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Condition on Word Length of Signals and 
Coefficients for DC Lossless Property of DWT 
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1Nagaoka University of Technology, Niigata, 

2Tokyo Metropolitan University, Tokyo, 
Japan 

1. Introduction 

A discrete wavelet transform (DWT) has been widely applied to various digital signal 

processing techniques. It has been designed under a certain condition such as perfect 

reconstruction, aliasing cancellation, regularity, vanishing moment, etc. This article 

introduces a new condition referred to “DC lossless”. It guarantees lossless reconstruction of 

a constant input signal (DC signal) instead of rounding of signal values and coefficient 

values inside a transform. The minimum word length of the values under the new condition 

is theoretically derived and experimentally verified. 

Since JPEG 2000 algorithm based on the discrete wavelet transform (DWT) was adopted as 

an international standard for digital cinema video coding [1], high speed and low power 

implementation of a DWT has been becoming an issue of great importance [2,3]. In 

designing a DWT, its coefficient values and signal values are assumed to be real numbers. 

However, in implementation, they are rounded to rational numbers so that they are 

expressed with finite word length representation in binary digit. Therefore it is inevitable to 

have rounding errors inside a DWT processing unit. 

In this article, we derive a condition on word length of coefficient values and that of signal 

values of a DWT such that the transform becomes lossless for a DC signal. Under this 

condition (DC lossless condition), it is theoretically guaranteed that an output signal 

contains no error in spite of rounding of coefficients and signals inside the DWT. We treat 

the irreversible 9-7 DWT adopted by the JPEG 2000 for lossy coding of image signals as an 

example. 

In case of the 5-3 DWT in JPEG 2000 for lossless coding, benefiting from its lifting structure 

[4-6], lossless reconstruction of any signal is guaranteed even though signals and coefficients 

are rounded. On the contrary, it does not hold for the 9-7 DWT because of scaling for 

adjusting DC gain of a low pass filter in a forward transform [7]. However, we have pointed 

out that it became possible to be lossless for a DC signal under a certain condition on word 

length of coefficients and signals [8].  

This DC lossless condition is a necessary condition for the regularity which has been 

analyzed by numerous researchers to improve coding performance of a transform. When 

the regularity is not satisfied, the DWT has some problems such as a checker board artifact 

which is observed in a reconstructed signal as unnecessary high frequency noise in flat or 
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smooth region of a signal [9]. It also brings about DC leakage which decreases the coding 

gain of a transform [10].  

The regularity has been structurally guaranteed for a two channel quadrature mirror filter 

bank (QMF) [9] and the DCT [10] respectively. However, since these previous methods were 

based on the lattice structure, these are not directly applicable to the lifting structure of the 

9-7 DWT. Beside these relations to the regularity, the DC lossless condition itself is also 

considered to be important for white balancing of a video system in which the DC signal is 

used as a reference input for calibration [11].  

This article aims at deriving the DC lossless condition theoretically and clarifying the 

minimum word length of signals and coefficients. In conventional analysis, errors due to 

shortening of word length of signals (signal errors) were described as 'additive' to a signal 

[7,12]. They were treated as independent and uniformly distributed white noise. On the 

other hand, errors due to rounding of coefficients (coefficient errors) were described as 

'multiplicative' to a signal and evaluated with the sensitivity [13-15]. It should be noted that 

the signal error and the coefficient error have been treated independently. Unlike those 

conventional approaches, we utilize mutual effect between rounding of signals and that of 

coefficients. Introducing a new model which unifies the coefficient error and the signal 

error, we define tolerance for those errors as a parameter to simultaneously control both of 

word length of signals and that of coefficients.  

As a result of our theoretical analysis, the minimum word length of signals and that of 

coefficients inside the lifting 9-7 DWT are derived under the DC lossless condition. We 

confirm that the minimum word length derived by our analysis is shorter than that 

determined by a conventional approach. We also confirm that the DWT under the condition 

does not have the checker board for a DC signal. 

This article is organized as follows. Chapter 2 defines a rounding operation and a rounding 

error, describes their basic properties in algebraic approach, and derives 'addition' formula 

and 'multiplication' formula of the rounding (modulo) operation. Application of these 

formulas to scaling of a signal value is introduced in chapter 3. Chapter 4 introduces the DC 

lossless DWT. Its usefulness is also described. Derivation process of conditions on word 

length of signals and coefficients is described in chapter 5. The new condition derived from 

the basic properties in chapter 2 is summarized in chapter 6. Other related condition derived 

from a conventional approach is also summarized. Theoretical results are verified and the 

minimum word length of the DC lossless DWT is clarified in chapter 7. This article is 

concluded in chapter 8. 

