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On the Design and Multiplierless Realization of
Perfect Reconstruction Triplet-Based FIR Filter

Banks and Wavelet Bases
S. C. Chan, Member, IEEE, and K. S. Yeung

Abstract—This paper proposes new methods for the efficient de-
sign and realization of perfect reconstruction (PR) two-channel fi-
nite-impulse response (FIR) triplet filter banks (FBs) and wavelet
bases. It extends the linear-phase FIR triplet FBs of Ansari et al. to
include FIR triplet FBs with lower system delay and a prescribed
order of regularity. The design problem using either the min-
imax error or least-squares criteria is formulated as a semidef-
inite programming problem, which is a very flexible framework
to incorporate linear and convex quadratic constraints. The
regularity conditions are also expressed as a set of linear equality
constraints in the variables to be optimized and they are struc-
turally imposed into the design problem by eliminating the redun-
dant variables. The design method is applicable to linear-phase as
well as low-delay triplet FBs. Design examples are given to demon-
strate the effectiveness of the proposed method. Furthermore, it
was found that the analysis and synthesis filters of the triplet FB
have a more symmetric frequency responses. This property is ex-
ploited to construct a class of PR -channel uniform FBs and
wavelets with = 2 , where is a positive integer, using a
particular tree structure. The filter lengths of the two-channel FBs
down the tree are approximately reduced by a factor of two at each
level or stage, while the transition bandwidths are successively in-
creased by the same factor. Because of the downsampling opera-
tions, the frequency responses of the final analysis filters closely
resemble those in a uniform FB with identical transition band-
width. This triplet-based uniform -channel FB has very low de-
sign complexity and the PR condition and regularity condi-
tions are structurally imposed. Furthermore, it has considerably
lower arithmetic complexity and system delay than conventional
tree structure using identical FB at all levels. The multiplierless
realization of these FBs using sum-of-power-of-two (SOPOT) coef-
ficients and multiplier block is also studied.

Index Terms—Design and multiplierless implementation, filter
banks (FBs), low delay, perfect reconstruction (PR), semidefinite
programming (SDP), triplet FBs, wavelets.

I. INTRODUCTION

PERFECT reconstruction (PR) multirate filter banks (FBs)
have important applications in signal analysis, signal

coding, and the design of wavelet bases. One method for
designing structural PR two-channel FBs and wavelets is to
employ the triplet structure [8], [9], which can be viewed as
three lifting steps [22]. The triplet FB can also be viewed as a
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generalization of the two-channel structural PR FBs with two
lifting steps [1]. In [9], Ansari et al. proposed two methods
for designing structural PR two-channel linear-phase finite-im-
pulse response (FIR) triplet FBs. One is based on the Lagrange
halfband filters, where triplet FBs with maximal flatness can
be obtained (or maximum regularity). The second method
is based on Remez exchange algorithm, where an equiripple
stopband response with user-defined cutoff frequencies can be
obtained. The possibility of employing low-delay FIR FBs to
reduce the system delay and method for imposing a prescribed

regularity condition (which is equivalent to a certain number
of zeros, respectively, at and of the low-pass

and high-pass analysis filters) are not discussed.
In fact, the latter involves a constrained minimax polynomial
approximation problem, which cannot be handled directly by
the Remez exchange algorithm. For linear-phase FIR FBs, it is
possible to incorporate these linear equality constraints using
linear programming. Unfortunately, linear programming is
not applicable to general FIR FBs with approximate passband
linear phase, which are useful in low-delay applications. Re-
cently, Tay [8] proposes a Bernstein polynomial-based method
for incorporating the regularity condition in linear-phase FIR
triplet FBs. A least-squares (LS) approach was also proposed to
determine the coefficients of the Bernstein polynomials through
an iterative procedure, which optimizes a multiquadratic objec-
tive function.

