22 research outputs found

    A new class of two-channel biorthogonal filter banks and wavelet bases

    Get PDF
    We propose a novel framework for a new class of two-channel biorthogonal filter banks. The framework covers two useful subclasses: i) causal stable IIR filter banks. ii) linear phase FIR filter banks. There exists a very efficient structurally perfect reconstruction implementation for such a class. Filter banks of high frequency selectivity can be achieved by using the proposed framework with low complexity. The properties of such a class are discussed in detail. The design of the analysis/synthesis systems reduces to the design of a single transfer function. Very simple design methods are given both for FIR and IIR cases. Zeros of arbitrary multiplicity at aliasing frequency can be easily imposed, for the purpose of generating wavelets with regularity property. In the IIR case, two new classes of IIR maximally flat filters different from Butterworth filters are introduced. The filter coefficients are given in closed form. The wavelet bases corresponding to the biorthogonal systems are generated. the authors also provide a novel mapping of the proposed 1-D framework into 2-D. The mapping preserves the following: i) perfect reconstruction; ii) stability in the IIR case; iii) linear phase in the FIR case; iv) zeros at aliasing frequency; v) frequency characteristic of the filters

    Wavelets and multirate filter banks : theory, structure, design, and applications

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2004.Includes bibliographical references (p. 219-230) and index.Wavelets and filter banks have revolutionized signal processing with their ability to process data at multiple temporal and spatial resolutions. Fundamentally, continuous-time wavelets are governed by discrete-time filter banks with properties such as perfect reconstruction, linear phase and regularity. In this thesis, we study multi-channel filter bank factorization and parameterization strategies, which facilitate designs with specified properties that are enforced by the actual factorization structure. For M-channel filter banks (M =/> 2), we develop a complete factorization, M-channel lifting factorization, using simple ladder-like structures as predictions between channels to provide robust and efficient implementation; perfect reconstruction is structurally enforced, even under finite precision arithmetic and quantization of lifting coefficients. With lifting, optimal low-complexity integer wavelet transforms can thus be designed using a simple and fast algorithm that incorporates prescribed limits on hardware operations for power-constrained environments. As filter bank regularity is important for a variety of reasons, an aspect of particular interest is the structural imposition of regularity onto factorizations based on the dyadic form uvt. We derive the corresponding structural conditions for regularity, for which M-channel lifting factorization provides an essential parameterization. As a result, we are able to design filter banks that are exactly regular and amenable to fast implementations with perfect reconstruction, regardless of the choice of free parameters and possible finite precision effects. Further constraining u = v ensures regular orthogonal filter banks,(cont.) whereas a special dyadic form is developed that guarantees linear phase. We achieve superior coding gains within 0.1% of the optimum, and benchmarks conducted on image compression applications show clear improvements in perceptual and objective performance. We also consider the problem of completing an M-channel filter bank, given only its scaling filter. M-channel lifting factorization can efficiently complete such biorthogonal filter banks. On the other hand, an improved scheme for completing paraunitary filter banks is made possible by a novel order-one factorization which allows greater design flexibility, resulting in improved frequency selectivity and energy compaction over existing state of the art methods. In a dual setting, the technique can be applied to transmultiplexer design to achieve higher-rate data transmissions.by Ying-Jui Chen.Ph.D

    On the design and multiplierless realization of perfect reconstruction triplet-based FIR filter banks and wavelet bases

    Get PDF
    This paper proposes new methods for the efficient design and realization of perfect reconstruction (PR) two-channel finite-impulse response (FIR) triplet filter banks (FBs) and wavelet bases. It extends the linear-phase FIR triplet FBs of Ansari et al. to include FIR triplet FBs with lower system delay and a prescribed order of K regularity. The design problem using either the minimax error or least-squares criteria is formulated as a semidefinite programming problem, which is a very flexible framework to incorporate linear and convex quadratic constraints. The K regularity conditions are also expressed as a set of linear equality constraints in the variables to be optimized and they are structurally imposed into the design problem by eliminating the redundant variables. The design method is applicable to linear-phase as well as low-delay triplet FBs. Design examples are given to demonstrate the effectiveness of the proposed method. Furthermore, it was found that the analysis and synthesis filters of the triplet FB have a more symmetric frequency responses. This property is exploited to construct a class of PR M-channel uniform FBs and wavelets with M = 2 L, where L is a positive integer, using a particular tree structure. The filter lengths of the two-channel FBs down the tree are approximately reduced by a factor of two at each level or stage, while the transition bandwidths are successively increased by the same factor. Because of the downsampling operations, the frequency responses of the final analysis filters closely resemble those in a uniform FB with identical transition bandwidth. This triplet-based uniform M-channel FB has very low design complexity and the PR condition and K regularity conditions are structurally imposed. Furthermore, it has considerably lower arithmetic complexity and system delay than conventional tree structure using identical FB at all levels. The multiplierless realization of these FBs using sum-of-power-of-two (SOPOT) coefficients and multiplier block is also studied. © 2004 IEEE.published_or_final_versio