2. Rounding operation and its basic formulas 

This chapter introduces basic properties of the rounding operation focusing on 'quotient', 

rather than 'remainder', in modulo operation. So far, 'remainder' had been attracted 

numerous mathematicians' attention and various basic properties were found such as the 

Chinese remainder theorem in the commutative algebra (commutative ring theory). On the 

contrary, 'quotient' plays an important role as a 'practical' value in finite word length 

implementation in modern computer systems. This chapter introduces an algebraic 

approach of expressing 'quotient' as a practical value, and 'remainder' as a rounding error, 

so that it can be applied to analyzing exact behavior of rounding errors in a complex 

calculation procedure. 
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2.1 Definition of rounding operation and rounding error 

In a digital calculation system, all the values of both of signals and coefficients are calculated 
and stored as a binary digit with finite word length. In this article, we treat a case such that a 
value x is expressed with a fixed point binary expression as 

 
1

2 , {0,1}, 1, 0, ,
I

p
p p

p F

x b b I F I F




      Z Z  (1) 

where bp, p {-F, ,I-1), is a set of binary digit for a value x. It has I bit integer part 
including one sign bit and F bit fraction part. Hereinafter, F is referred to as word length of a 
value x. This F bit value x has a range expressed as  

 1 1 1 1[ 2 ,2 2 ] [ 2 ,2 )I I F I Ix          . (2) 

For example, in case of I=1 and F=2, the maximum value is x=0.75 for [b0 b-1 b-2]=[0 1 1], and 
the minimum value is x=-1.00 for [b0 b-1 b-2]=[1 0 0]. 
When an F bit signal value is multiplied with a coefficient value, in a convolution of a 
filtering process in DWT for example, a resulting signal value has longer word length than 
its original value. Therefore it is rounded to F bit again. So far there are various types of 
rounding operations [16]. In this article, we deal with the rounding operation defined by 

 1 1
0 0[ ] 2 [ ] ' ( ' mod 1) ' 2R x x or R x x x for x x          (3) 

as an example. This rounding operation generates a rounding error. We denote it as 

  1 1
0 0 0[ ] [ ] [ ] ( 2 ) mod 1 2x x R x or x x         . (4) 

Expanding these expressions to an F bit case, we can define the rounding operation and the 
rounding error as 

 0

0

[ ] [ 2 ]2

[ ] [ 2 ]2

F F
F

F F
F

R x R x

x x





 

  

 (5) 

for an F bit word length implementation case.  
Fig.1 illustrates rounding operations expressed by these equations. The term RF[x] is a 
quotient, and ΔF[x] (= x - RF[x]) is related to a remainder. The former is an actual value 
treated in a digital system under a finite word length implementation, and the latter is a 
rounding error. We are now trying to develop an algebraic expression approach to exactly 
trace a practical value and a rounding error in a convolution processing inside a DWT. 
 

2F 2-F
㻜

 1

0

2

][





x

xRy x 㻲

FF

F

xR

xRy





2]2[

]['

0

=

x 㻜

 
(a) integer         (b) F bit fraction 

Fig. 1. Definition of the rounding operation and the rounding error. (a) An integer 
implementation case. (b) An F bit word length implementation case. 
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2.2 Basic properties of the rounding operation 

Since a convolution includes additions and multiplications, we should know behavior of an 

addition of two values x and y. Resulting value is RF[x+y] and its rounding error is ΔF[x+y]. 

A multiplication result RF[xy] and its error ΔF[xy] should be also investigated.  

First of all, let's derive basic properties of the rounding operation starting with an obvious 
property; 

 0 0[ ] [ ]y R x y R x y for x     Z R . (6) 

It represents that only a real number x can be rounded if y is an integer to calculate a 
rounded value of x+y. In this case, its rounding error becomes 

 0 0[ ] [ ]y x y x for x      Z R . (7) 

It suggests that an integer y can be ignored when only the rounding error is considered in an 
analysis. There is another obvious property; 

 1 1
0[ ] 0 [ 2 ,2 )R x x      . (8) 

Since the range of a rounding error is  

 1 1
0[ ] [ 2 ,2 )x     , (9) 

we can add two more identities;  

 
 
 

0 0

0 0 0

[ ] 0,

[ ] [ ].

R x

x x

  

   

 (10) 

The equations above for F=0 can be straightforwardly extended to an F≠0 case as follows. 

 
[ ] [ ]

2
[ ] [ ]

F FF

F F

R x y R x y
y for x

x y x

  
     

Z R  (11) 

 1 1[ ] 0 [ 2 ,2 )F F
FR x x         (12) 

 1 1[ ] [ 2 ,2 )F F
F x        (13) 

 
 
 

[ ] 0

[ ] [ ]

F F

F F F

R x

x x

  

   

 (14) 

In addition, Eq.(12) can be extended to a more general case with an integer n as 

 1 1[ ] 2 2 2 , 2F F
FR x n x n n for n         Z . (15) 

2.3 Basic formulas of the rounding operation 

Utilizing the basic properties in Eqs.(11)-(14), we can derive an addition formula and a 

multiplication formula of a practical value (quotient) of the rounding operation as follows.  
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Addition formula 

  [ ] [ ] [ ] ,F F F FR x y R x R y x for x y     R  (16) 

Proof: 

 
 

 
[ ] [ ] (4)

[ ] [ ] (11)

F

F F F

F F F

R x y

R R x x y

R x R x y



    

    

 

Q.E.D. 
Multiplication formula 

    [ ] [ ] [ ] [ ] ,F F F F F F FR xy R xR y R x y xR y for x y        R  (17) 

Proof: 

 
   

   

[ ]

[ ] [ ] (4)

[ ] [ ] [ ] (4)

[ ] [ ] [ ] (11)

F

F F F

F F F F F F

F F F F F F

R xy

R x y xR y

R x y xR y R xR y

R x y xR y R xR y

   

       
       

 

Q.E.D. 
Formulas for a rounding error (remainder) can be also derived as 

 
 
 

[ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ] [ ]