In [3] and [29], we showed that the LS and minimax design of
the structural PR two-channel FIR FBs in [1] with a prescribed

regularity condition can be formulated respectively as a con-
strained LS and a semidefinite programming (SDP) problem.
SDP has been successfully applied in areas such as control,
logistic, digital filter design [5], digital signal processing, etc,
and it can be solved efficiently in polynomial time using inte-
rior-point method [10]. It was shown in [3] that the SDP ap-
proach serves as a very flexible framework for designing the
structural PR FBs and wavelets with LS and minimax design
criteria, subject to linear and convex quadratic constraints. In
general, the FBs and wavelets so obtained can be linear-phase
or low-delay (approximate passband linear-phase) with a pre-
scribed order of regularity. However, the magnitudes of the
low-pass and high-pass analysis filters of this structure at

are restricted to be 0.5 and 1, respectively. In other words,
the magnitude characteristics of the low- and high-pass anal-
ysis filters are not so symmetric with respect to each other. On
the other hand, in the triplet structure, these magnitudes can
be controlled by a set of parameters. In particular, they can be
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made equal to each other so that a more symmetric frequency
responses of the analysis filter pair are obtained.

In this paper, we propose a new method to design the PR
FIR triplet FBs and wavelets with a prescribed order of regu-
larity. First of all, it is shown that the constrained design problem
with a weighted minimax error or LS criteria can be formu-
lated as an SDP problem. This can be viewed as an extension
of the SDP approach that we have reported previously for de-
signing two-channel structural PR FIR FBs [3], [29]. The pro-
posed approach is rather general and it can be applied to the
linear-phase and the low-delay cases. Design results showed
that the SDP approach offers a comparable performance as [9]
for the linear-phase case. Furthermore, it is possible to design
low-delay triplet FBs and wavelets with a prescribed order of
regularity. Due to the improved frequency characteristics (more
symmetric frequency responses) of the analysis and synthesis
filters of the triplet FBs, they are more amendable to be cascaded
in a tree structure to form an -channel uniform FB or wavelet,
where , and is the number of tree levels. It will be
shown later that by properly choosing the filter lengths and tran-
sition bandwidths of the triplet FBs in the tree structure, uniform
FBs and wavelets with very good frequency characteristics can
be generated. On the other hand, if the structural PR FB in [1]
is used, then the frequency characteristics will be considerably
degraded after cascading, due to the magnitude constraints at

mentioned earlier. Besides, the multiplierless realiza-
tion of the triplet-based FBs using the sum-of-powers-of-two
(SOPOT) coefficients [23] and the multipler block (MB) [27] is
studied.

One motivation of cascading triplet FBs to form a uniform
FB is that the PR and regularity properties will be preserved. In
fact, the -channel ( ) FB is PR if all the two-channel
FBs in the tree are PR [13]. Moreover, the -channel FB is a
wavelet FB if all the two-channel FBs in the tree are wavelet
FBs. However, if identical two-channel FBs are cascaded to-
gether, then the system delay will become very large and the
resulting frequency characteristics do not usually resemble an
ideal uniform -channel FB. Recently, Xie et al. [15] extends
an observation of Fliege [17] and Nayebi et al. [18] and study
a simple method for designing tree-structured linear-phase and
low-delay -channel FBs with . More precisely, the
filter lengths of the two-channel FBs down the tree are approx-
imately reduced by a factor of two at each level or stage, while
the cutoff frequencies are successively increased by the same
factor. Because of the downsampling operations, the final anal-
ysis filters resemble closely those in a uniform FB with identical
transition bandwidth (see, for example, Figs. 5(c) and 7 shown
later). In [15], the PR two-channel FBs are derived from the lat-
tice structure proposed in [19]. They are obtained independently
by nonlinear constrained optimization to meet the given fre-
quency characteristics and transition bandwidth requirements.
This structure can be used to construct PR -channel wavelets
if all the two-channel PR FBs are wavelets, say by imposing
the PR and regularity conditions. Another advantage of this
structure is that its complexity and system delay are much lower
than a conventional tree structure when identical two-channel
FBs are used at all levels of the tree, especially when the depth
of the tree increases. By employing the triplet FBs as the com-

