = Φ∗x.

We now summarize what we learned in this example in a more
general case: Any Hilbert space basis (orthonormal or biorthogonal)
can be represented as a matrix having basis vectors as its columns. If
the matrix is singular, it does not represent a basis.

Given that we have X = Φ∗x, we can go back to x by inverting
Φ∗ (this is why we require Φ to be nonsingular), x = (Φ∗)−1X. If the
original basis is orthonormal, then Φ is unitary and Φ−1 = Φ∗. The
representation formula can then be written as

x =
∑
i∈I

〈x,ϕi〉ϕi = ΦΦ∗x = Φ∗Φx. (2.6)

Example 2.2 (DFT as an Orthonormal Basis Expansion). The
discrete Fourier transform (DFT) is ubiquitous; however, it is not tra-
ditionally looked upon as a signal expansion or written in matrix form.
The easiest way to do that is to look at how the reconstruction is
obtained:

xk =
1
n

n−1∑
i=0

XiW
ik
n , k = 0, . . . ,n − 1, (2.7)

where Wn = ej2π/n is an nth root of unity. In matrix notation we could
write it as9

x =
1
n




1 1 · · · 1
1 Wn · · · Wn−1

n
...

...
...

...
1 Wn−1

n · · · Wn




︸ ︷︷ ︸
Φ=DFT∗

n




X0

X1
...

Xn−1




︸ ︷︷ ︸
X

.

8 By abuse of language, we use Φ to denote both the set of vectors as well as the matrix
representing those vectors.

9 Following our convention, Φ should be called DFT; however, as the standard in signal
processing is the reverse, we use that notation.
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Note that the DFT matrix defined as above is not normalized, that is
(1/n)(DFTn)∗(DFTn) = I. If we normalize it by 1/

√
n, the DFT would

exactly implement an orthonormal basis.
The decomposition formula is usually given as

Xi =
n−1∑
k=0

xkW
−ik
n , i = 0, . . . ,n − 1, (2.8)

and, in matrix notation:

X = DFTnx.

Consider now the normalized version. In basis parlance, our basis
would be Φ = {ϕi}n−1

i=0 , where the basis vectors are:

ϕi =
1√
n

(W 0
n ,W

i
n, . . . ,W

i(n−1)
n )T , i = 0, . . . ,n − 1. (2.9)

Then, the expansion formula (2.8) can be seen as

Xi = 〈x,ϕi〉, i = 0, . . . ,n − 1,

and the reconstruction formula (2.7) for x = (x0, . . . ,xn−1)T :

x =
n−1∑
i=0

Xiϕi =
n−1∑
i=0

〈x,ϕi〉ϕi =
1√
n

DFT∗
n︸ ︷︷ ︸

Φ

1√
n

DFTn︸ ︷︷ ︸
Φ∗

x. (2.10)

2.2 General Bases

We are now going to relax the constraint of orthogonality and see what
happens. The reasons for doing that are numerous, the most obvious
one being that we have more freedom in choosing our basis vectors. For
example, in R

2, once a vector is chosen, to get an orthonormal basis, we
basically have only one choice (within a sign); on the other hand, for a
general basis, it is enough to choose the second vector not collinear to
the first.
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Example 2.3. As a simple example, consider the following set
in R

2: Φ = {ϕ1,ϕ2} = {(1,0)T ,(
√

2/2,
√

2/2)T }. We have seen how
orthonormal bases expand vectors. This is not an orthonormal basis
but can we still use these two vectors to represent any real vector x?
The answer is yes:

x = 〈x,ϕ̃1〉ϕ1 + 〈x,ϕ̃2〉ϕ2,

with ϕ̃1 = (1,−1) and ϕ̃2 = (0,
√

2). Thus, we can represent any real
vector with our initial pair of vectors Φ = {ϕ1,ϕ2}; however, they need
helpers, an extra pair of vectors Φ̃ = {ϕ̃1, ϕ̃2}.

So what can we say about these two couples? It is obvious that they
work in concert to represent x. Further, while not orthogonal within
the couple, they are orthogonal across couples; ϕ1 is orthogonal to
ϕ̃2, while ϕ2 is orthogonal to ϕ̃1. Finally, the inner products between
corresponding vectors in a couple are 〈ϕi, ϕ̃i〉 = 1 for i = 1,2.

In general, these biorthogonality relations can be compactly repre-
sented as

〈ϕi, ϕ̃j〉 = δi−j .

The representation expression can then be written as

x =
∑
i∈I

〈x,ϕ̃i〉ϕi =
∑
i∈I

〈x,ϕi〉ϕ̃i,

that is, the roles of ϕi and ϕ̃i are interchangeable. These two sets of
vectors, Φ and Φ̃, are called biorthogonal bases and are said to be dual to
each other. If the dual basis Φ̃ is the same as Φ, we get an orthonormal
basis. Thus, orthonormal bases are self dual.

While orthonormal bases are norm preserving, that is, they satisfy
Parseval’s equality, this is not true in the biorthogonal case. This is
one of the reasons successive approximation does not work here. In the
orthonormal case, the norm of the original vector is sliced up into pieces,
each of which is the norm of the corresponding expansion coefficient
(and equal to the length of the appropriate projection). Here, we know
that does not work.
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From the above discussion, we see that biorthogonal bases offer a
larger choice, since they are less constrained than the orthonormal ones.
However, this comes at the price of losing the norm-preserving property
as well as the successive approximation property. This trade-off is often
tackled in practice and depending on the problem at hand, you might
decide to use either orthonormal or biorthogonal basis.

2.2.1 Matrix View

When the original basis is biorthogonal, there is not much more we can
say about Φ. The representation formula is (the two bases Φ and Φ̃ are
interchangeable):

x =
∑
i∈I

〈x,ϕ̃i〉ϕi = ΦΦ̃∗x = Φ̃Φ∗x =
∑
i∈I

〈x,ϕi〉ϕ̃i.



3
Frame Definitions and Properties

The notion of bases in finite-dimensional spaces implies that the num-
ber of representative vectors is the same as the dimension of the space.
When this number is larger, we can still have a representative set of
vectors, except that the vectors are no longer linearly independent and
the resulting set is then called a frame. Frames are signal representa-
tion tools which are redundant, and since they are less constrained than
bases, they are used when more flexibility in choosing a representation
is needed.

In this section, we introduce frames through simple examples and
consider H = R

n,Cn only. We then define frames more formally and
discuss a number of their properties. In Section 4, we examine finite-
dimensional frames in some detail. Then, in Section 5, we look at the
only instance of infinite-dimensional frames we discuss in this survey,
those in H = �2(Z) implemented using filter banks.

Example 3.1. Let us take an orthonormal basis, add a vector to it
and see what happens. Suppose our system is as given in Figure 3.1(a),
with Φ = {ϕ1,ϕ2,ϕ3} = {(1,0)T ,(0,1)T ,(1,−1)T }. The first two vectors
ϕ1,ϕ2 are the ones forming the orthonormal basis and the third one,

15
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Fig. 3.1 A pair of general frames. (a) Frame Φ = {ϕ1,ϕ2,ϕ3}. (b) Dual frame Φ̃ =
{ϕ̃1, ϕ̃2, ϕ̃3}.

ϕ3, was added to the orthonormal basis. What can we say about such
a system?

First, it is clear that by having three vectors in R
2, those vectors

must necessarily be linearly dependent; indeed, ϕ3 = ϕ1 − ϕ2. It is also
clear that these three vectors must be able to represent every vector in
R

2 since their subset is able to do so (which also means that we could
have added any other vector ϕ3 to our orthonormal basis with the same
result.) In other words, since we know that the following is true,

x = 〈x,ϕ1〉ϕ1 + 〈x,ϕ2〉ϕ2,

we can add a zero to the above expression,

x = 〈x,ϕ1〉ϕ1 + 〈x,ϕ2〉ϕ2 + (〈x,ϕ1〉 − 〈x,ϕ1〉)(ϕ1 − ϕ2)︸ ︷︷ ︸
0

,

and rearrange it slightly to read

x = 〈x,2ϕ1〉ϕ1 + 〈x,(−ϕ1 + ϕ2)〉ϕ2 + 〈x,−ϕ1〉(ϕ1 − ϕ2).

In the above, we can recognize (−ϕ1 + ϕ2) as −ϕ3, and the vectors
inside the inner products we will call

ϕ̃1 = 2ϕ1, ϕ̃2 = −ϕ1 + ϕ2, ϕ̃3 = −ϕ1.

With this notation, we can rewrite the expansion as

x = 〈x,ϕ̃1〉ϕ1 + 〈x,ϕ̃2〉ϕ2 + 〈x,ϕ̃3〉ϕ3 =
3∑

i=1

〈x,ϕ̃i〉ϕi,



17

or, if we introduce matrix notation as before:

Φ =
(

1 0 1
0 1 −1

)
, Φ̃ =

(
2 −1 −1
0 1 0

)
(3.1)

and

x =
3∑

i=1

〈x,ϕ̃i〉ϕi = ΦΦ̃∗x.

The only difference between the above expression and the one for gen-
eral bases is that matrices Φ and Φ̃ are now rectangular. Figure 3.1
shows this example pictorially.

We have thus shown that starting with an orthonormal basis and
adding a vector, we obtained another expansion with three vectors. This
expansion is reminiscent of the one for general biorthogonal bases we
have seen earlier, except that the vectors involved in the expansion are
now linearly dependent. This redundant set of vectors Φ = {ϕi}i∈I is
called a frame while Φ̃ = {ϕ̃i}i∈I is called a dual frame of Φ = {ϕi}i∈I .
As for biorthogonal bases, these two are interchangeable, and thus,
x = ΦΦ̃∗x = Φ̃Φ∗x.

A Note of Caution: In many texts on frame theory, the frame change is
usually denoted by Φ, not Φ̃∗. Given that Φ and Φ̃ are interchangeable,
we can use one or the other without risk of confusion. Since

∑
i∈IXiϕi

is really the expansion in terms of the basis/frame Φ, we believe it is
natural to use Φ on the reconstruction side and Φ̃∗ on the decomposi-
tion side.

While adding a vector worked, we ended up with an expansion
that does not look elegant, as it involves both the frame and its dual.
Is it possible to have frames which would somehow mimic orthonor-
mal bases? To do that, let us think for a moment what characterizes
orthonormal bases. How about:

(1) Orthonormal bases are self dual?
(2) Orthonormal bases preserve the norm?

To answer these questions, we consider the simplest frame, aptly named
Mercedes-Benz frame.
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Mercedes-Benz Frame: The Mercedes-Benz (MB) frame1 is arguably the
most famous frame. It is a collection Φ of three vectors in R

2, and is an
excellent representative for many classes of frames. For example, the
Mercedes-Benz frame is the simplest harmonic tight frame (introduced
in Section 6.1).

Consider the version ΦPTF = {ϕ1,ϕ2,ϕ3}, where the frame has been
scaled so that ΦPTFΦ∗

PTF = I2:

Φ∗
PTF =


 0

√
2/3

−1/
√

2 −1/
√

6
1/

√
2 −1/

√
6


 , (3.2)

and thus the expansion expression is

x =
3∑

i=1

〈x,ϕi〉ϕi = ΦPTFΦ∗
PTF x, (3.3)

with the norm:

‖X‖2 =
3∑

i=1

|〈x,ϕi〉|2 = ‖x‖2. (3.4)

As ΦPTFΦ∗
PTF = I, ΦPTF can represent any x from R

2 (real plane).
Since in (3.3) the same set of vectors is used both for expansion and
reconstruction, ΦPTF is self dual. We can think of the expansion in (3.3)
as a generalization of an orthonormal basis except that the vectors are
not linearly independent anymore. The frame of this type is called a
tight frame (Parseval tight).

We can normalize the lengths of all the frame vectors to 1, leading
to the unit-norm version of this frame given as ΦUNTF = {ϕ1,ϕ2,ϕ3}
as in Figure 3.2:

Φ∗
UNTF =

√
3
2
Φ∗

PTF =


 0 1

−√
3/2 −1/2√

3/2 −1/2


 =


ϕ∗

1
ϕ∗

2
ϕ∗

3


 , (3.5)

1 Mercedes-Benz frames are also known as Peres-Wooters states in quantum information
theory [148].

2 The subscript PTF stands for Parseval tight frame, which is a frame satisfying
ΦPTFΦ∗

PTF = I. We will elaborate on this class of frames later in the survey.
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Fig. 3.2 Simplest unit-norm tight frame — Mercedes Benz frame. This is also an example
of a harmonic tight frame from Section 6.1.

with the corresponding expansion:

x =
2
3

3∑
i=1

〈x,ϕi〉ϕi =
2
3
ΦUNTFΦ∗

UNTF x, (3.6)

and the norm:

‖X‖2 =
3∑

i=1

|〈x,ϕi〉|2 =
3
2
‖x‖2. (3.7)

We can compare the expansion into an orthonormal basis (2.1) with the
expansion into a unit-norm version of the Mercedes-Benz frame (3.3),
and see that the frame version has an extra scaling of 2/3. When the
frame is tight and all the vectors have unit norm as in this case, the
inverse of this scaling factor denotes the redundancy of the system: we
have 3/2 or 50% more vectors than needed to represent any vector in
R

2. Note that, in general, relating the frame bounds to the redundancy
factor does not seem to be possible for frames that are not tight.

This discussion took care of the first question, whether we can have
a self-dual frame. To check the question about norms, we compute the
sum of the squared transform coefficients as in (3.4), and see that,
indeed, this frame preserves the norm. To make the comparison to
orthonormal bases fair, again we take the unit-norm version of the
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frame and compute the sum of the squared transform coefficients as
in (3.7). Now there is extra scaling of 3/2; this is fairly intuitive, as in
the transform domain, where we have more coefficients than we started
with, the energy is 3/2 times higher than in the original domain.