F F F F

F F F F F F F F

x y x y

xy x R y R x y x y

      


        
 (18) 

for real numbers x and y. These formulas have following variations; 
Addition formula 

 

[ ] [ ]

2 [ ] [ ]

[ ] [ ]

F F

F
F F

F F

R x y R x y

y R x y x x y

x y x

  
      
   

Z  (19) 

Multiplication formula 

 

 
 
 

[ ] [ ] [ ]

2 [ ] [ ]

[ ] [ ]

F F F F

F
F F F

F F F

R xy R x y R x y

y R xy x y xy

xy x y

   
     
   

Z  (20) 

Especially when two kinds of word lengths are mixed in a signal processing, the following 
variation of the multiplication formula is conveniently applied to analyzing behavior of 
signals and errors in a pair of encoder and decoder [17]. 
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2 1 2 2 1 2

[ ] [ ] [ ] [ ]F F F F F FR xR y R xy R x y xy             (21) 

Proof: 

2 1

2 2 2

1

2 2 2 2

1

2 2 2 2 2

1

2 1 2 2

0

0 00

0 00

[ ]

[ ]2 2 2

[ ]2 [ 2 ] [ 2 ] 2

[ ]2 [ 2 ] 2 [ 2 ] 2

[ ] [ ] [ ]

F F

F F F
F

F F F F
F

F F F F F
F

F F F F

R xR y

R x y xy

R x y xy R xy

R x y xy R xy

R x y xy R xy





 

  
     
       
       

       

 

Q.E.D. 

3. Application of the formulas to basic signal processing 

This chapter applies the formulas to some basic signal processing cases.  

3.1 Mapping invariant condition 

Fig.2 illustrates a scaling of a signal value x with a coefficient value h. As illustrated in 
Fig.2(a), this processing maps an input value x to an output value y* with an ideal (infinite 
word length) coefficient value h. Note that x has F bit word length. Output value of the 
multiplication is also rounded to F bit (y* has F bit word length). In implementation, as 
illustrated in Fig.2(b), a coefficient value h is also rounded to W bit word length (h' has W bit 
word length). We aim at finding the minimum word length W of a coefficient h' such that 
the mapping is invariant (y -y* =0). 
 

F

h

h∈real number

W→∞ [bit]

x

F

y*

F

h'=RW[h]

h'∈rational number

W→min. [bit]

x

F

y

 
(a) assumption (b) implementation 

Fig. 2. Scaling of a signal value x with a coefficient value h. (a) This processing maps x to y* 
with h under a given F. (b) A mapped y should be equal to y* even though h is rounded to h'. 

In case of Fig.2(b), an input value x is multiplied by a rounded value RW[h] (=h') of a given 
coefficient h. The result RW[h]x is rounded to RF[RW[h]x] (=y). When it is the same as RF[hx] 
(=y* ), the mapping of x is invariant. It means that effect of rounding of h is nullified. This 
mapping invariant case is expressed as 

 
 [ ] [ ]

0
[ ] [ ]

m F W F

m

W W

E R R h x R hx
E for

R h h h

   
  

. (22) 
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From the basic properties, the mapping invariant condition is derived as 

  1 1[ ] [ ] 2 , 2F F
W Fh x hx           . (23) 

Proof: 

 
 
 
 

[ ] [ ]

[ ] [ ]

[ ] [ ] [ ] [ ]

[ ] [ ]

0

F W F

F W F

F F W F F

F F W

R R h x R hx

R hx h x R hx

R hx h x R hx R hx

R hx h x



   

     

   



 

1 1[ ] [ ] 2 , 2F F
F Whx h x           

Q.E.D. 
The Eq.(23) also means 

 

1 1

1 1

[ ] 2 [ ] 2
[ ] , , 0

[ ] 2 [ ] 2
[ ] , , 0

F F
W

F F
W

hx hx
h x

x x

hx hx
h x

x x

 

 

     
    

  


         

 (24) 

which gives tolerance to the rounding error of a coefficient [8]. This is the mapping invariant 
condition on word length W of a coefficient under a given word length F of signals. It 
represents exact (not approximated) behavior of rounding errors. 
Unlike the condition above, a sufficient condition can be derived by substituting the upper 
bound of errors and signals; 

 1 1 1[ ] 2 , [ ] 2 , 2W F I
W Fh hx x         , (25) 

to Eq.(23). It results in the condition described as 

 1W F I   . (26) 

This condition is too strict and requires too long word length to guarantee the mapping 
invariance. In both cases of Eq.(24) and Eq.(26), the mapping invariant condition determines 
the minimum of word length W of a coefficient under a given word length F of signals. 

3.2 Lossless condition on a scaling pair 

Fig.3 illustrates a pair of two multipliers. In Fig.3(a), an input signal x has F2 bit word length. 
It is scaled with a coefficient h1, and its output value y is rounded to F1 bit. It is re-scaled 
with a coefficient h2 (=1/h1), and its final output value w is rounded to F2 bit. This scheme is 
embedded in a forward transform and a backward transform of DWT for example. It is 
required to regain w exactly the same as x, under a given word length set of F1 and F2. Note 
that rounding errors due to finite word length expression of coefficients h1 and h2 can be 
ignored as far as the mapping invariant condition is satisfied. 

www.intechopen.com



 
Discrete Wavelet Transforms: Algorithms and Applications 

 

238 

F2

h1

x

F1

y

F2

w

h2 (=1/h1)

x, y, w∈ real number

F1→∞ [bit]

F2

h1

x

F1

y

F2

w

h2

x, y, w∈ rational number

F1→min. [bit]  
(a) assumption (b) implementation 

Fig. 3. Scaling pair has two coefficients h1 and h2 (=1/h1). (a) Output w is exactly the same as 
its original x. (b) This lossless property is guaranteed under a condition on F1 and F2. 