    A new class of two-channel biorthogonal filter banks and wavelet bases

    Full text link

    Development of Multirate Filter – Based Region Features for Iris Identification

    Get PDF
    The emergence of biometric system is seen as the next-generation technological solution in strengthening the social and national security. The evolution of biometrics has shifted the paradigm of authentication from classical token and knowledge-based systems to physiological and behavioral trait based systems. R & D on iris biometrics, in last one decade, has established it as one of the most promising traits. Even though, iris biometric takes high resolution near-infrared (NIR) images as input, its authentication accuracy is very commendable. Its performance is often influenced by the presence of noise, database size, and feature representation. This thesis focuses on the use of multi resolution analysis (MRA) in developing suitable features for non-ideal iris images. Our investigation starts with the iris feature extraction technique using Cohen −Daubechies − Feauveau 9/7 (CDF 9/7) filter bank. In this work, a technique has been proposed to deal with issues like segmentation failure and occlusion. The experimental studies deal with the superiority of CDF 9/7 filter bank over the frequency based techniques. Since there is scope for improving the frequency selectivity of CDF 9/7 filter bank, a tunable filter bank is proposed to extract region based features from non-cooperative iris images. The proposed method is based on half band polynomial of 14th order. Since, regularity and frequency selectivity are in inverse relationship with each other, filter coefficients are derived by not imposing maximum number of zeros. Also, the half band polynomial is presented in x-domain, so as to apply semidefinite programming, which results in optimization of coefficients of analysis/synthesis filter. The next contribution in this thesis deals with the development of another powerful MRA known as triplet half band filter bank (THFB). The advantage of THFB is the flexibility in choosing the frequency response that allows one to overcome the magnitude constraints. The proposed filter bank has improved frequency selectivity along with other desired properties, which is then used for iris feature extraction. The last contribution of the thesis describes a wavelet cepstral feature derived from CDF 9/7 filter bank to characterize iris texture. Wavelet cepstrum feature helps in reducing the dimensionality of the detail coefficients; hence, a compact feature presentation is possible with improved accuracy against CDF 9/7. The efficacy of the features suggested are validated for iris recognition on three publicly available databases namely, CASIAv3, UBIRISv1, and IITD. The features are compared with other transform domain features like FFT, Gabor filter and a comprehensive evaluation is done for all suggested features as well. It has been observed that the suggested features show superior performance with respect to accuracy. Among all suggested features, THFB has shown best performance

    Wavelets and Subband Coding

    Get PDF
    First published in 1995, Wavelets and Subband Coding offered a unified view of the exciting field of wavelets and their discrete-time cousins, filter banks, or subband coding. The book developed the theory in both continuous and discrete time, and presented important applications. During the past decade, it filled a useful need in explaining a new view of signal processing based on flexible time-frequency analysis and its applications. Since 2007, the authors now retain the copyright and allow open access to the book