Thus, the tight frame we constructed is very similar to an orthonor-
mal basis, with a linearly dependent set of vectors. Actually, tight
frames are redundant sets of vectors closest to orthonormal bases (we
will make this statement precise in Section 4.2).

One more interesting tidbit about this particular frame; note how
all its vectors have the same norm. This is not necessary for tightness,
but when true, the frame is called an equal-norm tight frame.

3.1 General Frames

In the last section, we introduced frames through examples and devel-
oped some intuition. We now discuss frames more generally and exam-
ine a few of their properties.

A family Φ = {ϕi}i∈I in a Hilbert space H is called a frame if there
exist two constants 0 < A ≤ B < ∞, such that for all x in H,

A ‖x‖2 ≤
∑
i∈I

|〈x,ϕi〉|2 ≤ B ‖x‖2. (3.8)

A, B are called frame bounds. Tight frames are frames with equal frame
bounds, that is, A = B. Equal-norm frames are those frames where all
the elements have the same norm, ‖ϕi‖ = ‖ϕj‖, for i, j ∈ I. Unit-norm
frames are those frames where all the elements have norm 1, ‖ϕi‖ = 1,
for i ∈ I. A-tight frames are tight frames with frame bound A. The
special case of 1-tight frames are usually called Parseval tight frames.
These various classes of frames are illustrated in Figure 3.3.

The frame bounds are intimately related to the issues of stable
reconstruction. First, the operator mapping x ∈ �2(Z) into its trans-
form coefficients |〈x,ϕi〉| has to be bounded, that is,

∑
i∈I |〈x,ϕi〉|2 has

to be finite, achieved by the bound from above. Second, no x with
‖x‖ > 0 should be mapped to 0, achieved by the bound from below.
Thus, a numerically stable reconstruction of any x from its transform
coefficients is possible only if (3.8) is satisfied. The closer the frame
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Fig. 3.3 Frames at a glance. ENF: Equal-norm frames, TF: Tight frames, ENTF: Equal-
norm tight frames, UNF: Unit-norm frames, PTF: Parseval tight frames, UNTF: Unit-norm
tight frames, ENPTF: Equal-norm Parseval tight frames, ONB: Orthonormal bases.

bounds are, the faster and numerically better behaved reconstruction
we have.

Any finite set of vectors that spans the space is a frame. This can be
seen from (3.8). Since

∑
i∈I |〈x,ϕi〉|2 = Φ̃Φ̃∗‖x‖2, that sum is bounded

from below and above by the smallest and largest eigenvalue of Φ̃Φ̃∗,
respectively, multiplying ‖x‖2. In the example given in (3.1), A 
 0.8
and B 
 6.2.

3.1.1 Frame Operators

The analysis operator Φ∗ maps the Hilbert space H into �2(I)3:

Xi = (Φ∗x)i = 〈x,ϕi〉, i ∈ I,

and, from (3.8), satisfies4:

AI ≤ ΦΦ∗ ≤ BI. (3.9)

3 The fact that (Φ∗x)i ∈ �2(I) comes from (3.8).
4 The inequality S ≤ U for matrices S, U means that U − S is nonnegative definite.
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As a matrix, the analysis operator Φ∗ has rows which are the
Hermitian-transposed frame vectors ϕ∗

i :

Φ∗ =




ϕ∗
11 · · · ϕ∗

1n · · ·
ϕ∗

21 · · · ϕ∗
2n · · ·

...
. . . . . . · · ·

ϕ∗
m1 · · · ϕ∗

mn · · ·
...

...
...

. . .


 .

When H = R
n,Cn, the above is an m × n matrix. When H = �2(Z), it

is an infinite matrix.
The following two operators play an important role in frame theory:

the frame operator, defined as S = ΦΦ∗, and the Grammian5 defined
as G = Φ∗Φ. The frame operator S is bounded, invertible, self-adjoint,
and positive [51].

The canonical dual frame of Φ is a frame defined as Φ̃ = {ϕ̃i}i∈I =
{S−1ϕi}i∈I , where

ϕ̃i = S−1ϕi, i ∈ I. (3.10)

Noting that ϕ̃∗
i = ϕ∗

iS
−1 and stacking ϕ̃∗

1, ϕ̃
∗
2, . . ., in a matrix, the anal-

ysis frame operator associated with Φ̃ is

Φ̃∗ = Φ∗S−1,

while its frame operator is S−1, with B−1 and A−1 its frame
bounds [51]. Since

ΦΦ̃∗ = ΦΦ∗︸︷︷︸
S

S−1 = I,

then

x =
∑
i∈I

〈x,ϕ̃i〉ϕi = ΦΦ̃∗x = Φ̃Φ∗x =
∑
i∈I

〈x,ϕi〉ϕ̃i.

5 Both Grammian and Gramian are used.
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To reconstruct x from its frame coefficients, we need only to compute
ϕ̃i via (the proof is given in [64]):

ϕ̃i =
2

A + B

∞∑
i=0

(
I − 2

A + B
S

)i

ϕi.

When B
A − 1 � 1, from (3.9), S is close to A+B

2 I and (I − 2
A+BS) is

small, leading to fast convergence. When the frame is tight, A = B,
ϕ̃i = 1

Aϕi, and inversion is not necessary.
Note that the dual operator is not unique, as any left-inverse of

the analysis operator can be used for reconstructing x. In particu-
lar, classical results in [91] provide a complete parametrization of all
left-inverses. The canonical dual frame corresponds to the minimum
norm reconstruction. Sometimes, the canonical dual is undesirable, for
example Daubechies presents a case in [63] where the canonical dual
of a wavelet frame does not have the wavelet structure. In [52], Chris-
tensen and Eldar explore other duals.

To summarize what we have done until now:

(1) We represented our signal in another domain to more easily
extract its salient characteristics. We did that in a redundant
fashion.

(2) Given a pair of dual frames (Φ, Φ̃), the coordinates of our
signal in the new domain (that is, with respect to the new
frame) are given by

X = Φ̃∗x. (3.11)

This is called the analysis or decomposition expression. In
R

n, C
n, with m > n frame vectors, Φ̃ is a rectangular n × m

matrix describing the frame change and it contains dual
frame vectors as its columns, while X collects all the trans-
form coefficients together.

(3) The synthesis, or reconstruction is given by

x = ΦX. (3.12)

In R
n, C

n, withm > n frame vectors, Φ is again a rectangular
n × m matrix, and it contains frame vectors as its columns.
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(4) If the expansion is into a general frame, then

ΦΦ̃∗ = I.

When manipulating frame expressions, facts given below (some
frame specific and the others valid for general matrices) often come
in handy:

(1) For any matrix Φ∗ with rows ϕ∗
i ,

S = ΦΦ∗ =
∑
i∈I

ϕiϕ
∗
i .

(2) If S is a frame operator, then

Sx = ΦΦ∗x =
∑
i∈I

〈x,ϕi〉ϕi,

〈x,Sx〉 = 〈x,ΦΦ∗x〉 = 〈Φ∗x,Φ∗x〉
= ‖Φ∗x‖2 =

∑
i∈I

|〈x,ϕi〉|2,
∑
i∈I

〈ϕi,Sϕi〉 =
∑
i∈I

〈Φ∗ϕi,Φ∗ϕi〉 =
∑
i,j∈I

|〈ϕi,ϕj〉|2.

(3) From (3.8), we have that

AI ≤ S ≤ BI,

as well as

B−1I ≤ S−1 ≤ A−1I.

(4) We say that two frames Φ and Ψ for H are equivalent, if
there exists a bounded linear bijection6 L on H for which
Lϕi = ψi for i ∈ I. Two frames Φ and Ψ are unitarily equiv-
alent if L can be chosen to be a unitary operator. Any
A-tight frame is equivalent to a Parseval tight frame as
ϕPTF = (1/

√
A)ϕA−TF.

6 This is a mathematically simple (albeit possibly scary sounding) way to translate the
notion of “invertibility” to an infinite-dimensional Hilbert space.
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(5) In finite dimensions, the nonzero eigenvalues {λi}i∈I , of S =
ΦΦ∗ and G = Φ∗Φ are the same:

tr(ΦΦ∗) = tr(Φ∗Φ). (3.13)

(6) A Φ∗ matrix of a tight frame has orthonormal columns. In
finite dimensions, this is equivalent to the Naimark theo-
rem (see Section 4.1), which says that every tight frame is
obtained by projecting an orthonormal basis from a larger
space.

3.2 Tight Frames

From (3.8), in a tight frame (that is, when A = B), we have∑
i∈I

|〈x,ϕi〉|2 = A ‖x‖2. (3.14)

By pulling 1/A into the sum, this is equivalent to:

∑
i∈I

∣∣∣∣
〈

1√
A
x,ϕi

〉∣∣∣∣2 = ‖x‖2, (3.15)

that is, the family Φ = {(1/
√
A)ϕi}i∈I is a 1-tight frame. In other

words, any tight frame can be rescaled to be a tight frame with frame
bound 1 — a Parseval tight frame, for which ΦΦ∗ = I. With A = 1, the
above looks similar to (2.4), Parseval’s equality, thus the name Parseval
tight frame.

In an A-tight frame, x ∈ H is expanded as:

x =
1
A

∑
i∈I

〈x,ϕi〉ϕi. (3.16)

While this last equation resembles the expansion formula in the case of
an orthonormal basis as in (2.1) and (2.2) (except for the factor 1/A), a
frame does not constitute an orthonormal basis in general. In particular,
vectors may be linearly dependent and thus not form a basis. If all the
vectors in a tight frame have unit norm, then the constant A gives the
redundancy ratio. For example, A = 2 means there are twice as many
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vectors than needed to cover the space. For the Mercedes-Benz frame
we discussed earlier, redundancy is 3/2, that is, we have 3/2 times more
vectors than needed to represent vectors in a two-dimensional space.
Note that if A = B = 1 (Parseval tight frame), and ‖ϕi‖ = 1 for all i,
then Φ = {ϕi}i∈I is an orthonormal basis (see Figure 3.3).

Because of the linear dependence which exists among the vectors
used in the expansion, the expansion is no longer unique. Consider
Φ = {ϕi}i∈I , where

∑
i∈I αiϕi = 0 (where not all αi’s are zero because of

linear dependence). If x can be written as x =
∑

i∈IXiϕi, then one can
add αi to each Xi without changing the decomposition. The expansion
(3.16) is unique in the sense that it minimizes the norm of the expansion
among all valid expansions. Similarly, for general frames, there exists a
unique canonical dual frame, which we discussed earlier in this section
(in the tight frame case, the frame and its canonical dual are equal).

To summarize, when the expansion is into a tight frame, then

Φ̃ = Φ, and ΦΦ∗ = AIn×n.

Note that, unlike for bases, Φ∗Φ is not necessarily an identity.
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Finite-Dimensional Frames

We now consider finite-dimensional frames, that is, when H = R
n,Cn,

and examine a few of their properties.
For example, for an equal-norm tight frame with norm-a vectors,

since S = ΦΦ∗ = AIn×n,

tr(S) =
n∑

j=1

λj = nA, (4.1)

where λj are the eigenvalues of S = ΦΦ∗. On the other hand, because
of (3.13)

tr(S) = tr(G) =
m∑

i=1

‖ϕi‖2 = ma2. (4.2)

Combining (4.1) and (4.2), we get

A =
m

n
a2. (4.3)

Then, for a unit-norm tight frame, that is, when a = 1, (4.3) yields the
redundancy ratio:

A =
m

n
.

Recall that for the Mercedes-Benz frame, A = 3/2.

27
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These, and other trace identities for all frame classes are given in
Table A.3.

4.1 Naimark Theorem

The following theorem tells us that every Parseval tight frame can be
realized as a projection of an orthonormal basis from a larger space.1

In this survey, we consider only the finite-dimensional instantiation of
the theorem (one possible proof of which is given in [80]).

Theorem 4.1 ([2], [99]). A set Φ = {ϕi}i∈I in a Hilbert space H is
a Parseval tight frame for H if and only if there is a larger Hilbert
space K, H ⊂ K, and an orthonormal basis {ei}i∈I for K so that
the orthogonal projection P of K onto H satisfies: Pei = ϕi, for all
i ∈ I.

While the above theorem specifies how all tight frames are obtained,
the same is true in general, that is, any frame can be obtained
by projecting a biorthogonal basis from a larger space [99] (we are
talking here about finite dimensions only). We will call this process
seeding and will say that a frame Φ is obtained by seeding from a
basis Ψ by deleting a suitable set of columns of Ψ [139]. We denote
this as

Φ∗ = Ψ[J ],

where J ⊂ {1, . . . ,m} is the index set of the retained columns.
We can now reinterpret the Parseval tight frame identity ΦΦ∗ = I:

It says that the columns of Φ∗ are orthonormal. In view of the above
theorem, this makes a lot of sense as that frame was obtained by delet-
ing columns from an orthonormal basis from a larger space.

1 The theorem has been rediscovered by several people in the past decade: The first author
heard it from Daubechies in the mid-90’s. Han and Larson rediscovered it in [99]; they
came up with the idea that a frame could be obtained by compressing a basis in a larger
space and that the process is reversible. Finally, it was Šoljanin [151] who pointed out to
the first author that this is, in fact, Naimark theorem, which has been widely known in
operator algebra and used in quantum information theory.
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Example 4.1 (Mercedes-Benz frame cont’d). For example, the
Parseval tight frame version of the Mercedes-Benz frame (3.2) can be
obtained by projecting an orthonormal basis from a three-dimensional
space:

Ψ =


 0

√
2/3 1/

√
3

−1/
√

2 −1/
√

6 1/
√

3
1/

√
2 −1/

√
6 1/

√
3


 , (4.4)

using the following projection operator P :

P =
1√
3


 2/3 −1/3 −1/3

−1/3 2/3 −1/3
−1/3 −1/3 2/3


 , (4.5)

that is, the Mercedes-Benz frame seen as a collection of vectors in the
three-dimensional space is Φ3D = PΨ. The projection operator essen-
tially “deletes” the last column of Ψ to create the frame operator Φ∗.
For equal-norm tight frames such as Mercedes-Benz, the connection
to an orthonormal basis in a higher dimension is similar to the rela-
tionship of a regular simplex signal constellation in dimension n to the
orthogonal constellation in dimension (n + 1) [174].