We apply the formulas and the properties to derive the condition on F1 and F2. The lossless 
case in Fig.3(b) is described as 

 2 12 1

1 2

[ ]
0

1

p F F
p

E R h R h x x
E for

h h

      


. (27) 

From the basic properties, the lossless condition on a scaling pair is derived as 

  2 2

1

1 1
2 1[ ] 2 , 2F F

Fh h x         . (28) 

Proof: 

2 1

2 2 2

1

2 2

1

2 1

2 1

0 2 1 2 1

0 2 1

2 1

[ ]

[ ]2 2 2

[ ]2 2

[ ]

0

F F

F F F
F

F F
F

F F

R h R h x x

R h h x h h x x

R h h x x x

R h h x





   

      

      

    


 

2 2

1

1 1
2 1[ ] 2 , 2F F

Fh h x          

Q.E.D. 
This condition determines the word length F1 and F2 of signals for an input value x. It 
represents exact condition such that total accumulated rounding error is nullified by the 

rounding just after the final multiplier with h2. As a result, the original value x is recovered 
as the final output without any loss.  
Unlike the exact condition above, a sufficient condition can be derived by analyzing the 

upper bound as follows. 

 1 2

1

1 1
2 1 2[ ] 2 2F F

Fh h x h        (29) 

As a results, when the sufficient condition given by 

 1 2 2 2logF F h   (30) 
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holds, the scaling pair becomes lossless. However this condition is too strict and requires too 
long word length of signals. 

4. Application of the formulas to DWT 

This chapter introduces the DC lossless DWT [8, 18]. Definition and its usefulness are also 
described. The algebraic approach based on the formulas is applied to derive conditions on 
word length of signals and coefficients. Derivation process is described in chapter 5. 

4.1 DWT and its word length of signals and coefficients 

Fig.4 illustrates the irreversible 9-7 DWT of the JPEG 2000 standard [1]. The forward 
transform in Fig.4(a) decomposes an input signal x(n), nN, N={n | 1,2,  , L} into band 
signals y1(m) and y2(m), mM, M={m | 1,2,  , L/2}. The backward transform in Fig.4(b) 
reconstructs the signal w(n) from the band signals. In the figure, z-1 and ↓2 indicate the delay 
and the down sampler respectively. 
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(b) Backward transform 

Fig. 4. The irreversible 9-7 DWT of the JPEG 2000 standard. 

The multiplier coefficients ci, i I, I={i | 1,2,  , 6} are designed under the word length long 
enough to be treated as real numbers. When the DWT is implemented, coefficient values are 
rounded to the length as short as possible to minimize total hardware complexity. Similarly, 
signal values are also rounded. In the figure, fraction part of each signal is shortened to FS, 
FB or FX [bit] by a rounding operation illustrated as a circle.  
Denoting the integer part as IS [bit], total word length WS [bit] of a signal s is defined as 

 1S S SW I F    (31) 

including 1 [bit] for the sign part. Similarly, total word length WC [bit] of a coefficient c is 
defined as 

 1C C CW I F   . (32) 
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In Fig.4, fraction part of the input signal x(n) is given as FX [bit]. Inside the DWT, fraction 
part of the signals are rounded to FS [bit] just after each of all the multiplications with ci, i I. 
Output signals from the forward and backward transforms are rounded to FB [bit] and FX 
[bit] respectively. Note that we do not truncate integer part of signals and that of 
coefficients. We are determining FS and FC such that the DC lossless property is satisfied. 

4.2 Definition of DC lossless property and its necessity 

In this article, we define the DC lossless as the conjunction of the following two 
propositions: 

  1 2N, M ( ) ( ) ( ) 0n m x n d y m d y m          (33) 

  1 2N, M ( ) ( ) 0 ( )n m y m d y m w n d          (34) 

for a given constant value d with FX [bit] fraction part. When the proposition in Eq.(33) 

holds, the DWT has no DC leakage for the DC input signal with value d. Similarly, when the 

proposition in Eq.(34) is true, the reconstructed signal w(n) contains no checker board 

artifact for the DC input signal. In the following chapters, we investigate the minimum 

fraction part of signals FS [bit] which guarantees the DC lossless for given FX and FB [bit]. 

We also investigate the minimum fraction part 
iCF  [bit] of a coefficient ci, i I with flexibility 

of trading off the signal error and the coefficient error. 
Fig.5(a) illustrates an example of a video system. It contains an encoder and a decoder which 
are composed of a forward DWT and a backward DWT. In white balancing, a camera and a 
display are calibrated with a constant valued input signal (DC signal) [11,19]. Therefore, it is 
useful for this calibration if the forward DWT and its backward do not generate any error. In 
this case, the camera and the display can be calibrated ignoring existence of the encoder and 
the decoder as illustrated in Fig.5(b). Namely, the DC lossless condition provides a low 
complexity DWT useful for the white balancing. 
 