Fig. 1. (a) Critically decimated M -channel uniform FB. (b) Two-level
maximally decimated tree-structured analysis FB.

ponent two-channel FBs in this particular tree structure, the PR
condition can be structurally imposed. Further, the component
FBs can be designed independently using SDP to yield more
symmetric frequency responses. After cascading, linear-phase
as well as low-delay -channel FBs and wavelets with very
good frequency characteristics are achieved. The design and
implementation complexities of this type of -channel uni-
form FB are rather low, thanks to the triplet structure. It is also
interesting to note that the linear-phase scaling functions and
wavelets generated by this tree structure are all symmetric while
those obtained in [12] are either symmetric or asymmetric.

The rest of this paper is organized as follows. Section II is
devoted to the design of PR two-channel FIR triplet FBs and
wavelets. The problem formulation and several design exam-
ples will be given. In Section III, the construction of the PR
tree-structured -channel uniform FBs and wavelets using the
triplet FBs is described. Several design examples are also given.
This is followed by the multiplierless realization of the triplet
FB in Section IV. Finally, conclusion is drawn in Section V.

II. PR TWO-CHANNEL FIR TRIPLET FBs AND WAVELET BASES

The general structure of an -channel uniform FB is shown
in Fig. 1(a). The transform of the output of a two-channel FB,
i.e., , can be expressed as

(2.1)

The two-channel FB is PR if

(2.2a)

(2.2b)
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Fig. 2. Structure of the two-channel triplet-based FBs. (a) Analysis bank.
(b) Synthesis bank.

where is an integer. Substituting (2.2) into (2.1), it can be
seen the input and output of the FB are identical up to a time
delay of samples, i.e., .

A. Problem Formulation

Fig. 2 shows the structure of the analysis and synthesis filters
of the triplet FB. It is parameterized by three subfilters ,
three delay parameters , and five constant parameters and

for ,1,2 and ,1. The triplet FB is structural PR
for arbitrary choice of these subfilters, which can be chosen as
linear-phase/low-delay FIR or IIR filters. It is a generalization of
the structural PR FB of Phoong et al. [1], which consists only of

and . Here, we shall consider the design of the sub-
filters for linear-phase as well as low-delay FIR triplet FB
and a prescribed order of regularity using SDP. In particular,
it will be shown that PR FIR triplet FBs with equiripple or LS
stopband response and a prescribed order of regularity can be
formulated as a SDP problem. This approach is rather general
that it is applicable to both the linear-phase and low-delay cases.

Although there are other possible choices of the parameters
and in the triplet FB, a very good choice is [8]: ,

, , and
. With this particular choice, the magnitudes

of the low-pass and high-pass analysis/synthesis filters at
can be parameterized by a single parameter . Further, by

choosing as , the magnitudes of the analysis filter pair
at will be equal to so that more symmetric
frequency response of the analysis filters can be obtained. To
proceed further, let us consider the transform of the analysis
filter pair as follows:

(2.3a)

(2.3b)

Similarly, the transform of the synthesis filter pair can be
written as

(2.3c)

(2.3d)

Using (2.3) and (2.2), one can verify that the system delay of the
FB is given by . Let , ,1,2, be
the passband cutoff frequency of . To design the low-pass
analysis filter , we first design the subfilter with the
following desired frequency response:

for (2.4a)

Once is designed, one can design with the following
desired frequency response:

for (2.4b)

From (2.4a), we can see that approximates
for . Due to the periodic na-

ture of , for , becomes
anti-phase with . Therefore, the term inside the
square bracket in (2.3a) approximates in
the passband, , and becomes
in the stopband, . As for in (2.4b),
the product
in (2.3a) will approximate in

. Therefore, is approximately
equal to in the passband. In the stopband,

in (2.3a) will
approximate , which cancels with
the signal delay to give a value nearly equal to zero.