4.2 What Can Coulomb Teach Us?

As the orthonormal bases have specific characteristics highly prized
among bases, the same distinction belongs to tight frames among all
frames. As such, they have been studied extensively, but only recently
have Benedetto and Fickus [13] formally shown why tight frames and
orthonormal bases indeed belong together. In their work, they charac-
terized all unit-norm tight frames, while in [40], the authors did the
same for nonequal norm tight frames.

To characterize unit-norm tight frames, as a starting point, the
authors looked at harmonic tight frames (we will introduce those in
Section 6.1), obtained by taking mth roots of unity in C

n. These lead to
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regular arrangement of points on a circle (an example is the Mercedes-
Benz frame from Figure 3.2). Trying to generalize the notion of geo-
metric regularity to three dimensions, they looked at vertices of regular
polyhedra but came up short as there are only five such Platonic solids.
Considering other sets of high symmetry such as the “soccer ball”
(a truncated icosahedron), they found that all these proved to be unit-
norm tight frames.

As the geometric intuition could lead them only so far, the authors
in [13] refocused their attention on the equidistribution properties of
these highly symmetric objects and thought of the notion of equili-
brium. To formalize that notion, they turned to classical physics and
considered the example of m electrons on a conductive spherical shell.
In the absence of external forces, electrons move according to the
Coulomb force law until they reach the state of minimum potential
energy (though that minimum might only be a local minimum lead-
ing to an unstable equilibrium). The intuition developed through this
example led them to the final result.

The authors tried to replicate the physical world for the simplest
unit-norm tight frames — orthonormal bases, and thought of what kind
of equilibrium they possessed. Clearly, whichever “force” acts on the
vectors in an orthonormal basis, it tries to promote orthogonality. For
example, the Coulomb force would not keep the orthonormal basis in a
state of equilibrium. (Think n = 2, the Coulomb force would position
the two vectors to be colinear of opposite sign.) Thus, the authors
set to find another such force — the orthogonality-promoting one.
This force should be repulsive if vectors form an acute angle, while
it should be attractive if they form an obtuse angle. Since points are
restricted to move only on the circle (unit-norm constraint), one can
consider only the tangential component of the force. When vectors
do not all have equal norm, ‖ϕi‖ = ai, for i ∈ I, the authors in [13]
propose a definition of the frame force FF to encompass the whole
space:

FF(ϕi,ϕj) = 2〈ϕi,ϕj〉(ϕi − ϕj)

= (a2
i + a2

j − ‖ϕi − ϕj‖2)(ϕi − ϕj).
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Following the physical trail, one can now define the potential between
two points as:

P (ϕi,ϕj) = p(‖ϕi − ϕj‖).

This is found by using p′(x) = −xf(x), where f(x) is the magnitude
of the frame force and p(x) is obtained by integrating the above and
evaluating at ‖ϕi − ϕj‖2. After some manipulations, the result is

P (ϕi,ϕj) = 〈ϕi,ϕj〉2 − 1
4
(a2

i + a2
j )

2.

Then, the total potential contained within a sequence is

TP (Φ = {ϕi}i∈I) =
∑

i,j∈I,i�=j

|〈ϕi,ϕj〉|2 − 1
4

∑
i,j

(a2
i + a2

j )
2.

For details of derivations, we refer the reader to [13].
Physically, we can interpret the total potential as follows: Given

two sequences of points, the difference in potentials between these two
sequences is the energy needed to move the points from one configu-
ration to the other. As potential energy is defined in terms of differ-
ences, it is unique up to additive constants and thus we can neglect the
constants and add the diagonal terms to obtain the final expression for
the frame potential:

FP(Φ = {ϕi}i∈I) =
∑
i,j∈I

|〈ϕi,ϕj〉|2. (4.6)

Thus, what we are looking for are those sequences in equilibrium under
the frame force, and these will be minimizers of the frame potential.

For unit-norm tight frames, Benedetto and Fickus discovered the
following:

Theorem 4.2 ([13]). Given Φ = {ϕi}m
i=1, with ϕi ∈ H

n, consider the
frame potential given in (4.6). Then:

(1) Every local minimizer of the frame potential is also a global
minimizer.

(2) If m ≤ n, the minimum value of the frame potential is

FP = n,
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and the minimizers are precisely the orthonormal sequences
in R

n.
(3) If m ≥ n, the minimum value of the frame potential is

FP =
m2

n
,

and the minimizers are precisely the unit-norm tight frames
for R

n.

The above result tells us a few things:

(1) Minimizing the frame potential amounts to finding sequences
whose elements are “as orthogonal” to each other as possible.

(2) Unit-norm tight frames are a natural extension of orthonor-
mal bases, that is, the theorem formalizes the intuitive notion
that unit-norm tight frames are a generalization of orthonor-
mal bases.

(3) Both orthonormal bases and unit-norm tight frames are
results of the minimization of the frame potential, with dif-
ferent parameters (number of elements equal/larger than the
dimension of the space).

What happens if points live on different spheres, ϕi = ai (vectors are
not of equal norm)? Again, we can try to minimize the frame potential.
Since now points live on spheres of different radii, it is intuitive that
stronger points (with a larger norm) will be able to be “more orthogo-
nal” than the weaker ones. If the strongest point is strong enough,
it grabs a dimension to itself and leaves the others to squabble over
what is left. We start all over with the second one and continue until
those points left have to share. This is governed by the fundamental
inequality:

max
i∈I

a2
i ≤ 1

n

∑
i∈I

a2
i , (4.7)

where ai = |ϕi|, which says that if no point is stronger than the rest
they immediately have to share, leading to tight frames. In other words,
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when m points in an n-dimensional space are in equilibrium, we can
divide those points into two sets. (a) Those “stronger” than the rest.
These (i0 − 1) points get a dimension each and are thus orthogonal to
each other. (b) Those “weaker” than the rest. These points get the rest
of the (n − i0 + 1) dimensions and form a tight frame for their span.
If no point is the “strongest,” they all have to share the space leading
to a tight frame, as per the fundamental inequality. This discussion is
summarized in the theorem below:

Theorem 4.3 ([40]). Given a sequence {ai = ‖ϕi‖}m
i=1 in R, such

that a1 ≥ ·· · ≥ am ≥ 0, and any n ≤ m, let i0 denote the smallest index
i for which

(n − i)a2
i ≤

m∑
j=i+1

a2
j , (4.8)

holds. Then, any local minimizer of the frame potential is of the form:

Φ = {ϕi}m
i=1 = {ϕi}i0−1

i=1 ∪ {ϕi}m
i=i0 ,

where Φo = {ϕi}i0−1
i=1 is an orthogonal set and Φf = {ϕi}m

i=i0
forms a

tight frame for the orthogonal complement of the span of Φo.

The immediate corollary is the fundamental inequality (4.7).
The frame potential defined in (4.6) proved immediately useful. For

example, it was used in [41] to show how to packetize coefficients in
transmission with erasures to minimize the error of reconstruction.
Recently, Benedetto and Kebo [14] used the frame force to solve a
quantum detection problem, where the goal is to construct a tight frame
that minimizes an error term, interpreted in quantum mechanics as the
probability of a detection error. A decade before [13], Massey and Mit-
telholzer [131] used the frame potential (albeit not calling it the frame
potential) as the total user interference in code-division multiple access
(CDMA) systems. Minimizing that interference lead to the spreading
sequences (of length n) being a tight frame (minimum of the Welch
bound). This is discussed in more detail in Section 7.6.
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4.3 Design Constraints: What Might We Ask of a Frame?

When designing a frame, particularly if we have a specific application
in mind, it is useful to list potential requirements we might impose
on our frame.

(1) Tightness: This is a very common requirement. Typically,
tightness is imposed when we do need to reconstruct. Since
tight frames do not require inversion of matrices, they seem
a natural choice.

(2) Equal norm: In the real world, the squared norm of a vector
is usually associated with power. Thus, in situations where
equal-power signals are desirable, equal norm is a must.

(3) Maximum robustness: We call a frame maximally robust to
erasures, if every n × n submatrix of Φ∗ is invertible. This
requirement arose in using frames for robust transmission [92]
and will be discussed in more detail in Section 7.4.

(4) Equiangularity : This is a geometrically intuitive requirement.
We ask for angles between any two vectors to be the same.
There are many more (tight) frames than those which are
equiangular, so this leads to a very particular class of frames.
These are discussed in more detail in Section 6.2.

(5) Symmetry : Symmetries in a frame are typically connected
to its geometric configuration. Harmonic and equiangular
frames are good examples. See the work of Vale and Wal-
dron [164] for details.

Invariance of Frame Properties: When designing frames, it is useful
to know which transformations will not destroy properties our frame
already possesses. For that reason, we list below a number of frame
invariance properties [139]. Let Φ be a frame. In all matrix products
below, we assume the sizes to be compatible.

(1) V ΦU is a frame for any invertible matrices U,V .
(2) If Φ is tight frame/unit-norm tight frame, then aV ΦU is tight

frame/unit-norm tight frame for any unitary matrices U,V
and a �= 0.
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(3) If Φ is equal-norm, then aDΦU is equal-norm for any
diagonal unitary matrix D, unitary matrix U , and a �= 0.

(4) If Φ is maximally robust, then DΦU is maximally robust
for any invertible diagonal matrix D and any invertible
matrix U .

(5) If Φ is unit-norm tight frame and maximally robust, then
DΦU is unit-norm tight frame and maximally robust for any
unitary diagonal matrix D and any unitary matrix U .



5
Infinite-Dimensional Frames via Filter Banks

We now consider the only infinite-dimensional class of frames discussed
in this survey, those implemented by filter banks, the reason being that
these are frames used in applications and our only link to the real world.

The vectors (signals) live in the infinite-dimensional Hilbert space
H = �2(Z). An in-depth treatment of filter banks is given in [163], while
a more expansion-oriented approach is followed in [166, 167]. We first
start by looking at filter bank implementations of bases as these easily
extend to frames under certain conditions. We also study the cases that
lead to important types of transforms.

5.1 Bases via Filter Banks

As we have done earlier in the survey, we will first examine how filter
banks implement bases, and then move on to frames.

We have seen that we want to find representations or matrices Φ and
Φ̃ such that ΦΦ̃∗ = I. As of now, we have presented a generic matrix Φ,
but how do we choose it? Of course, we want it to have some structure
and lead to efficient representations of signals. Since now we are dealing
with infinite-dimensional matrices, a possibly difficult task.

36
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Example 5.1. Given are ϕ0 = (. . . ,0,1,1,0, . . .)T /
√

2, and ϕ1 =
(. . . ,0,1,−1,0, . . .)T /

√
2. These vectors form a basis for their span, that

is, they can represent any two-dimensional vector, but not any vector in
�2(Z). Now, define τ i as a shift by i, that is, if x = (. . . ,x−1,x0,x1, . . .)T

∈ �2(Z), then τ ix = (. . . ,x−i−1,x−i,x−i+1, . . .)T is its shifted version
by i. Let us form the following matrix1:

Φ∗ =




...
(τ−2ϕ0)∗

(τ−2ϕ1)∗

(ϕ0)∗

(ϕ1)∗

(τ2ϕ0)∗

(τ2ϕ1)∗

...




,

that is, the columns of Φ are the two vectors ϕ0,ϕ1 and all their even
shifts, leading to a block-diagonal Φ∗:

Φ∗ =
1√
2




. . .
...

...
...

...
...

...
· · · 1 1 0 0 0 0 · · ·
· · · 1 −1 0 0 0 0 · · ·
· · · 0 0 1 1 0 0 · · ·
· · · 0 0 1 −1 0 0 · · ·
· · · 0 0 0 0 1 1 · · ·
· · · 0 0 0 0 1 −1 · · ·

...
...

...
...

...
...

. . .



.

If we denote by

Φ∗
0 =

1√
2

(
1 1
1 −1

)
, (5.1)

1 The “boxing” of the origin serves as a reference point when dealing with infinite vec-
tors/matrices.
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then, Φ can be written as:

Φ∗ =




. . .
Φ∗

0

Φ∗
0

Φ∗
0

. . .



.

This is known as the Haar transform and is an example of a block
transform. The matrix Φ above is unitary and corresponds to an
orthonormal basis expansion, Φ = {ϕ2i,ϕ2i+1}i∈Z = {τ2iϕ0, τ

2iϕ1}i∈Z.
Therefore, any x ∈ �2(Z) can be represented using the Haar orthonor-
mal basis as:

x = ΦΦ∗x =
∑
i∈Z

〈x,ϕi〉ϕi,

and can be implemented using the two-channel filter bank shown in
Figure 5.1. The decomposition is implemented using the analysis filter
bank, while the reconstruction is implemented using the synthesis filter
bank (we will make this more precise shortly).

In general, in such a filter bank, one branch is a lowpass chan-
nel that captures the coarse representation of the input signal and
the other branch is a highpass channel that captures a complemen-
tary, detailed representation. The input into the filter bank is a square-
summable infinite sequence x ∈ �2(Z). Assuming that the filter length

Fig. 5.1 Two-channel filter bank with downsampling by 2.
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l = 2, the two analysis filters act on 2 samples at a time and then, due
to downsampling by 2, the same filters act on the following 2 samples.
In other words, there is no overlap. On the synthesis side, the reverse
is true. This is an example of a block transform. Iterating this block
(the two-channel filter bank) on either channel or both leads to various
signal transforms, each of which is adapted to a class of signals with
different energy concentrations in time and in frequency (this is usually
referred to as “tiling of the time-frequency plane”).