㻯amera 㻰isplay

㻱ncoder 㻰ecoder

input output

x㻔n㻕 w㻔n㻕

 

㻯amera 㻰isplay

㻰㻯 signal 㻰㻯 signal

adjust adjust

 
(a) video system (b) calibration 

Fig. 5. The DC lossless property is useful for white balancing in a video system. 

In addition, the DC lossless condition is a necessary condition for the regularity which 
controls smoothness of basis functions and coding performance of a transform. A DWT 
under the regularity does not generate the checker board artifact or the DC leakage. Harada 
et. al. analyzed a condition for the regularity of a two channel quadrature mirror filter bank 
(QMF) [9]. They confirmed that a QMF under the condition has reduced checker board 
artifact for an input step signal. It is expanded to a multirate system under short word 
length expression [20]. The regularity was structurally guaranteed for a biorthogonal linear 
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phase filter bank [21,22] and the DCT [10] respectively. However, since these previous 
methods are based on factorization of a transfer function including (1+z-1) or (1-z-1) in the 
lattice structure, these are not directly applicable to the lifting structure of the 9-7 DWT in 
Fig.4. 
In this article, we derive the DC lossless condition theoretically in chapter 5, and determine 
the minimum word length of signals and that of coefficients under the condition in 
following chapters. 

5. Derivation of condition for the DC lossless DWT 

This chapter describes derivation process of the DC lossless condition. 

5.1 New model for error analysis 

Fig.6(a) illustrates a multiplier in the DWT circuit. An input value s has FS [bit] fraction part 
and multiplied by a coefficient c'. The coefficient is originally designed as a real number c. It 
is rounded to a rational number c' in implementation. It produces the coefficient error: 

 'c c c   . (35) 

Just after the multiplication, the signal is rounded to s' with FS [bit] fraction part as  

 ' [ ' ] ' '
SFs R c s c s e    (36) 

where e' is the signal error. From Eq.(35) and (36), the final output becomes 

 ' 's cs cs e    . (37) 

where cs is the ideal output. This conventional model, illustrated in Fig.6(b), describes the 

coefficient error c  as multiplicative to the signal s [13-15], and the signal error e' as 

additive [7,12]. In addition, these errors are treated independently as mutually uncorrelated 
noises. 
Unlike these existing approaches, as illustrated in Fig.6(c), we describe the coefficient error 
e'' as 

 
' [ ] '',

'' [ ] [ ] .

S

S S C

F

F F F

s R cs e

e R cs c s

 
       

 (38) 

From Eq.(15), we utilize the fact that e'' is observed as a 'particle'; 

 '' 2 SFe p   (39) 

where p is an integer. Given the tolerable maximum to an integer p, word length of the 

coefficient c can be controlled independently of other coefficients in other sections inside the 

DWT. Furthermore, denoting the signal error as e' similarly to Eq.(36), the output value is 

described as  

 
'

' ''

s cs e

e e e

 
  

 (40) 
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where 

 
' [ ]

'' [ ] [ ]

S

S S C

F

F F F

e cs

e R cs c s

 


      
 (41) 

as illustrated in Fig.6(d). In this new model, both of the coefficient error e'' and the signal 
error e' are unified to the error e. Utilizing Eqs.(13) and (15), its absolute value is limited 
to 

 1| | ( 2 )2 SFe p   . (42) 

Note that the parameter p to control word length of a coefficient c is included in this 
equation. It is equivalent to  

 12 C S SF F I p      (43) 

where its proof is given in appendix. 
Benefitting from this inequality, it becomes possible to consider mutual effect of the 
coefficient error and the signal error. 
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Fig. 6. A multiplier in the DWT and its models for error analysis. 

Inside the forward DWT, the error e is propagated and added up with other errors from 

other multipliers. When its maximum absolute value is less than 12 BF  , the total error is 

nullified by the rounding at the final output of the forward DWT. In this article, we utilize 

this nullification of errors at output of the DWT to derive a condition on word length such 

that the DC lossless defined by Eq.(33) and (34) is satisfied. 
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5.2 DC equivalent circuit 

When the input signal is restricted to a DC signal, x(n) can be described as a scalar x 

independent of n. The delay z-1 can be treated as 1 and (1+z-1) can be replaced by 2. 

Therefore, instead of the circuits in Fig.4, we can use their equivalent circuits for a DC input 

signal in Fig.7 to derive the condition. 

In Fig.7(a), a scalar x with FX [bit] fraction part is multiplied by the rational numbers ci, i I 

and rounded to FS [bit]. Finally, the signals are rounded to FB [bit] at its output to produce 

two scalars [y1 y2]. The unified errors inside the circuit are described as 

 ' '' , Ii i ie e e i    (44) 

where 

' [ ]

'' [ ] [ ]

S

S S C

i F i i

i F F i i F i i

e c s

e R c s c s

  


     
 

1 3 5 2 4

2 4 6 1 2 3 3 4

2 2( ' )

2( ' ) 2( ' ) '

s s s x x s s

s s s x s s s s s

   
        

 

' [ ]
Si i i i F i is c s e R c s   . 