Given and , the high-pass analysis filter
can be obtained by designing with the following desired
frequency response:

for (2.4c)

Similarly, it can be verified that will approximate zero
and , respectively, in and

, for the given choice of . These conditions for the
low-delay triplet FB will reduce to the linear-phase triplet FBs
considered in [9], if ’s are linear-phase. In this case,

, , and ,
where , ,1,2, are, respectively, the subfilter length of

. Like the low-delay structural PR two-channel FB in [2],
the subfilter lengths of the proposed low-delay triplet FB are not
constrained by the delay parameters , , and , and they
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can be increased independently to provide a higher stopband at-
tenuation. Next, we shall show that the regularity conditions
can be written as a set of linear equality constraints in the sub-
filter coefficients of , and the design problem can be solved
using SDP.

B. -Regularity Condition

To construct wavelet bases from triplet FBs, the analysis filter
pair , ,1, should possess at least one zero at
and , respectively. Let and be the number of zeros
to be imposed, respectively, at and for and

with . This is equivalent to

(2.5)

for and . In general,
the number of zeros imposed for the analysis filters is closely
related to the following halfband filters , ,1,2:

(2.6)

where , , .
Substituting (2.6) into (2.3a), one gets

(2.7)

It can be seen that if and have respectively
and zeros at , then has at least zeros at

with . Similarly, can be
written as

(2.8)

Again, it can be seen that if , ,1,2, have respec-
tively zeros at respectively, then has at
least zeros at with .
In this work, ’s are assumed to be a general FIR filter
with . The regularity conditions can
be obtained by considering the following form of the halfband
filter:

with (2.9)

where .
The conditions for to have zeros at are
equivalent to

(2.10)

Expanding (2.10) and after slight manipulation, one gets a set
of linear equality constraints as follows:

(2.11a)

for , where the operator denotes the
nearest integer greater than or equal to . Equation (2.11a) can
also be written in the following matrix form:

(2.11b)

where

Here, denotes the th entry of matrix . This will
be used to eliminate the redundant variables in the SDP design
method to be described in the following subsection.

C. SDP Design

In this section, we shall show that the design of the subfil-
ters with minimax and LS error criteria and a prescribed
order of regularity can be formulated as a SDP problem.

1) Weighted Minimax Error Criterion: To minimize the
maximum ripple of the approximation error is equivalent to the
following:

for

(2.12)
where is the impulse response
of ; ; is the
desired frequency response defined in (2.4); is a positive
weighting function. To solve (2.12) using SDP, we densely
discretize over the band of interest into a set of
frequency points , . It yields

subject to (2.13a)

where

Using the Schur complement [11], it can be shown that (2.13a)
is equivalent to

subject to (2.13b)
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where

and means that matrix is positive semidefinite. Since
is affine in , it is equivalent to a set of linear-matrix

inequalities (LMI) [11]. In order to simultaneously solve the
SDP problem in (2.13b) and the regularity conditions men-
tioned in Section II-B, the dependent variables defined by the
linear equality constraints (2.11b) can be expressed as a linear
combination of independent variables. The number of variables
to be optimized is therefore reduced. It not only speeds up the
optimization process but also structurally imposes the regu-
larity conditions. To remove the redundant variables, let be
the number of redundant variables in . Equation (2.11b)
can be rewritten as

(2.14)

where

Using (2.14), can be rewritten in terms of as

(2.15)

where is an ( 1) null vector and is an ( )
identity matrix. Substituting (2.15) into (2.13b) and defining
the augmented variable , the optimiza-
tion problem in (2.13b) can be cast into the following standard
SDP problem:

subject to (2.16)

where ; .
Theoretically, it is possible to determine whether a feasible so-
lution exists for the SDP problem (2.16), and if so, it is possible
to determine the global optimal solution, since the problem is
convex. Moreover, the SDP problem is very general in that other
design criteria such as LS, and LS with peak constraints can
be employed, possibly with linear and convex quadratic con-
straints.