So how exactly is the filter bank related to the matrix Φ? In our
discussion above and the Haar example, we assumed that the filter
length is equal to the shift. This is not true in general, and now, we
lift that restriction and allow filters to be of arbitrary length l (without
loss of generality, we will assume that filters are causal, that is, they are
nonzero only for positive indices). However, we do leave the restriction
that the filters are finitely supported, that is, they are FIR filters.2

Consider an inner product between two sequences x and y (on the
left), and filtering a sequence x by a filter f and having the output at
time k (on the right):

〈y,x〉 =
∑
i∈Z

yix
∗
i , (f ∗ x)k =

∑
i∈Z

fk−ix
∗
i .

By comparing the above two expressions, we see that we could express
filtering a sequence x by a filter f and having the output at time k as:∑

i∈Z

fk−ix
∗
i = 〈fk−i,xi〉.

To express the analysis part of the filter bank, we can do the following:

X =




...
X0

X1

X2

X3
...




=




...
〈x,ϕ̃0〉
〈x,ϕ̃1〉
〈x,ϕ̃2〉
〈x,ϕ̃3〉

...




=




...
〈g̃−i,xi〉
〈h̃−i,xi〉
〈g̃2−i,xi〉
〈h̃2−i,xi〉

...




2 IIR filters also fit in this framework, we concentrate on FIR only for simplicity. Moreover,
this restriction makes all the operators bounded and all the series converge.
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=




. . .
...

...
...

...
. . .

· · · g̃3 g̃2 g̃1 g̃0 · · ·
· · · h̃3 h̃2 h̃1 h̃0 · · ·
· · · g̃5 g̃4 g̃3 g̃2 · · ·
· · · h̃5 h̃4 h̃3 h̃2 · · ·
. . .

...
...

...
...

. . .




︸ ︷︷ ︸
Φ̃∗




...
x0

x1

x2

x3
...




︸ ︷︷ ︸
x

= Φ̃∗x.

Similarly, the reconstruction part can be expressed as

x =




. . .
...

...
...

...
...

...
. . .

· · · g2 h2 g0 h0 0 0 · · ·
· · · g3 h3 g1 h1 0 0 · · ·
· · · g4 h4 g2 h2 g0 h0 · · ·
· · · g5 h5 g3 h3 g1 h1 · · ·
. . .

...
...

...
...

...
...

. . .




︸ ︷︷ ︸
Φ




...
X0

X1

X2

X3
...




︸ ︷︷ ︸
X

=
(
· · · τ−2g τ−2h g h τ2g τ2h · · ·

)
X

=




. . .
...

...
...

. . .
· · · Φ1 Φ0 0 · · ·
· · · Φ2 Φ1 Φ0 · · ·
. . .

...
...

...
. . .


X = ΦX, (5.2)

where Φi are m × m matrices, with m denoting both the shift and the
number of channels/filters in the filter bank. The matrices are formed
by taking the ith block of m coefficients from each of the m filters. Here
m = 2. From above, we can conclude the following:

(1) The basis is Φ = {τ2iϕ0, τ
2iϕ1}i∈Z = {τ2ig,τ2ih}i∈Z. In other

words, the impulse responses of the template filters g and h

and their even shifts form the basis Φ (they are the columns
of Φ).

(2) The dual basis is Φ̃ = {τ2iϕ̃0, τ
2iϕ̃1}i∈Z = {τ2ig̃∗, τ2ih̃∗}i∈Z.

In other words, the impulse responses of the template filters
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g̃∗ and h̃∗ and their even shifts form the basis Φ̃ (they are
the columns of Φ̃).

(3) When Φ̃ = Φ, the basis is orthonormal. In that case, g̃i = g−i,
that is, the impulse responses of the analysis filters are time-
reversed impulse responses of synthesis filters.

(4) The even shifts appear because of down/upsampling by 2.
(5) When the filters are of length l = 2 (l = m in general), Φ∗

or Φ̃∗ contain only one block, Φ∗
0 or Φ̃∗

0, along the diagonal,
making it a block-diagonal matrix (as in the Haar transform).
The effect of this is that the input is processed in nonover-
lapping pieces of length 2. Effectively, this is equivalent to
dealing with bases in the two-dimensional space.

(6) We discussed here a specific case with 2 template filters and
shifts by 2. In filter bank parlance, we discussed two-channel
filter banks with sampling3 by 2. Of course, more general
options are possible and one can have m-channel filter banks
with sampling by m. We then have m template filters (basis
vectors) from which all the basis vectors are obtained by
shifts by multiples of m. The blocks Φ∗

i then become of size
m × m. Again, if filters are of length l = m, this leads to the
block-diagonal Φ∗, and effectively, finite-dimensional bases.

5.1.1 z-Domain View of Signal Processing

Historically, the above, basis-centric view of filter banks came very
recently. Initially, when the filter banks were developed to deal with
speech coding [57, 83], the analysis was done in z-domain (for easier
algebraic manipulation).

The mapping that takes us from the original domain to the z-domain
is the z-transform, defined for a sequence x ∈ �2(Z) as

X(z) =
∑
i∈Z

xiz
−i. (5.3)

You can think of the z-transform as a generalized discrete-time Fourier
transform (DTFT), where ejω has been replaced by the complex

3 By sampling, we mean the two sampling operations, downsampling and upsampling.
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number z = rejω. Just like the DTFT, the z-transform possesses nice
properties (such as the convolution property) making it a useful analysis
tool. More precisely, the z-transform allows us to deal with polynomial-
like objects instead of convolutions.

In particular, z-transform comes in handy when we have to deal
with shift-varying systems such as filter banks. Shift variance is intro-
duced into the system due to downsamplers (or shifts). A tool used to
transform a filter bank from a single-input single-output linear period-
ically shift-variant system into a multiple-input multiple-output linear
shift-invariant systems is called the polyphase transform.

For i = 0, . . . ,m − 1, the ith synthesis filter (template basis vector),
(ϕi0(z), . . . ,ϕi,m−1(z))T is called the polyphase representation of the ith
synthesis filter where

ϕik(z) =
∑
p∈Z

ϕi,mp+kz
−p, (5.4)

are the polyphase components for i,k = 0, . . . ,m − 1. To relate ϕik(z) to
a time-domain object, note that it is the discrete-time Fourier trans-
form of the template basis vector ϕi obtained by retaining only the
indices congruent to k modulo m. Then Φp(z) is the corresponding
m × m synthesis polyphase matrix with elements ϕik(z). In other words,
a polyphase decomposition is a decomposition into m subsequences
modulo m. We can do the same on the analysis side, leading to the
polyphase matrix Φ̃∗

p(z). Then, the input/output relationship is given
by

x(z) = (1 z−1 . . .z−(m−1))Φp(zm)Φ̃∗
p(z

m)xp(z), (5.5)

where xp(z) is the vector of polyphase components of the signal (there
are m of them) and ∗ denotes conjugation of coefficients but not of z.
Note that the polyphase components of the analysis bank are defined in
reverse order from those of the synthesis bank. When the filter length
is l = m, then, each polyphase sequence is of length 1. Each polyphase
matrix then reduces to Φp(z) = Φ0, Φ̃∗

p(z) = Φ̃∗
0, that is, both Φp(z)

and Φ̃∗
p(z) become independent of z. It is clear from the above, that

to obtain perfect reconstruction, that is, to have a basis expansion, the
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polyphase matrices must satisfy:

Φp(z)Φ̃∗
p(z) = I. (5.6)

If the filter length is l = m, the above implements a finite-dimensional
expansion (block transform). For example, if we want to implement the
DFTm using a filter bank, we would use an m-channel filter bank with
sampling by m, and prototype synthesis filters ϕi given in (2.9). Since
each prototype filter is of length m, each of its polyphase components
will be of length 1 and a constant, leading to a constant polyphase
matrix.

If a filter bank implements an orthonormal basis, then Φ̃p(z) =
Φp(z−1), and (5.6) reduces to

Φp(z)Φ∗
p(z

−1) = I. (5.7)

A matrix satisfying the above is called a paraunitary matrix, that is, it
is unitary on the unit circle.

Note that the polyphase transform is a discrete version of the well-
known Zak transform. Given that the Zak transform is unitary, it fol-
lows that the polyphase matrices are a matrix representation of the
analysis/synthesis, providing yet another way to nicely transfer results
between filter bank theory and frame theory.

Example 5.2. As a first example, go back to the Haar expan-
sion discussed earlier. Since m = 2, ϕ0(z) = (1 + z−1)/

√
2, ϕ1(z) =

(1 − z−1)/
√

2, and the polyphase matrix is Φ∗
p(z) = Φ∗

0 from (5.1).
As a more involved example, suppose m = 2 again and we are given

the following set of template filters:

G(z) = z−2 + 4z−1 + 6 + 4z + z2,

H(z) =
1
4
z

(
1
4
z−1 + 1 +

1
4
z

)
,

G̃(z) =
1
4

(
−1

4
z−1 + 1 − 1

4
z

)
,

H̃(z) = z−1(z−2 − 4z−1 + 6 − 4z + z2).

Having the polyphase decomposition for each filter being
written as: G(z) = G0(z2) + z−1G1(z2), H(z) = H0(z2) + z−1H1(z2),
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G̃(z) = G̃0(z2) + zG̃1(z2), H̃(z) = H̃0(z2) + zH̃1(z2), the polyphase
matrices are then:

Φp(z) =
(
G0(z) H0(z)
G1(z) H1(z)

)
=

(
z−1 + 6 + z 1

16(1 + z)
4(1 + z) 1

4z

)
,

Φ̃p(z) =
(
G̃0(z) H̃0(z)
G̃1(z) H̃1(z)

)
=

( 1
4 −4(1 + z−1)

− 1
16(1 + z−1) 1 + 6z−1 + z−2

)
.

Thus, the filter bank with filters as defined above implements a
biorthogonal expansion. The dual bases are:

Φ = {ϕ2i,ϕ2i+1}i∈Z = {τ2ig,τ2ih}i∈Z,

Φ̃ = {ϕ̃2i, ϕ̃2i+1}i∈Z = {τ2ig̃, τ2ih̃}i∈Z,

and they are interchangeable.

5.1.2 Filter Bank Trees

Many of the bases in �2(Z) (and frames later on), are built by using
two- and m-channel filter banks as building blocks. For example, the
dyadic (with scale factor 2) discrete wavelet transform (DWT) is built
by iterating the two-channel filter bank on the lowpass channel (Fig-
ure 5.2 depicts the synthesis part). The DWT is a basis expansion
and as such nonredundant (critically sampled). To describe the redun-
dancy of various frame families later on, we introduce sampling grids
in Figure 6.2, each depicting time positions of basis vectors at each

Fig. 5.2 The synthesis part of the filter bank implementing the DWT with j levels. The
analysis part is analogous.
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level. Thus, for example, the top plot in Figure 6.2 depicts the grid
for the DWT. At level 1, we have half as many points as at level 0, at
level 2, half as many as at level 1, and so on. Because of appropriate
sampling, the grid has exactly as many points as needed to represent
any x ∈ �2(Z) and is thus nonredundant.

We can also build arbitrary trees by, at each level, iterating on any
subset of the branches (typically known as wavelet packets [54]). In
order to analyze these tree-structured filter banks, we typically collect
all the filters and samplers along a path into a branch with a single
filter and single sampler. This is possible using the so-called Noble
identities [163] which allow us to exchange the order of filtering and
sampling.

Example 5.3. Assume we have a DWT with 2 levels, that is, the
lowpass branch is iterated only once as in Figure 5.2. Then, the equiv-
alent filter bank has 3 channels as in Figure 5.3 with sampling by 2,
4, and 4, respectively. The equivalent filters are then (call (↑ m) the
operator upsampling a filter by m):

ϕ2 = h, ϕ1 = g ∗ (↑ 2)h, ϕ0 = g ∗ (↑ 2)g.

Assuming for simplicity that the filters have only two taps, the matrix
Φ in (5.2) is block diagonal with:

Φ∗
0 =




h0 h1 0 0
0 0 h0 h1

g0h0 g1h0 g0h1 g1h1

g2
0 g0g1 g0g1 g2

1


 .

Fig. 5.3 The synthesis part of the equivalent three-channel filter bank implementing the
DWT with 2 levels. The analysis part is analogous.
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We see here that even though we have only three branches, the filter
bank behaves as a critically sampled four-channel filter bank with
sampling by 4.

5.1.3 Summary: Bases m = n

To summarize, the class of multiresolution transforms obtained using
a filter bank depends on three parameters: the number of vectors m,
the shift or sampling factor n and the length l of the nonzero support
of the vectors:

When m = n, the filter bank is called critically sampled and imple-
ments a nonredundant expansion — basis. The basis Φ has a dual basis
associated with it, Φ̃, leading to biorthogonal filter banks. The associ-
ated matrices Φ, Φ̃ are invertible. In the z-domain, this is expressed as
follows: A filter bank implements a basis expansion if and only if (5.6)
evaluated on the unit circle is satisfied [166].

An important subcase is when the basis Φ is orthonormal, in which
case it is self-dual, that is, Φ̃ = Φ. The filter bank is called orthogonal
and the associated matrix Φ is unitary, ΦΦ∗ = I. In the z-domain, this
is expressed as follows: A filter bank implements an orthonormal basis
expansion if and only if its polyphase matrix is paraunitary, that is, if
and only if (5.7) holds [166]. Well-known subcases are the following:

(1) When l = m, we have a block transform. In this case, in (5.2),
only Φ0 exists, making Φ block-diagonal. In effect, since there
is no overlap between processed signal blocks, this can be
analyzed as a finite-dimensional case, where both the input
and the output arem-dimensional vectors. A famous example
is the DFT we discussed earlier.

(2) When m = 2, we get two-channel filter banks. In (5.2), Φi is
of size 2 × 2 and by iterating on the lowpass channel, we get
the DWT [166] (see Figure 5.2).