Similarly, for the backward transform in Fig.7(b), errors are described as 

 ' '' , Ii i if f f i    (45) 

where 

' [ ]

'' [ ] [ ]

S

S S C

i F i i

i F F i i F i i

f c t

f R c t c t

  


     
 

1 3 5 3 2 5 4 1

2 4 6 4 3 6 2

2( ' ) 2( ' ' )

2( ' ) 2 '

t t t t t t t y

t t t t t t y

    
      

 

' [ ]
Si i i i F i it c t f R c t   . 

Similarly to Eq.(42), these errors are described with the parameters pi and qi to control word 

length of coefficients as 

 1( 2 )2 , ISF
i ie p i    (46) 

 
1( 2 )2 , ISF

i if q i    (47) 

for a given word length Fs [bit] of signals. 
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(a) Forward transform 
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(b) Backward transform 

Fig. 7. Equivalent circuits of the DWT for a DC input signal. 

5.3 Nullification of accumulated errors 

In Fig.7(a), the unified errors in Eq.(46) are propagated and accumulated inside the circuit. 
When the accumulated errors are nullified by the rounding at output of the forward 
transform, Eq.(33) is satisfied. In the figure, Y12=[y1 y2]T is described as 

 


   

12 6 5 4 4 3

3 2 2 1 1

BF U L U L

U L UL

R e e e e

e e x

   


   


Y I I K I H I

H I H I H I

 (48) 

where 

[1 0] , [0 1] ,T T
U L UL U L   I I I I I  

6
.{1,3} {2 ,4}

5

1 0 1 2 0
, ,

2 1 0 1 0
j

i j

i

c c

c c 

     
       
     

H H K  

It is described with the unified error matrices E1 and E2 as 

  12 1 1 2 2 4321( )
BF e eR x  Y H E H E KH  (49) 

where 

 
 

43

4 432

1

2

43 4 3

e U U U

e L L L





 

H I KI KH I

H I KH I KH I

H H H 

, 
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and 

1 6 4 2

2 5 3 1

[ ]

[ ] .

T

T

e e e

e e e

 




E

E

 

Similarly, output values W12=[w1 w2]T from the backward transform in Fig.7(b) are 

 1
12 3 3 4 4 4321 12( ) ( )

XF e eR     W H E H E KH Y  (50) 

where 

1 1 1
3 1 123 1234

1 1
4 12 1234

1 1 1
12 1 2

[ ]

[ ]

e U U U

e L L L

  

 

  

  


 
 

H H I H I H I

H I H I H I

H H H 

 

and 

3 2 4 5

4 1 3 6

[ ]

[ ] .

T

T

f f f

f f f

 




E

E
 

When the DWT is DC lossless, output values of the transforms are 

 432112

1
4321 1212

ˆ
.

ˆˆ ( )

U

UL

x
x



     
      
      

KH IY

IKH XW

 (51) 

Using this equation, the accumulated errors are defined as 

 12 12 12

12 12 12

ˆ
.

ˆ
y

w

    
      

      

E Y Y

E W W

 (52) 

Substituting Eqs.(49), (50), (51) and using the property in Eq.(6), we have 

  
 

1 1 2 212

12 3 3 4 4

( )
.

( )

B

X

F e ey

w F e e

R

R

          

H E H EE

E H E H E

 (53) 

Applying Eq.(12), it becomes clear that when the conditions; 

 

1
1 1 2 2

1
3 3 4 4

2

2

B

X

F
e e UL

F
e e UL

 

 

  


 

H E H E I

H E H E I
 (54) 

are satisfied, the accumulated errors are nullified by the rounding operations at the final 
output of each of the forward transform and the backward transform. 

6. Derived conditions on word length for the DC lossless DWT 

This chapter summarizes the new condition derived from the basic properties in chapter 2, 
and other related condition derived from a conventional approach.  
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6.1 Critical condition on word length 

Finally, we derive the condition on word length of coefficients and signals such that Eq.(54) 

is satisfied. Since the unified errors in E1, E2, E3 and E4 have the maximum in Eqs.(46) and 

(47) described with the parameters pi and qi, the DC lossless condition is also described with 

the parameters by substituting 

 

 
 
 
 

1
1 6 4 2 3

1
2 5 3 1 3

1
3 2 4 5 3

1
4 1 3 6 3

[ ] 2 2

[ ] 2 2

[ ] 2 2

[ ] 2 2

S

S

S

S

FT

FT

FT

FT

p p p

p p p

q q q

q q q









   

   


  


  

E I

E I

E I

E I

 (55) 

for 

3 [1 1 1]TI  

into Eq.(54). This is the condition we derived based on the new model described in section 

5.1. We investigate the fraction part FCi [bit] of a coefficient ci , i I as the minimum word 

length under the condition for a DC value x at the word length Fs [bit] of signals. 

6.2 Sufficient condition on word length 

As an example, in case of all the parameter in Eq.(55) are given as pi = qi = p and FCi = FC for 

 i I, the condition in Eq.(54) becomes 

 
 
 

1 1

1 1

11
1 2

11
3 4

2 ( 2 ) 2

2 ( 2 ) 2

S B

S X

F F
e e ULL L

F F
e e ULL L

p

p

  

  

    


   

H H I

H H I

 (56) 

where 1L
H  denotes a column vector whose component is a sum of absolute value of all 

components in each row. Substituting coefficients of the 9-7 DWT [1] into Eq.(56), we 

have 

 
1 12 2

2.66 [bit]

S EF G

E

p

G

     



 (57) 

for FX = FB = 0. As a result, the DC lossless condition on the word length is given as 

 2log (2 2 )C SW W
EG     (58) 

where 

[ ] [ ]C S C S SW W F I F     

and GE is the lower bound. This means a sufficient condition for the DC lossless. Since it is 

too strict, the word length under this condition is redundant. Unlike this sufficient 

condition, our critical condition given as Eq.(54) under Eq.(55) determines the word length 

minimum and necessary for the DC lossless. 
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7. Simulation results 

This chapter verifies theoretically derived conditions, and clarifies the minimum word 
length of the DC lossless DWT. 