    Learning Sparse Orthogonal Wavelet Filters

    Get PDF
    The wavelet transform is a well studied and understood analysis technique used in signal processing. In wavelet analysis, signals are represented by a sum of self-similar wavelet and scaling functions. Typically, the wavelet transform makes use of a fixed set of wavelet functions that are analytically derived. We propose a method for learning wavelet functions directly from data. We impose an orthogonality constraint on the functions so that the learned wavelets can be used to perform both analysis and synthesis. We accomplish this by using gradient descent and leveraging existing automatic differentiation frameworks. Our learned wavelets are able to capture the structure of the data by exploiting sparsity. We show that the learned wavelets have similar structure to traditional wavelets. Machine learning has proven to be a powerful tool in signal processing and computer vision. Recently, neural networks have become a popular and successful method used to solve a variety of tasks. However, much of the success is not well understood, and the neural network models are often treated as black boxes. This thesis provides insight into the structure of neural networks. In particular, we consider the connection between convolutional neural networks and multiresolution analysis. We show that the wavelet transform shares similarities to current convolutional neural network architectures. We hope that viewing neural networks through the lens of multiresolution analysis may provide some useful insights. We begin the thesis by motivating our method for one-dimensional signals. We then show that we can easily extend the framework to multidimensional signals. Our learning method is evaluated on a variety of supervised and unsupervised tasks, such as image compression and audio classification. The tasks are chosen to compare the usefulness of the learned wavelets to traditional wavelets, as well as provide a comparison to existing neural network architectures. The wavelet transform used in this thesis has some drawbacks and limitations, caused in part by the fact that we make use of separable real filters. We address these shortcomings by exploring an extension of the wavelet transform known as the dual-tree complex wavelet transform. Our wavelet learning model is extended into the dual-tree domain with few modifications, overcoming the limitations of our standard model. With this new model we are able to show that localized, oriented filters arise from natural images

    Sampling and Reconstruction of Sparse Signals on Circulant Graphs - An Introduction to Graph-FRI

    Full text link
    With the objective of employing graphs toward a more generalized theory of signal processing, we present a novel sampling framework for (wavelet-)sparse signals defined on circulant graphs which extends basic properties of Finite Rate of Innovation (FRI) theory to the graph domain, and can be applied to arbitrary graphs via suitable approximation schemes. At its core, the introduced Graph-FRI-framework states that any K-sparse signal on the vertices of a circulant graph can be perfectly reconstructed from its dimensionality-reduced representation in the graph spectral domain, the Graph Fourier Transform (GFT), of minimum size 2K. By leveraging the recently developed theory of e-splines and e-spline wavelets on graphs, one can decompose this graph spectral transformation into the multiresolution low-pass filtering operation with a graph e-spline filter, and subsequent transformation to the spectral graph domain; this allows to infer a distinct sampling pattern, and, ultimately, the structure of an associated coarsened graph, which preserves essential properties of the original, including circularity and, where applicable, the graph generating set.Comment: To appear in Appl. Comput. Harmon. Anal. (2017

    From spline wavelet to sampling theory on circulant graphs and beyond– conceiving sparsity in graph signal processing

    Get PDF
    Graph Signal Processing (GSP), as the field concerned with the extension of classical signal processing concepts to the graph domain, is still at the beginning on the path toward providing a generalized theory of signal processing. As such, this thesis aspires to conceive the theory of sparse representations on graphs by traversing the cornerstones of wavelet and sampling theory on graphs. Beginning with the novel topic of graph spline wavelet theory, we introduce families of spline and e-spline wavelets, and associated filterbanks on circulant graphs, which lever- age an inherent vanishing moment property of circulant graph Laplacian matrices (and their parameterized generalizations), for the reproduction and annihilation of (exponen- tial) polynomial signals. Further, these families are shown to provide a stepping stone to generalized graph wavelet designs with adaptive (annihilation) properties. Circulant graphs, which serve as building blocks, facilitate intuitively equivalent signal processing concepts and operations, such that insights can be leveraged for and extended to more complex scenarios, including arbitrary undirected graphs, time-varying graphs, as well as associated signals with space- and time-variant properties, all the while retaining the focus on inducing sparse representations. Further, we shift from sparsity-inducing to sparsity-leveraging theory and present a novel sampling and graph coarsening framework for (wavelet-)sparse graph signals, inspired by Finite Rate of Innovation (FRI) theory and directly building upon (graph) spline wavelet theory. At its core, the introduced Graph-FRI-framework states that any K-sparse signal residing on the vertices of a circulant graph can be sampled and perfectly reconstructed from its dimensionality-reduced graph spectral representation of minimum size 2K, while the structure of an associated coarsened graph is simultaneously inferred. Extensions to arbitrary graphs can be enforced via suitable approximation schemes. Eventually, gained insights are unified in a graph-based image approximation framework which further leverages graph partitioning and re-labelling techniques for a maximally sparse graph wavelet representation.Open Acces
    corecore