(3) When l = 2m, we get lapped orthogonal transforms (LOT),
efficient transforms developed to deal with the blocking
artifacts introduced by block transforms, while keeping the
efficient computational algorithm of the DFT [166]. In this
case, in (5.2), only Φ0 and Φ1 are nonzero.
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5.2 Frames via Filter Banks

The filter bank expansions we just discussed were bases and thus nonre-
dundant. Now, nothing stops us from being redundant (for reasons
stated earlier) by simply adding more vectors.

Example 5.4 (Mercedes-Benz frame cont’d). Let us look at the
simplest case using our favorite example: the Mercedes-Benz frame. Our
Φ∗ is now block-diagonal, with Φ∗

0 = Φ∗
UNTF from (3.2) on the diagonal.

In contrast to finite-dimensional bases implemented by filter banks as
in (5.1), the block Φ∗

0 is now rectangular of size 3 × 2. This finite-
dimensional frame is equivalent to the filter bank shown in Figure 5.4,
with {ϕ̃i} = {ϕi}, given in (3.2).

As we could for finite-dimensional bases, we can investigate finite-
dimensional frames within the filter bank framework (see Figure 5.5). In
other words, all cases we consider in this survey, both finite dimensional
and infinite dimensional, we can look at as filter banks.

Fig. 5.4 Three-channel filter bank with downsampling by 2.

Fig. 5.5 A filter bank implementation of a frame expansion: It is an m-channel filter bank
with sampling by n.
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Similarly to bases, if in (5.2) Φ is not block diagonal, we resort
to the polyphase-domain analysis. Assume that the filter length is
l = kn (if not, we can always pad with zeros), and write the frame
as (causal filters)

Φ∗ =




. . .
...

...
...

...
...

. . .
· · · Φ∗

0 Φ∗
1 · · · Φ∗

k−1 0 · · ·
· · · 0 Φ∗

0 · · · Φ∗
k−2 Φ∗

k−1 · · ·
· · · ...

...
...

...
... · · ·

· · · 0 0 · · · Φ∗
0 Φ∗

1 · · ·
· · · 0 0 · · · 0 Φ∗

0 · · ·
. . .

...
...

...
...

...
. . .



, (5.8)

where each block Φi is of size n × m. Φ0, for example, is

Φ0 =


 ϕ00 . . . ϕ0,m−1

...
. . .

...
ϕn−1,0 . . . ϕn−1,m−1


 .

In the above, we enumerate template frame vectors from 0, . . . ,m − 1.
A thorough analysis of oversampled filter banks seen as frames is given
in [29, 61, 62].

An interesting twist is to consider transmultiplexers [11], obtained
by starting by a synthesis filter bank and following it with an analysis
one [166]. This scheme is of great importance in practice as it is a
basis for frequency-division multiplexing, OFDM, for example. While
transmultiplexers are almost exclusively studied for filter-bank bases,
nothing prevents us from doing the same with frames. Similar ideas can
be found in the continuous-time setting in [68, 111].4

5.2.1 Summary: Frames m > n

When m > n, the filter bank implements a redundant expansion —
frame. The frame Φ has a dual frame associated with it, Φ̃. The asso-
ciated matrices Φ, Φ̃ are rectangular and left/right invertible. This has

4 This connection and suggestion for addition to the text was pointed out by one of the
reviewers of this survey.
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been formalized in z-domain in [61], as the following result: A filter bank
implements a frame decomposition in �2(Z) if and only if its polyphase
matrix is of full rank on the unit circle.

An important subcase is when Φ is tight, in which case it can be
self-dual, and thus, Φ̃ = Φ, and ΦΦ∗ = I. This has been formalized in
z-domain in [61], as the following result: A filter bank implements a
tight frame expansion in �2(Z) if and only if its polyphase matrix is
paraunitary. A well-known subcase of tight frames is the following:
When l = n, we have a block transform. Then, in (5.8), only Φ0 is
nonzero, making Φ block-diagonal. In effect, since there is no overlap
between processed blocks, this can be analyzed as a finite-dimensional
case, where both the input and the output are n-dimensional vectors.



6
All in the Family

We now consider particular frame families. The first two, harmonic
tight frames and equiangular frames are purely finite dimensional, while
the rest are, in general, infinite dimensional. For some of the families,
we will consider the unit-norm tight frame version and give the frame
bound A yielding the redundancy of the frame family.1

6.1 Harmonic Tight Frames and Variations

Harmonic tight frames are obtained by seeding from Ψ = DFT∗
m given

in (2.8)–(2.10), by deleting the last (m − n) columns:

ϕi =
√
m

n
(W 0

m,W
i
m, . . . ,W

i(n−1)
m ), (6.1)

for i = 0, . . . ,m − 1. Since obtained as an instance of the Naimark theo-
rem, this is thus a Parseval tight frame, that is, ΦΦ∗ = I. The simplest

1 We will denote by Aj the redundancy/frame bound at level j when iterated filter banks
are used.
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example of a harmonic tight frame is the Mercedes-Benz frame we
introduced in Section 3.

In [41], the authors define a more general version of the harmonic
tight frame, called general harmonic frames as follows:

ϕk =
(
ck1b1, c

k
2b2, . . . , c

k
nbn

)
,

for k = 0, . . . ,m − 1, with |c| = 1, |bi| = 1√
m

(1 ≤ i ≤ n), and {ci}n
i=1

being distinct mth roots of c. They also show that the harmonic tight
frames are unique up to a permutation of the orthonormal basis and
that every general harmonic frame is unitarily equivalent to a simple
variation of a harmonic tight frame.

Harmonic tight frames have a number of interesting properties: (a)
For m = n + 1, all equal-norm tight frames are unitarily equivalent to
it; in other words, since we have harmonic tight frames for all n,m,
we have all equal-norm tight frames for m = n + 1. (b) It is the only
equal-norm Parseval tight frame such that its elements are generated
by a group of unitary operators with one generator. (c) Harmonic tight
frames are maximally robust to erasures [92].

These frames have been generalized in an exhaustive work by Vale
and Waldron [164], where the authors look at frames with symme-
tries. Some of these they term harmonic tight frames (their definition
is more general than what is given in (6.1)), and are the result of
the operation of a unitary U on a finite Abelian group G. When G

is cyclic, the resulting frames are cyclic. In [41], the harmonic tight
frames we showed above are with U = I and generalized harmonic
tight frames are with U = D diagonal. These are cyclic in the par-
lance of [164]. An example of a cyclic frame are (n + 1) vertices of a
regular simplex in R

n. There exist harmonic tight frames which are not
cyclic.

Similar ideas have appeared in the work by Eldar and Bölcskei [79]
under the name geometrically uniform frames, frames defined over a
finite Abelian group of unitary matrices both with a single genera-
tor as well as multiple generators. The authors also consider construc-
tions of such frames from given frames, closest in the least-squares
sense, a sort of a “Gram-Schmidt” procedure for geometrically uniform
frames.
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6.2 Grassmanian Packings and Equiangular Frames

6.2.1 Equiangular Frames

Equiangular frames are those frames with |〈ϕi,ϕj〉| is a constant. They
have become popular recently due to their use in quantum comput-
ing.2 In that terminology, a rank-1 measurement is represented by a
positive operator valued measure (POVM). Each rank-1 POVM is a
tight frame.3

The first family is symmetric informationally complete POVMs
(SIC-POVMs) [141]. An SIC-POVM is a family Φ of m = n2 vectors in
C

n such that

|〈ϕi,ϕj〉|2 =
1

n + 1
(6.2)

holds for all i, j, i �= j. At this point, it is not known whether SIC-
POVMs exist for all finite dimensions.

The second family are mutually unbiased bases, with applications in
various problems, cryptography among them [82]. Mutually unbiased
bases form a family Φ of (n + 1) orthonormal bases in a Hilbert space
of dimension n (for instance, C

n) such that for any two different bases
BI , BJ and any vectors ϕi ∈ BI and ϕj ∈ BJ , we have

|〈ϕi,ϕj〉|2 =
1
n
. (6.3)

Equiangular tight frames have proven very useful in communi-
cations, coding theory, and sparse approximation [157, 160]. In [105],
Holmes and Paulsen show that these frames give error correction codes
that are maximally robust against two erasures, whereas Bodmann and
Paulsen [25] examine the general case of an arbitrary number of era-
sures (see also Section 7.4 for a brief overview of robust transmission).

2 “A single qubit measurement corresponds to a tight frame in the two-dimensional Hilbert
space H, while an n-qubit measurement corresponds to a tight frame in the 2n dimensional
n-fold Kronecker product of H. An n-qubit measurement itself does not have to be an n-
fold Kronecker product of n single qubit measurements; however when that is the case, the
n-qubit measurement is obtained by n independent measurements on single qubits. This
would have to be done when dealing with physically separated (even possibly entangled)
qubits. Therefore, Kronecker tight frames describe independent single qubit measurements
in multiple qubit systems” [154, 153].

3 Note that POVMs do not have to be equiangular.
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In [158], the authors provide theoretical results that show for which
pairs (m,n) do equiangular real tight unit-norm frames exist. They
also study the complex case. Recently, Bodmann et al. [24] have used
mutually unbiased bases for linear reconstruction of signals when all
phase information is lost and only the magnitudes of the frame coeffi-
cients remain.

6.2.2 Grassmanian Packings

Both harmonic tight frames and equiangular frames have strong con-
nections to Grassmanian frames. In a comprehensive paper [157],
Strohmer and Heath discuss those frames and their connection to
Grassmanian packings, spherical codes, graph theory, and Welch bound
sequences (see also [105]). These frames are of unit norm (not a nec-
essary restriction) and minimize the maximum correlation |〈ϕi,ϕj〉|
among all frames. The problem arises from looking at overcomplete
systems closest to orthonormal bases (which have minimum correla-
tion). A simple example is a harmonic tight frame in H

n. Theorem 2.3
in [157] states that, given a frame Φ:

min
Φ

( max
(ϕi,ϕj)

|〈ϕi,ϕj〉|) ≥
√

m − n

n(m − 1)
. (6.4)

The equality in (6.4) is achieved if and only if Φ is equiangular and tight.
In particular, for H = R, equality is possible only for m ≤ n(n + 1)/2,
while for H = C, equality is possible only for m ≤ n2. Note that the
above inequality is exactly the one Welch proved in [171] and which
later lead to what is today commonly referred to as the Welch bound
given in (7.4) by minimizing interuser interference in a CDMA sys-
tem [131] (see the discussion on the Welch bound in Section 7.6). In a
more recent work, Xia et al. [175] constructed some new frames meeting
the original Welch bound (7.4).

These frames coincide with some optimal packings in Grassmanian
spaces [55], spherical codes [56], equiangular lines [126], and many oth-
ers. The equiangular lines are equivalent to the SIC-POVMs we dis-
cussed above.
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6.3 The Algorithme à Trous

The algorithme à trous4 is a fast implementation of the dyadic continu-
ous wavelet transform. It was first introduced by Holschneider et al. in
1989 [106]. The transform is implemented via a biorthogonal, nondown-
sampled filter bank. An example for j = 2 levels is given in Figure 6.1
(this is essentially the same as the 2-level DWT from Figure 5.3 with
samplers removed).

Let g and h be the filters used in this filter bank. At level i we will
have equivalent upsampling by 2i which means that the filter moved
across the upsampler will be upsampled by 2i, inserting (2i − 1) zeros
between every two samples and thus creating holes.

The bottom plot in Figure 6.2 shows the sampling grid for the
à trous algorithm. It is clear from the figure, that this scheme
is completely redundant, as all the points exist. This is in con-
trast to a completely nonredundant scheme such as the DWT,
given in the top plot of the same figure. In fact, while the redun-
dancy per level of this algorithm grows exponentially since A1 =
2,A2 = 4, . . . ,Aj = 2j , . . . , the total redundancy for j levels is lin-
ear, as A = Aj2−j +

∑j
i=1Ai2−i = (j + 1). This growing redun-

dancy is the price we pay for shift invariance as well as the
simplicity of the algorithm. The 2D version of the algorithm is
obtained by extending the 1D version in a separable manner, lead-
ing to the total redundancy of A = Aj2−j + 3

∑j
i=1Ai2−i = (3j + 1).

Fig. 6.1 The synthesis part of the filter bank implementing the à trous algorithm. The
analysis part is analogous. This is equivalent to Figure 5.3 with sampling removed.

4 “Trou” means “hole” in French.
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Fig. 6.2 Sampling grids corresponding to time-frequency tilings of (top to bottom):
DWT (nonredundant), double-density DWT/Laplacian pyramid, double-tree CWT/power-
shiftable DWT/partial DWT, à trous family (completely redundant). Black dots correspond
to the nonredundant, DWT-like sampling grid. Crosses denote redundant points. The last
two ticks on the y-axis are both for level 4, one for the highpass and the other for the
lowpass channel, respectively.

6.4 Gabor and Cosine-Modulated Frames

The idea behind this class of frames, consisting of many families, dates
back to Gabor [90] and the insight of constructing bases by modu-
lation of a single prototype function. Gabor originally used complex
modulation, and thus, all those families with complex modulation are
termed Gabor frames. Other types of modulation are possible, such as
cosine modulation, and again, all those families with cosine modulation
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are termed cosine-modulated frames.5 The connection between these
two classes is deep as there exists a general decomposition of the
frame operator corresponding to a cosine-modulated filter bank as the
sum of the frame operator of the underlying Gabor frame (with the
same prototype function and twice the redundancy) and an additional
operator, which vanishes if the generator satisfies certain symmetry
properties. While this decomposition has first been used by Auscher in
the context of Wilson bases [5], it is valid more generally. Both of these
classes can be seen as general oversampled filter banks with m channels
and sampling by n (see Figure 5.5).