7.1 Word length under the sufficient condition 

Utilizing the sufficient condition in section 6.2, we calculated the optimized word length 
under the cost function defined as J=2-1(FC +FS). The cost J is minimized for three examples. 
Ex.1 trades the word length between FC and FS, namely FC + FS = constant. Ex.2 and Ex.3 are 
FC = FS and WC = WS respectively. Results are summarized in table 1. Table 2 summarizes 
word length of signals and coefficients for an 8 bit system with Wx=8 (Ix=7 and Fx=0). Ex.1 
requires (FS, FC)=(4, 12) [bit] for signals and coefficients respectively. Ex.2 and Ex.3 require 
FS =FC =11 [bit] and WS =WC =14 [bit] respectively. The condition in Eq.(58) is plotted as a 
solid line in Fig.8. According to the sufficient condition, it is impossible to be DC lossless for  

 C E S

S E

F G I

F G

 
 

 (59) 

and it is also confirmed by the figure. It guarantees the DC lossless, however the condition is 
too strict. Therefore the word length is redundant and there is room for further reduction.  
 

Ex.1
FC+FS = const.

Ex.2
FC = FS

Ex.3
WC = WS

FC
FS

GE+1+IS
GE+1

GE+IS
* GE+IC

*+IS -IC
GE+IC

*

WC
WS

GE+2+IS +IC
GE+2+IS

GE+IS
*+1+IC

GE+IS
*+1+IS 

GE+IC
*+IS +1

J GE+1+IS/2 GE+IS
* GE+IC

*+(IS -IC) /2

IS
*=log2(2

IS +1), IC
*=log2(2

IC +1)  

Table 1. Theoretically derived word length under the sufficient condition for DC lossless. FS 
and FC denote fraction part of signals and coefficients. IS and IC denote integer part of signals 
and coefficients. WS=IS+FS+1, WC=IC+FC+1, J is a cost function. 

 

Ex.1
FC+FS = const.

Ex.2
FC = FS

Ex.3
WC = WS

FC
FS

11.66
3.66

10.67
11.25
4.25

WC
WS

13.66
12.66

12.67
19.67

13.25

J 7.66 10.67 7.75

 

Table 2. Word length calculated with equations in table 1 for Wx=8 [bit]. 
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7.2 Word length under the critical condition 

In Fig.8, a cross " " indicates a pair (FS, FC) which satisfies the critical condition in section 
6.1 for any 8 bit integer x with WX=IX=8 and FX=0. Here in after, we denote an input DC 
value to a video system as 

 12 XI
inx x    (60) 

where x is an input value to the DC equivalent circuit in Fig.7. The minimum of FC for each 
FS is indicated as a broken line. It is clear that the word length derived by the critical 
condition is shorter than that determined by the sufficient condition. For example in 
Fig.8(a), the fraction part FS (= FC) is reduced from 11 [bit] to 9 [bit] for Ex.2. The word 
length is not shortened for Ex.1 and Ex.3. In case of Fig.8(b), FS (= FC) is reduced from 13 [bit] 
to 12 [bit] for Ex.2. (FS, FC) is reduced from (14, 4) to (13, 3) or (12, 4) for Ex.1. WS (= WC) is 
reduced from 16 [bit] to 15 [bit] for Ex.3. It is confirmed that the word length is shortened 
due to the analysis in this article. 
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Fig. 8. Word length under the two conditions. " " indicates (FS, FC) such that the DWT 
becomes DC lossless.  
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7.3 Word length for a specific value 

Fig.9(a) and Fig.9(b) illustrate the word length under the conditions for the black value "16" 

and the white value "235" respectively. These specific values are utilized in white balancing 

of an 8-bit video system [19]. For example, (FS, FC) is reduced from (4, 12) in Fig.8(a) to (2, 9) 

in Fig.9(a) for Ex.1. Table 3 summarizes the minimum word length for these specific input 

DC values [23]. It is observed that the word length can be reduced by limiting input DC 

signals to a specific value. Fig.10 indicates the minimum word length FC of coefficients for 

an input value x at a given word length FS of signals. This is an example at (FS, WX)=(3, 8). 

The sufficient condition gives the same word length for any of input values. Unlike this 

conventional statistical analysis, our analysis gives the minimum word length shorter than 

that determined by the sufficient condition for each of input DC values. 
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Fig. 9. Word length under the two conditions for a specific value used in white balancing. 
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Fig. 10. The minimum word length of coefficients for each of input DC values at (FS, WX)=(3, 
8). According to the sufficient condition, the word length is too long.  

 

forward transform and backward transform

input DC values

signals coefficients

integer
IS [bit]

fraction
FS [bit]

integer
IC [bit]

fraction
FC [bit]

W
X

=
 8

 b
it

sufficient

8

4

2

12

any xin∈[0,28) 2 12

xin= 16 (black) 2 9

xin=235 (white) 3 9

W
X

=
1

0
 b

it

sufficient

10

4

2

14

any xin∈[0,210) 2 13

xin= 64 (black) 0 8

xin=940 (white) 0 12

 

Table 3. The minimum word length for a specific value for white balancing of a video 
system. 

7.4 Optimum word length assignment 

Since we described tolerance for the unified errors as parameters pi and qi in Eq.(46) and (47), 

it becomes possible to simultaneously control both of word length of signals and that of 

coefficients. Table 4 summarizes these parameters for an input value 16 and the word length 

of signals at FS=2 [bit] as an example. It indicates that [p1 p2   p6] in Eq.(46) are [0 0 0 0 0 1] 

for the word length of coefficients at FC=9 [bit]. In this case, all the coefficients ci in the 
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forward transform have the same length. It is worth paying attention to the fact that the 

parameter p1 is the same for FC=9, 8 and 7 [bit] for example. It means that word length of the 

coefficient c1 can be reduced from 9 to 7 [bit] without any influence to the errors. Therefore, 

word length [FC1 FC2 FC6] of coefficients [c1 c2   c6] can be reduced from [9 9 9 9 9 9] to [7 9 

7 4 6 4] according to the table.  

Table 5 summarizes results of this optimum word length assignment for the forward 

transform. Comparing to table 3, it is observed that word length of coefficients is reduced 

from 9.00 [bit] to 6.17 [bit] on average for an input value xin=16. Table 6 summarizes results 

for the backward transform. In this case, the word length is furthermore shortened. It is 

observed that c6 and c4 can be omitted since y2 is equal to zero under the DC lossless. Fig.11 

illustrates image signals reconstructed by the DWT which does not satisfy the DC lossless 

condition. It demonstrates the checker board artifact for reference. It is confirmed that total 

word length is furthermore shortened utilizing the tolerance parameters pi and qi introduced 

in this article.  

 

FC p1 p2 p3 p4 p5 p6 y1-x y2

9 0 0 0 0 0 1 0 0

8 0 -3 0 0 0 0 -1 -1

7 0 -3 0 0 0 0 -1 -1

6 7 12 -8 0 0 2 6 6

5 7 -18 10 0 1 0 -7 -5

4 -21 -18 9 0 -2 1 -10 -12

3 35 107 7 25 9 -28 63 70

 

Table 4. Tolerance parameters in Eq.(46) and (47) for xin=16 and FS=2 as an example. 

 

forward transform

input 
values

signals coefficients

FS FC1 FC2 FC3 FC4 FC5 FC6 ave.

W
X

=
8 xin= 16 (B) 2 7 9 7 4 6 4 6.17

xin=235 (W) 3 9 7 9 9 1 4 6.50

W
X

=
1

0 xin= 64 (B) 0 7 9 7 1 1 4 4.83

xin=940 (W) 0 7 11 -1 1 1 4 3.83

 

Table 5. The minimum word length of coefficients in the forward transform for a specific 
values xin for a given word length of signals FS. 
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backward transform

input
values

signals coefficients

FS FC1 FC2 FC3 FC4 FC5 FC6 ave.

W
X

=
8 xin= 16 (B) 2 9 9 7 0 8 0 5.50

xin=235 (W) 3 9 9 7 0 8 0 5.50

W
X

=
1

0 xin= 64 (B) 0 7 9 7 0 8 0 5.17

xin=940 (W) 0 7 12 8 0 8 0 5.83

 

Table 6. The minimum word length of coefficients in the backward transform for a specific 
values xin for a given word length of signals FS. 

 

  
(a) 1 stage                        (b) 2 stages 

  
(c) 3 stage                        (d) 4 stages 

Fig. 11. Example of reconstructed images for 1282 pixel DC input image with x=10. Intensity 
is multiplied by 16. 

8. Conclusions 

Introducing a new model which unifies the coefficient error and the signal error, and 

utilizing the nullification of the accumulated errors, this article theoretically derived a 

condition on word length of signals and coefficients such that the 9-7 DWT of JPEG 2000 

becomes lossless for a DC input signal. It was confirmed that the minimum word length 
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derived by the newly introduced 'critical' condition was shorter than that determined by a 

conventionally well known 'sufficient' condition. It was also confirmed that the DWT under 

the condition does not have the checker board for a DC signal. Analysis in this article 

contributes to build a low complexity DC lossless DWT. 

9. Appendix 

Proof of Eq.(43) 
Eq.(39) with Eq.(41) means 

 1[ ] [ ] ( 2 )2 S

S C

F
F Fcs c s p       (A.1) 

according to Eqs.(13) and (15). Applying the triangle inequality to the left hand side, we have 

 
S C S C
[ ] [ ] [ ] [ ]F F F Fcs c s cs c s       . (A.2) 

According to Eq.(13), each terms in the right hand side are described as 

 
S

C

1

1

[ ] 2

[ ] 2 2

S

C S

F
F

F I
F

cs

c s

 

 

  


  
 (A.3) 

Therefore (A.2) and (A.3) under (A.1) means  

1 1 12 2 2 ( 2 )2S C S SF F I Fp        

and finally we have Eq.(43) as 

12 C S SF F I p     . 

Q.E.D. 
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