6.4.1 Gabor Frames

A Gabor frame is Φ = {ϕi}m−1
i=0 , with

ϕi,k = W−ik
m ϕ0,k, (6.5)

where index i = 0, . . . ,m − 1 refers to the number of frame elements,
k ∈ Z is the discrete-time index, Wm is the mth root of unity and ϕ0 is
the prototype frame function. Comparing (6.5) with (6.1), we see that
for filter length l = n and ϕ0,k = 1,k = 0 and 0 otherwise, the Gabor
system is equivalent to a harmonic tight frame. Thus, it is sometimes
called the oversampled DFT frame.

For the critically sampled case it is known that one cannot have
Gabor bases with good time and frequency localization at the same
time (this is similar in spirit to the Balian-Low theorem which holds
for L2(R) [64]); this prompted the development of oversampled (redun-
dant) Gabor systems (frames). They are known under various names:
oversampled DFT filter banks, complex-modulated filter banks, short-
time Fourier filter banks and Gabor filter banks, and have been studied
in [26, 27, 29, 59, 86] (see also [156] and references within). More recent
work includes [125], where the authors study finite-dimensional Gabor
systems and show a family in C

n, with m = n2 vectors, which allows
for n2 − n erasures, where n is prime (see Section 7.4 for discussion of
erasures). In [120], new classes of Gabor equal-norm tight frames are
shown, which are also maximally robust.

5 Cosine-modulated bases are also often called Wilson bases.
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6.4.2 Cosine-Modulated Frames

The other kind of modulation, cosine, was used with great success
within critically sampled filter banks due to efficient implementation
algorithms. Its oversampled version was introduced in [27], where the
authors define the frame elements as:

ϕi,k =
√

2cos
(

(i + 1/2)π
m

+ αi

)
ϕ0,k, (6.6)

where index i = 0, . . . ,m − 1 refers to the number of frame elements,
k ∈ Z is the discrete-time index and ϕ0 is the template frame function.
Equation (6.6) defines the so-called odd-stacked cosine modulated filter
banks; even-stacked ones exist as well.

Cosine-modulated filter banks do not suffer from time-frequency
localization problems, given by a general result stating that the gen-
erating window of an orthogonal cosine modulated filter bank can be
obtained by constructing a tight complex filter bank with oversam-
pling factor 2 while making sure the window function satisfies a cer-
tain symmetry property (for more details, see [27]). Since we can get
well-localized Gabor frames for redundancy 2, this also shows that
we can get well-localized cosine-modulated filter banks. Malvar [130]
constructed the modulated complex lapped transform of redundancy 2
based on the lapped orthogonal transform with basis functions similar
to Princen–Johnson–Bradley filters [138].

6.5 The Dual-Tree CWT and the Dual-Density DWT

6.5.1 The Dual-Tree CWT

The dual-tree complex wavelet transform (dual-tree CWT) was first
introduced by Kingsbury in 1998 [113, 114, 115]. The basic idea is
to have two DWT trees working in parallel. One tree represents the
real part of the complex transform while the second tree represents
the imaginary part. That is, when the dual-tree CWT is applied to a
real signal, the output of the first tree is the real part of the complex
transform whereas the output of the second tree is its imaginary part.
Shown in Figure 6.3 is the analysis and synthesis filter bank for the
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Fig. 6.3 The filter bank implementing the CWT. The two branches have two different two-
channel filter banks as in Figure 5.1. The analysis part is analogous.

dual-tree CWT. Each tree uses a different pair of lowpass and high-
pass filters. These filters are designed so that they satisfy the perfect
reconstruction condition (5.6).

Let Φr and Φi be the square matrices representing each of the DWTs
in the dual-tree CWT. Then,

Φ =
1√
2
(Φr Φi),

is a rectangular matrix, and thus a frame, representing the dual-tree
CWT.6 The right inverse of Φ is the analysis filter bank (analysis oper-
ator) and is given by Φ̃∗ = 1/

√
2[(Φr)−1(Φi)−1]T . If Φr and Φi are uni-

tary matrices, then Φ̃ = Φ, ΦΦ∗ = I, and Φ is a Parseval tight frame.
Because the two DWT trees used in the dual-tree CWT are fully

downsampled, the redundancy is only 2 for the 1D case (it is 2d for the
d-dimensional case). We can see that in the third plot in Figure 6.2,
where the redundancy at each level is twice that of the DWT, that
is A1 = A2 = · · · = Aj = 2. Unlike the à trous algorithm, however, here
the redundancy is independent of the number of levels used in the
transform.

When the two DWTs used are orthonormal, the dual-tree CWT is a
tight frame. The dual-tree CWT overcomes one of the main drawbacks
of the DWT: shift variance. Since the dual-tree CWT contains two fully
downsampled DWTs which satisfy the half-sample delay condition (see
below), aliasing due to downsampling can be largely eliminated and
the transform becomes nearly shift invariant. An advantage that the

6 The indices r and i stem from real and imaginary.
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dual-tree CWT has over other complex transforms is that it has a
fast invertible implementation and moreover, when the signal is real
valued, the real and imaginary parts of its transform coefficients can
be computed and stored separately.

As mentioned previously, the pairs of filters (hr,gr) and (hi,gi) of
each DWT have to satisfy the perfect reconstruction condition. In addi-
tion, the filters have to be FIR and satisfy the so-called half sample
delay condition, which implies that all of the filters have to be designed
simultaneously. From this condition it also follows that the two highpass
filters form an approximate Hilbert transform pair, and it thus makes
sense to regard the outputs of the two trees as the real and imagi-
nary parts of complex functions [145]. Different design solutions exist,
amongst them the linear phase biorthogonal one and the quarter-shift
one [115, 147]. Moreover, we can use different-flavor trees to implement
the dual-tree CWT. For example, it is possible to use a different pair of
filters at each level, or alternate filters between the trees at each stage
except for the first one.

In two or more dimensions, the dual-tree CWT possesses directional
selectivity allowing us to capture edge or curve information, a property
clearly absent from the usual separable DWT. In the real case, orienta-
tion selectivity is simply achieved by using two real separable 2D DWTs
in parallel. Two pairs of filters are used to implement each DWT. These
two transforms produce six subbands, three pairs of subbands from the
same space-frequency region. By taking the sums and differences of
each pair, one obtains the oriented wavelet transform.

The near shift invariance and orientation selectivity properties of
the dual-tree CWT open up a window into a wide range of applica-
tions, among them denoising, motion estimation, image segmentation
as well as building feature, texture and object detectors for images (see
Section 7.8 and references therein).

6.5.2 The Double-Density DWT and Variations

The dual-tree CWT appears to be the most popular among the over-
sampled filter bank transforms. It is joined by a host of others: In par-
ticular, Selesnick in [144] introduces the double-density DWT, which
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can approximately be implemented using a three-channel filter bank
with sampling by 2 as in Figure 5.4. The filters in the analysis bank
are time-reversed versions of those in the synthesis bank. The redun-
dancy of this filter bank tends toward 2 when iterated on the channel
with ϕ1. Actually, we have that A1 = 3

2 ,A2 = 7
4 , . . . ,A∞ = 2 (see second

plot in Figure 6.2). Like the dual-tree CWT, the double-density DWT
is nearly shift invariant when compared to the à trous construction.
In [146], Selesnick introduces the combination of the double-density
DWT and the dual-tree CWT which he calls double-density, dual-tree
CWT. This transform can be seen as the one in Figure 6.3 (dual-
tree CWT), with individual filter banks being overcomplete ones given
in Figure 5.4 (double-density DWT). In [1], Abdelnour and Selesnick
introduce symmetric, nearly shift-invariant filter banks implementing
tight frames. These filter banks have four filters in two couples, obtained
from each other by modulation. Sampling is by 2 and thus the total
redundancy is 2.

Another variation on a theme is the power-shiftable DWT [150]
or partial DWT [155], which removes samplers at the first level but
leaves them at all other levels (see Figure 6.4). The sampling grid
of the power-shiftable DWT/partial DWT is shown in the third
plot in Figure 6.2. We see that is has redundancy Aj = 2 at each
level, similarly to the CWT. The power-shiftable DWT/partial DWT
achieves near shift invariance.

Fig. 6.4 The synthesis part of the filter bank implementing the power-shiftable DWT. The
samplers are omitted at the first level but exist at all other levels. The analysis part is
analogous.
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Bradley in [32] introduces overcomplete DWT, the DWT with crit-
ical sampling for the first k levels followed by à trous for the last j − k

levels. The overcomplete DWT becomes the à trous algorithm when
k = 0 or the DWT when k = j. Bayram and Selesnick [10] develop
an overcomplete DWT with rational scaling factors that is a tight
frame. This construction allows for the resolution to increase more
gradually (as opposed to usual dyadic schemes where the resolution
is doubled) from each scale to the next finer scale. It also presents the
advantage of being a nearly shift-invariant transform with FIR filters
that can be easily designed to have a specified number of vanishing
moments.

6.6 Multidimensional Frames

Apart from obvious, tensor-like, constructions (separate application of
1D methods in each dimension) of multidimensional frames, we are
interested in true multidimensional solutions. The oldest multidimen-
sional frame seems to be found in pyramid coding introduced by Burt
and Adelson [33], which we discuss next.

6.6.1 Pyramid Coding

Pyramid coding was introduced in 1983 by Burt and Adelson [33].
Although redundant, the pyramid coding scheme was developed for
compression of images and was recognized in the late 1980s as one
of the precursors of wavelet octave-band decompositions. The scheme
works as follows: First, a coarse approximation is derived (an example
of how this could be done is in Figure 6.5). While in Figure 6.5 the

Fig. 6.5 The analysis part of the pyramid filter bank [33] with orthonormal filters g and h,
corresponding to a tight frame.
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intensity of the coarse approximation X0 is obtained by linear filtering
and downsampling, this need not be so; in fact, one of the power-
ful features of the original scheme is that any operator can be used,
not necessarily linear. Then, from this coarse version, the original is
predicted (in the figure, this is done by upsampling and filtering) fol-
lowed by calculating the prediction error X1. Since the prediction X1

has smaller power than x and has unit gain in the reconstruction pro-
cess, it can be compressed more easily than x. The process can be
iterated on the coarse version. In the absence of quantization of X1,
the original is obtained by simply adding back the prediction at the
synthesis side.

The pyramid coding scheme is fairly intuitive and effective, thus its
success. There are several advantages to pyramid coding: The quanti-
zation error depends only on the last quantizer in the iterated scheme.
As we mentioned above, nonlinear operators can be used, opening the
door to the whole host of possibilities (edge detectors, . . . ). The redun-
dancy in 2D is only 1.33, far less then the à trous construction, for
example. Thanks to the above, pyramid coding has been recently used
together with directional coding to form the basis for nonseparable
multidimensional frames called contourlets (see Section 6.6.3).

6.6.2 Steerable Pyramid

The steerable pyramid was introduced by Simoncelli et al. in 1992 [150],
following on the pyramid coding work. The steerable pyramid pos-
sesses many nice properties, such as joint space-frequency localization,
approximate shift invariance, approximate tightness, oriented kernels,
approximate rotation invariance and a redundancy factor of 4j/3, where
j is the number of orientation subbands. The transform is implemented
by a first stage of lowpass/highpass filtering followed by oriented band-
pass filters in the lowpass branch plus another lowpass filter in the same
branch followed by downsampling. In [136], Portilla and Simoncelli use
a complex version of the steerable pyramid for texture modeling. An
excellent overview of the steerable pyramid and its applications is given
on Simoncelli’s web page [149].
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6.6.3 Contourlets

Another beautiful example is the recent work of Do and Vetterli on
contourlets [58, 72]. This work was motivated by the need to construct
efficient and sparse representations of intrinsic geometric structure
of information within an image. The authors combine the ideas of
pyramid coding (see Section 6.6.1) and pyramid filter banks [71] with
directional processing, to obtain contourlets — expansions capturing
contour segments. The transform is a frame composed of a pyramid
filter bank and a directional filter bank. Thus, first a wavelet-like
method is used for edge detection (pyramid) followed by local direc-
tional transform for contour segment detection. It is almost critically
sampled, with redundancy of 1.33. It draws on the ideas of a pyramidal
directional filter bank which is a Parseval tight frame when all the filters
used are orthogonal (see Figure 6.6).

6.6.4 More Multidimensional Families

Some other examples include [127] where the authors build both criti-
cally sampled and nonsampled (à trous like) 2D DWT. It is obtained by
a separable 2D DWT producing four subbands. The lowest subband is
left as is, while the three higher ones are split into two subbands each
using a quincunx filter bank (checkerboard sampling). The resulting
filter bank possesses good directionality with low redundancy. Many
“-lets” are also multidimensional frames, such as curvelets [34, 35] and

Fig. 6.6 The synthesis part of the pyramid directional filter bank. The pyramid filter bank
is given in Section 6.6.1. The scheme can be iterated and the analysis part is analogous.
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shearlets [122]. As the name implies, curvelets are used to approxi-
mate curved singularities in an efficient manner [34, 35]. As opposed to
wavelets which use dilation and translation, shearlets use dilation, shear
transformation and translation, and possess useful properties such as
directionality, elongated shapes, and many others [122].

6.7 Discussion and Notes

We finish this section with more recent developments; while some of
them are not necessarily yet in the realm of filter-bank frames, they
relate to them nevertheless.

For example, Casazza and Leonhard keep a tab on all equal-norm
Parseval frames in [46]. In [8, 9, 95], the authors introduce the notion of
localized frames, as an important new direction in frame theory, with
possible filter bank instantiations in the future. In [42, 44], Casazza
and Kutyniok introduced fusion frames to model systems requiring
distributed processing such as sensor networks. A fusion frame is a
frame-like collection of low dimensional subspaces where each signal is
represented by a collection of vector coefficients that are the projection
of the signal onto the orthogonal bases of the fusion frame subspaces.

Fusion frames already found applications in distributed sens-
ing [142], packet encoding [23], and the robustness of fusion frames
against erasures has been studied in [43, 23]. The authors in [121]
study optimally robust fusion frames against erasures and noise for ran-
dom signals and show that in fact these optimal fusion frames, a class
termed equidistance tight fusion frames, are optimal Grassmannian
packings. For complete and up-to-date information concerning fusion
frames, consult [45]. The authors of this survey have recently intro-
duced lapped tight frame transforms, obtained by seeding the orthogo-
nal lapped transforms [49].



7
Applications

We now look at application domains where frames have been used
with success. As with the previous material, we make no attempt to be
exhaustive; we merely give a representative sample. These applications
illustrate which basic properties of frames have found use in the real
world. Redundancy is a major asset in many of these applications, as
it is often used to gain stability, robustness, and resilience to noise.
In some of the applications, frames have been used deliberately; by
considering the requirements posed by applications, frames emerged as
a natural choice. In others, only later have we become aware that the
tools used were actually frames.

7.1 Resilience to Noise

It has been shown that frames show resilience to additive noise as well
as numerical stability of reconstruction [64]. We start by illustrating
resilience to noise.

Example 7.1 (Mercedes-Benz frame cont’d). We go back to our
Mercedes-Benz frame and consider its unit-norm tight frame version

65
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given in (3.5). Suppose we perturb the frame coefficients by adding
white noise wi to the channel i, where E[wi] = 0, E[wiwk] = σ2δik for
i,k = 1,2,3. We can now find the error of the reconstruction,

x − x̂ =
2
3

3∑
i=1

〈x,ϕi〉ϕi − 2
3

3∑
i=1

(〈x,ϕi〉 + wi)ϕi = −2
3

3∑
i=1

wiϕi.

Then the mean-squared error per component is

MSE =
1
2
E ‖x − x̂‖2 =

1
2
E

∥∥∥∥2
3

3∑
i=1

wiϕi

∥∥∥∥2

=
1
2
σ2 4

9

3∑
i=1

‖ϕi‖2 =
2
3
σ2,

since all the frame vectors have norm 1. Compare this to the same MSE
obtained with an orthonormal basis: σ2. In other words:

MSEONB =
3
2

MSEMB,

that is, the amount of error per component has been reduced using a
frame.

Frames are thus generally considered to be robust under additive
noise [19, 64, 133]. While modeling additive quantization noise as white
is technically false and can be misleading [94], this example carries some
useful intuition. Classical oversampled A/D conversion directly uses a
harmonic tight frame and — when quantizer resolution is held fixed —
attains MSE inversely proportional to the oversampling factor. Other
works in the area include [15, 18, 30, 60, 65, 93, 98]. Frames have been
used with success in the analysis and optimization of Σ∆ quantiza-
tion [28, 65, 96] and oversampled A/D conversion where redundancy
is used to gain robustness. Oversampled A/D conversion essentially
corresponds to a tight frame expansion. An oversampled analog signal
can be reconstructed by filters that have flat transfer characteristics in
the frequency band occupied by the signal and arbitrary characteristics
outside of that band, leading to the nonuniqueness of the reconstruc-
tion. Moreover, this allows for noise reduction upon reconstruction with
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the minimum norm dual, as the noise outside the signal’s band is dis-
carded, thus leading to the fact that the MSE behaves inversely propor-
tional to the oversampling factor. Recently, the idea of beta-encodings
has received significant attention in A/D conversion. Here again, the
redundancy of these beta-expansions provides robustness with respect
to quantizer imperfections. For more details, see [66]. In [97], Güntürk
presents constructions of beta-encodings whose robustness to additive
circuit noise is tunable.

7.2 Compressive Sensing

The field of compressive sensing has grown considerably over the past
few years as attested by the recent special issue of the IEEE Signal
Processing Magazine [135]. While not made explicit in the literature
yet, compressive sensing theory seems to have strong ties to frame
theory, and thus, we give here a brief overview. For more details, see
tutorials by Candès et al. [37, 38] and Donoho [74].

Most objects or signals of interest are compressible, that is they
can be encoded with just a few numbers without perceptual or numer-
ical loss. Most acquisition, sensing and analog-to-digital protocols are
dictated by Shannon’s sampling theorem, and require the sampling
rate to be at least twice the maximum frequency present in the signal
(Nyquist rate). However, in most cases, only a small portion of the
data acquired is actually used or important. That is where compres-
sive sensing enters into play: It allows efficient and accurate signal
acquisition by sensing and compressing simultaneously. The power of
compressive sensing is that it uses much lower sampling rates than
Nyquist to acquire signals and these sensing protocols are simple and
signal independent. The signals are reconstructed using simple opti-
mization algorithms. The main assumption made here is that the sig-
nals are compressible, that is, there exists an expansion in which they
can be represented in a concentrated, compact way, or, in other words,
a representation in which the signal is sparse. Based on this assump-
tion, a compressive sensing process linearly correlates a signal x ∈ R

n

(assumed to be sparse in some representation Ψ) with a fixed set of
signal-independent atoms drawn from an overcomplete dictionary Φ.
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The resulting linear measurements y are then used in a simple convex
optimization algorithm to recover the original signal x. The only condi-
tion on Φ is that it has to be “incoherent” with Ψ, that is, no element of
Φ is sparse in Ψ and vice versa. More formally, the compressive sensing
problem can be formulated as follows: Assume x is k-sparse in R

n, that
is, there exists a basis Ψ of R

n such that x = Ψs, where s is an n × 1
vector with k nonzero coefficients. Let the vector y of size l × 1 (l < n)
be the measurement vector computed through inner products between
x and the n columns of the measurement (or sensing) matrix Φ. Note
that the sensing process is not adaptive, that is, Φ does not depend
on x. Then one can write

y = Φx = ΦΨs.

The compressive sensing problem consists of two parts: First, design a
stable sensing incoherent matrix Φ such that it preserves all the salient
information in any k-sparse vector despite the dimensionality reduc-
tion (from R

n to R
l); and second, design a reconstruction algorithm to

recover x from the measurements y.
Since l < n, designing Φ is an ill-conditioned problem. However,

when we assume x is k-sparse and the k locations in s to be known,
then the problem can be solved if l ≥ k. A necessary and sufficient
condition for the problem to be well-posed is that Ω = ΦΨ satisfies the
so-called restricted isometry property [37]. The property states that for
any vector z that shares the same k nonzero entries as s and for some
εk > 0,

(1 − εk)‖v‖2
2 ≤ ‖Ωv‖2

2 ≤ (1 + εk)‖v‖2
2, (7.1)

which means that Ω preserves the Euclidean norm of k-sparse vectors.
An equivalent description of the restricted isometry property is to say
that all subsets of s columns of Ω are nearly orthogonal. We see that
the restricted isometry property is very similar to saying that Ω is
close to a Parseval tight frame. The restricted isometry property is
important to ensure (and study) the robustness of compressive sensing
protocols. In [75], Donoho et al. provide stability recovery results in
the presence of noise. As for the optimization problem to reconstruct
x, it can be posed as a linear program in �1 and the restricted isometry
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property guarantees an accurate reconstruction. An emerging trend
in compressive sensing seems to be random sensing, namely, choosing
Φ as being generated from a random process, as this guarantees the
restricted isometry property with very high probability. Randomness
together with �1 minimization lead to a near-optimal sensing protocol.

7.3 Denoising

Denoising with wavelets can be traced back to the work by Weaver
et al. [170] (and even earlier to Witkin [172]), and was later on pop-
ularized by Donoho and Johnstone [73, 76]. Even then, sophisticated
use of overcomplete expansions showed excellent results, and thus one
of the first works on denoising with frames is [177], where the authors
combined the overcomplete expansion with a variation of the technique
from [129] to reconstruct the image from its wavelet maxima.

More recent works include cycle spinning introduced by Coifman
and Donoho [53]. They suggest that when using a j-stage wavelet trans-
form, one can take advantage of the fact that there are effectively 2j

different wavelet bases, each one corresponding to one of the 2j shifts.
Thus one can denoise in each of those 2j wavelet bases and then average
the result. Even though errors of individual estimates are generally pos-
itively correlated, one gets an advantage from averaging the estimators.
Another effect of this is that the shift-varying basis gives way to a shift-
invariant frame (collection of bases). In [77], Dragotti et al. construct
separable multidimensional directional frames for image denoising. The
algorithm is in spirit similar to cycle spinning.

Ishwar and Moulin take a slightly different approach to develop
a general framework for image modeling and estimation by fusing
deterministic and statistical information from subband coefficients
in multiple wavelet bases using maximum-entropy and set-theoretic
ideas [107, 109, 108, 110]. For instance, in [110] natural images are
modeled as having sparse representations simultaneously in multi-
ple orthonormal wavelet bases. Closed convex confidence tubes are
designed around the wavelet coefficients of sparse initial estimates
in multiple wavelet bases (frames). A projection onto convex sets
algorithm is then used to arrive at a globally consistent sparse signal
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estimate. Denoising and restoration algorithms based on these image
models produced visually sharper estimates with about 1–2 dB PSNR
gains over competitive denoising algorithms such as the spatially adap-
tive Wiener filter.

Some other works include that by Fletcher et al. [88], where the
authors analyze denoising by sparse approximation with frames. The
known a priori information about the signal x is that it has known
sparsity k, that is, it can be represented via k nonzero frame coef-
ficients (with respect to a given frame Φ). Then, after having been
corrupted by noise yielding X̂, the signal can be estimated by finding
the best sparse approximation of X̂. This work is essentially an attempt
to understand how large a frame should be for denoising with a frame
to be effective. In [50], the authors use the shift-invariant properties
of the dual-tree CWT to provide better persistence across scale within
the hidden Markov tree, and hence better denoising performance, while
in [137], the steerable pyramid is used (see Section 6.6). An example of
denoising by frames is given in Figure 7.1 (courtesy of Vivek Goyal).

7.4 Resilience to Erasures

Another application where frames found a natural home was that of
robust transmission in communications. It was developed by Goyal
et al. in [92], and was followed by works in [20, 21, 22, 25, 41, 105, 120,
139, 157, 165]. The problem was that of creating multiple descriptions
of the source so that when transmitted, and in the presence of losses,
the source could be reconstructed based on received material. This
clearly means that some amount of redundancy needs to be present
in the system, since, if not, the loss of even one description would be
irreversible.

In the initial work, the R
n-valued source vector x is represented

through a frame expansion with frame a operator Φ∗, yielding X =
Φ∗x ∈ R

m. The scalar quantization of the frame expansion coefficients
gives X̂ lying in a discrete subset of R

m. One abstracts the effect of the
network to be the erasure of some components of X̂. This implies that
the components of X̂ are placed in more than one packet, for otherwise
all of X̂ could be lost at once. If they are placed in m separate packets,
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Fig. 7.1 Denoising with frames. Top left: Lena with 34.0 dB white Gaussian noise. Top
right: Denoised Lena with 25.4 dB noise, using a soft threshold in a single basis. Bottom
left: Denoised Lena with 24.2 dB noise, using cycle spinning (frame) from [53]. Bottom right:
Denoised Lena with 23.2 dB noise, using differential cycle spinning (frame). The technique
used here is an extension of the work in [87] (figure courtesy of Vivek Goyal).

then any subset of thecomponents of X̂ may be received; otherwise
only certain subsets are possible. The authors assume that linear recon-
struction is used, that is, the dual frame is used to reconstruct. The
authors model the noise as additive η = X̂ − X as in Section 7.1 with
the assumptions that every noise component is of zero mean and vari-
ance σ2 and that they are uncorrelated. The canonical dual frame oper-
ator (3.10) is used as it minimizes the error of reconstruction. Losses
in the network are modeled as erasures of a subset of quantized frame
coefficients; to the decoder, it appears as if a quantized frame expansion
were computed with the frame missing the elements which produced
the erased ones, and thus, assuming it is a frame, a dual frame can
be found. As a result, the authors concentrated on questions such as
which deletions still leave a frame, which are the frames remaining
frames under deletions of any subset of elements (up to m − n), etc.
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Example 7.2 (Mercedes-Benz frame cont’d). Assume now that
one of the quantized coefficients in the Mercedes-Benz frame is lost,
for example, X̂2. Does our frame have further nice properties when it
comes to losses? First, that even with ϕ2 not present, we can still use
ϕ1 and ϕ3 to represent any vector in R

2. The expansion formula is just
not as elegant:

x =
∑
i=1,3

〈x,ϕi〉ϕ̃i, (7.2)

with

ϕ̃1 =
(

1/
√

3
1

)
, ϕ̃3 =

(
2/

√
3

0

)
. (7.3)

Repeating the same calculations as those for the MSE in Section 7.1,
we get that

MSE{2} =
1
2
E ‖x − x̂‖2 =

1
2
E

∥∥∥∥ ∑
i=1,3

wiϕ̃i

∥∥∥∥2

=
1
2
σ2

∑
i=1,3

‖ϕ̃i‖2 =
4
3
σ2,

that is, twice the MSE without erasures. However, the above calculation
does not tell us anything about whether there is another frame with
a lower MSE. In fact, given that one element is erased, does it really
matter what the original frame was? It turns out that it does. In fact,
among all frames with three norm-1 frame vectors in R

2, the MSE
averaged over all possible erasures of one coefficient is minimized when
the original frame is tight [92].

7.5 Coding Theory

While the set up is different, redundancy plays an important role in
classical coding theory. For example, in convolutional coding theory,
the encoding and decoding operations can formally be represented as
passing the signal to be encoded through an oversampled analysis filter
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bank followed by an oversampled synthesis filter bank. In a seminal
paper, Massey and Sain [132] give necessary and sufficient conditions
for the existence of a FIR inverse (FIR synthesis filter bank) and the
condition for which a convolutional code is catastrophic. They show
that the nonuniqueness of the reconstruction can be exploited to make
sure that the decoder (synthesis filter bank) does not lead to catas-
trophic error propagation.

Similar ideas can be found in error correcting codes where redun-
dancy is used to buy robustness. Most notably, the early work of
Wolf [173] shows that DFT codes are able to correct approximately
twice as many errors as would have been predicted by the theory of
these codes overs finite fields.1 In that work, the detection and correc-
tion of codes has been applied to impulse noise cancellation for pulse
amplitude modulation transmission. More recently, Rath and Guille-
mot [140] clearly make the connection between frames and DFT codes
by taking a frame-theoretic approach to study DFT codes with era-
sures. They show that DFT codes are a special class of frames and use
lowpass DFT codes to provide robustness to channel erasures. More
specifically, they prove that such tight frames produce the least recon-
struction error. In addition, they define a subframe as a frame con-
structed from a subset of the frame vectors from an original frame
(here, a DFT code) and derive packetization schemes thanks to their
classification of subframes. Labeau et al. [123] used oversampled filter
banks as error correcting codes and show the existence of a parity-check
matrix for any given perfect reconstruction oversampled filter bank and
give a spectral interpretation of the redundancy. They also outline the
noise-correction capabilities of such filter banks.

7.6 CDMA Systems

The use of frames in CDMA systems dates back to Massey and Mit-
telholzer [131] on Welch bound and sequence sets for CDMA systems.

In a CDMA system, there are m users who share the available
spectrum. The sharing is achieved by “scrambling” m-dimensional user

1 Note that DFT codes are cyclic codes over the complex field.
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vectors into smaller, n-dimensional vectors. In terms of frame theory,
this scrambling corresponds to the application of a synthesis operator
corresponding to m distinct n-dimensional signature vectors ϕi of norm√
n. Noise-corrupted versions of these synthesized vectors arrive at a

receiver, where the signature vectors are used to help extract the origi-
nal user vectors. The variance of the interuser interference for user i is

σ2
i =

m∑
j=1
j �=i

|〈ϕi,ϕj〉|2 − n2,

leading to the total interuser interference:

σ2
tot =

m∑
i,j=1

|〈ϕi,ϕj〉|2 − mn2 = FP({ϕi}m
i=1) − mn2.

In the above, we recognize the frame potential from (4.6). The goal is
to minimize the interferences and make them equal.

It is obvious that no interference is possible if and only if all ϕi

are orthogonal, and in turn, this is possible only if m ≤ n, or, when ϕi

either form an orthogonal set or an orthonormal basis. When m > n,
FP − mn2 ≥ FP − m2n and the result is known as Welch bound2: The
sequences all have the same norm and

m∑
i,j=1

|〈ϕi,ϕj〉|2 ≥ m2n, (7.4)

with equality if and only if the m × n matrix Φ∗ whose rows are ϕ∗
i

has orthogonal columns of norm
√
n. If we normalize every vector to be

unit norm, we can immediately translate the above into frame parlance
(see Theorem 4.2): (a) Welch bound is equivalent to the frame potential
inequality. (b) Frame potential is minimized at tight frames. (c) m × n

matrix is the analysis operator Φ∗. (d) Columns of the analysis operator
of a tight frame are orthogonal (consequence of the Naimark theorem).

2 The question of which expression is the actual Welch bound frequently leads to confu-
sion. In his original paper [171], Welch found the lower bound on the maximum value of
the cross-correlation of complex sequences, given in (6.4). In 1992, Massey and Mittel-
holzer [131] rephrased it in terms of the bound on the maximum user interference as given
in (7.4).
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This work was followed by many others, among those, by Viswanath
and Anantharam’s [168] discovery of the fundamental inequality (4.7)
during their investigation of the capacity region in synchronous CDMA
systems. The authors showed that the design of the optimal signature
matrix S depends upon the powers {pi = ‖ϕi‖2}m

i=1 of the individual
users. In particular, they divided the users into two classes: those that
are oversized and those that are not. While the oversized users are
assigned orthogonal channels for their personal use, the remaining users
have their signature vectors designed so as to be Welch bound equality
sequences, namely, sequences which achieve the lower bound for the
frame potential, and are thus tight frames (see Theorem 4.2).

When no user is oversized, that is, when the fundamental inequal-
ity is satisfied, their problem reduces to finding a tight frame for H

with norms {√
pi}m

i=1. The authors gave one solution to the problem
using an explicit construction; characterization of all solutions to this
problem using a physical interpretation of frame theory was given in
Theorem 4.3 [40], Section 4.

The equivalence between unit-norm tight frames and Welch bound
sequences was shown in [157]. Waldron formalized that equivalence for
general tight frames in [169], and consequently, tight frames have been
referred in some works as Welch bound sequences [161].

7.7 Multiantenna Code Design

An important application of equal-norm Parseval tight frames is in
multiple-antenna code design [100]. Much theoretical work has been
done to show that communication systems which employ multiple
antennas can have very high channel capacities [89, 159]. These meth-
ods rely on the assumption that the receiver knows the complex-valued
Rayleigh fading coefficients. To remove this assumption, in [104] new
classes of unitary space–time signals are proposed. If we have n trans-
mitting antennas and we transmit in blocks of m time samples (over
which the fading coefficients are approximately constant), then a con-
stellation of K unitary space–time signals is a (weighted by

√
m) collec-

tion of n × m complex matrices {Φk} for which ΦkΦ∗
k = I, a Parseval

tight frame in other words. The ith row of any Φk contains the signal
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transmitted on antenna i as a function of time. The only structure
required in general is the time-orthogonality of the signals.

Originally it was believed that designing such constellations was a
too cumbersome and difficult optimization problem for practice. How-
ever, in [104], it was shown that constellations arising in a “systematic”
fashion can be done with relatively little effort. Systematic here means
that we need to design high-rate space–time constellations with low
encoding and decoding complexity. It is known that full transmitter
diversity (that is, where the constellation is a set of unitary matrices
whose differences have nonzero determinant) is a desirable property for
good performance. In a tour-de-force, in [100], the authors used fixed-
point-free groups and their representations to design high-rate constel-
lations with full diversity. Moreover, they classified all full-diversity
constellations that form a group, for all rates and numbers of transmit-
ting antennas.

7.8 From Biology to Teleportation

We now briefly touch upon a host of other applications from standard
to fairly esoteric ones such as quantum teleportation.

Frames were used for compression in the 1980s by Burt and Adelson
who proposed pyramid coding of images [33] which used redundant lin-
ear transforms and was quite successful for a while (see Section 6.6.1).

If one considers the segmentation problem as classification into
object and background, the work of [162, 124] then uses frames for
segmentation. In a more recent work, de Rivaz and Kingsbury use
the dual-tree CWT (see Section 6.5.1) to formulate the energy terms
for the level-set based active contour segmentation approach [69].
They use a limited redundancy transform with a fast implementation.
Both Laine and Unser used frames to decompose textures in order
to characterize them across scales [124, 162]. In [47] the authors use
frames for image interpolation and resolution enhancement. In [48],
the authors use frames to significantly improve the classification accu-
racy of protein subcellular location images, to close to 96% as well
as the high-throughput tagging of Drosophila embryo developmental
stages [112]. In theoretical neuroscience, another advantage of frames
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has been presented in [134] where the authors argue that overcomplete
representations are probably necessary in the simple cells of mammalian
visual cortex and shed light onto some cortical processing at that level.

Regularized inversion problems such as deblurring in noise can also
greatly benefit from the ability of redundant frames to provide signal
models that allow Bayesian regularization constraints to be applied
efficiently to complicated signals such as images, as illustrated in [70].

Another application of frames has been in signal reconstruction
from nonuniform samples, see [3, 12, 85] and references therein. In [36],
Candès and Donoho provide an example of tight frames that outper-
form any known basis for approximation purposes. Benedetto and Pfan-
der used redundant wavelet transforms (frames) to predict epileptic
seizures [16, 17]. Kingsbury used his dual-tree CWT for restoration
and enhancement [113], motion estimation [128] as well as building
feature, texture and object detectors for images [4, 84, 116]. In [130],
Malvar demonstrates that the modulated complex lapped transform is
well suited for noise suppression and echo cancellation, whereas in [178],
it is advantageously used for audio coding. In [152], Šoljanin makes the
connection between harmonic tight frames and network coding. Xia,
among others, shows how oversampled filter banks can be used in pre-
coding and equalization for intersymbol interference cancellation [176].
Balan et al. used frames for signal reconstruction without noisy phase
within speech recognition problems [6]. Many connections have been
made between frames and coding theory [101, 143].

Recently, certain quantum measurement results have been recast in
terms of frames [80, 81, 151, 153]. They have applications in quantum
computing and have to do with positive operator valued measures.
Who knows, maybe Star Trek comes to life, and frames play a role in
quantum teleportation [31]!



Conclusions

Coming to the end of this survey, we hope you have a different picture of
a frame in your mind from a “picture frame.” While necessarily colored
by our personal bias, we intended this survey as a basic introduction to
frames, geared primarily toward engineering students and those without
extensive mathematical training. Frames are here to stay; as wavelet
bases before them, they are becoming a standard tool in the signal
processing toolbox, spurred by a host of recent applications requiring
some level of redundancy. We hope this survey will be of help when
deciding whether frames are the right tool for your application.
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A
Nomenclature and Notation

Frame nomenclature is far from uniform and can result in confu-
sion. For example, frames with unit-norm frame vectors have been
called normalized frames (normalized as in all vectors normalized
to norm 1, similarly to the meaning of normalized in orthonor-
mal bases), uniform, as well as uniform frames with norm 1. The
names of various classes of frames, as well as alternate names under

Table A.1 Frame nomenclature.

Name Description Alternate Names
Equal-norm frame ‖ϕi‖ = ‖ϕj‖ Uniform frame [119]

for all i, j

Unit-norm frame ‖ϕi‖ = 1 Uniform frame with norm 1 [119]
for all i Uniform frame [92]

Normalized frame [13]

Tight frame A = B A-tight frame

Parseval tight frame A = B = 1 Normalized frame [7]

Unit-norm tight frame A = B Uniform tight frame with norm 1 [119]
‖ϕi‖ = 1 Uniform tight frame [92]
for all i Normalized tight frame [13]
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which they have been used in the literature, are given in Table A.1,
while Figure 3.3 shows those same classes of frames and their rela-
tionships. Frame notation is given in Table A.2, while various frame
properties are given in Table A.3.

Table A.2 Frame notation.

Symbol Explanation
H = Rn Real Hilbert space

Cn Complex Hilbert space
�2(Z) Space of square-summable sequences

I = {1, . . . ,m} Index set for Rn,Cn

Z Index set for �2(Z)

When H = Rn,Cn n Dimension of the space
m Number of frame vectors

ϕi ∈ H Frame vector
Φ = {ϕi}i∈I Frame family
Φ∗ Analysis operator
S = ΦΦ∗ Frame operator
G = Φ∗Φ Grammian

ϕ̃i ∈ H S−1ϕi Dual frame vector
Φ̃ = {ϕ̃i}i∈I Dual frame family
Φ̃∗ = Φ∗S−1 Dual analysis operator
S̃ = S−1 Dual frame operator
G̃ = Φ∗S−2Φ Dual Grammian
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Table A.3 Summary of properties for various classes of frames. All trace identities are given
for H = Rn,Cn.

Frame Constraints Properties

General {ϕi}i∈I A‖x‖2 ≤ ∑
i∈I |〈x,ϕi〉|2 ≤ B‖x‖2

is a Riesz basis AI ≤ S ≤ BI

for H tr(S) =
∑n

j=1 λj = tr(G) =
∑m

i=1 ‖ϕi‖2

Equal-norm ‖ϕi‖ = ‖ϕj‖ = a A‖x‖2 ≤ ∑
i∈I |〈x,ϕi〉|2 ≤ B‖x‖2

frame for all i and j AI ≤ S ≤ BI

tr(S) =
∑n

j=1 λj = tr(G) =
∑m

i=1 ‖ϕi‖2 = ma2

Tight frame A = B
∑

i∈I |〈x,ϕi〉|2 = A‖x‖2

S = AI

tr(S) =
∑n

j=1 λj = nA = tr(G) =
∑m

i=1 ‖ϕi‖2

Parseval A = B = 1
∑

i∈I |〈x,ϕi〉|2 = ‖x‖2

tight frame S = I

tr(S) =
∑n

j=1 λj = n = tr(G) =
∑m

i=1 ‖ϕi‖2

Equal-norm A = B
∑

i∈I |〈x,ϕi〉|2 = A‖x‖2

tight frame ‖ϕi‖ = ‖ϕj‖ = a S = AI

for all i and j tr(S) =
∑n

j=1 λj = nA = tr(G) =
∑m

i=1 ‖ϕi‖2 = ma2

A = (m/n)a2

Unit-norm A = B
∑

i∈I |〈x,ϕi〉|2 = A‖x‖2

tight frame ‖ϕi‖ = 1 S = AI

for all i tr(S) =
∑n

j=1 λj = nA = tr(G) =
∑m

i=1 ‖ϕi‖2 = m

A = m/n

Equal-norm A = B = 1
∑

i∈I |〈x,ϕi〉|2 = ‖x‖2

Parseval ‖ϕi‖ = ‖ϕj‖ = a S = I

tight frame for all i and j tr(S) =
∑n

j=1 λj = n = tr(G) =
∑m

i=1 ‖ϕi‖2 = ma2

a =
√

n/m

Unit-norm A = B = 1
∑

i∈I |〈x,ϕi〉|2 = ‖x‖2

Parseval ‖ϕi‖ = 1 S = I

tight frame for all i tr(S) =
∑n

j=1 λj = n = tr(G) =
∑m

i=1 ‖ϕi‖2 = m

⇔ n = m

Orthonormal

basis
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Signal Processing, Englewood Cliffs, NJ: Prentice Hall, 1995.
http://waveletsandsubbandcoding.org/.
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