2) Weighted LS Error Criterion With Peak Error Con-
straints: Another common criterion to be minimized is the
following LS objective function:

(2.17)

TABLE I
DESIGN SPECIFICATIONS AND PARAMETERS FOR SUBFILTERS q (z), i = 0,1,2,

OF STRUCTURAL PR TWO-CHANNEL FIR TRIPLET FILTER BANKS AND

WAVELET BASES IN EXAMPLE 1 ([9, EXAMPLE 2(b) ]) AND EXAMPLE 2

where is the spectral support over which is to be
approximated

This is equivalent to

subject to

(2.18a)

To solve (2.18a) using SDP, Schur complement allows us to
rewrite it as

subject to (2.18b)

where

The advantage of formulating the objective function as a set
of LMI is that other linear equalities, inequalities, and convex
quadratic constraints can easily be incorporated. This is illus-
trated in the following by incorporating the peak stopband ripple
constraints into the analysis filter pair. Let be the peak stop-
band ripple of , ,1, such that

for in the stopband (2.19)

Given and substituting (2.3a) into (2.19), we have the fol-
lowing convex quadratic inequality constraint for incorporating
the peak constraint into :

for (2.20a)

where
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Fig. 3. (a) Frequency response of the analysis filter pairH (z),m = 0,1, in Example 1. (b) Frequency response. (c) Plot-zero plot. (d) Analysis scaling function.
(e) Analysis wavelet function of the linear-phase wavelet FB in Example 1. One zero is imposed, respectively, at z = �1 and 1 onH (z) andH (z).

TABLE II
DESIGN SUMMARY OF ANALYSIS FILTER PAIR H (z), m = 0,1, OF STRUCTURAL PR TWO-CHANNEL FIR TRIPLET FBs AND

WAVELET BASES IN EXAMPLE 1 ([9, EXAMPLE 2(b)]) AND EXAMPLE 2 (MINIMAX, LS, LS WITH PEAK CONSTRAINT)
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Similarly, the peak constraint of is given by

for (2.20b)

where

Similar to the minimax case, we densely discretize over the
stopband region into a set of frequency points , .
This yields the following form for (2.20a) and (2.20b):

(2.21)
These constraints on the peak ripples can be augmented to
the existing LMI for LS criterion in (2.18b). An alternative
approach to impose the peak constraint can be achieved by
adjusting the weighting function in (2.17). However, this will
require an iterative method to determine the exact ripples at
the target frequency bands. To incorporate the regularity
conditions mentioned in Section II-B, we can substitute (2.15)
into (2.18b) for the LS criterion and (2.21) for the LS criterion
with peak error constraints. By defining the augmented variable

, all the constraints can be stacked
together to form a standard SDP problem.

D. Design Examples

In all the design examples, the constant parameter was
chosen as . By so doing, the magnitudes of the analysis
filter pair ( and ) at are both equal to

. As a result, a more symmetric frequency response can
be obtained. Unless otherwise specified, the minimax error
criterion is employed so that the frequency response in the
stopband region is equiripple. The weighting function is chosen
as 1 for both passband and stopband. The frequency variable

in the band of interest was uniformly discretized using
samples. The SDP optimization was then carried

out using the MATLAB LMI Toolbox and it took less than 60
iterations and less than 1 min to obtain the solution in a Pentium
III-866 personal computer.

Example 1—Structural PR Two-Channel Linear-Phase FIR
Triplet FBs and Wavelet Bases: For comparison purposes, a
structural PR two-channel linear-phase FIR triplet FB with the
same specifications as [9, Ex. 2(b)] was designed using the
proposed SDP method. The parameters of the subfilters
are shown in the second column of Table I. The frequency re-
sponses of the low-pass and high-pass analysis filters are shown
in Fig. 3(a). It should be noted that there is no regularity in this
triplet FB. The results and performances of the analysis filter
pair are summarized in the second column of Table II. It can
be seen that the passband and stopband errors of the analysis

TABLE III
DESIGN SPECIFICATIONS AND PARAMETERS FOR SUBFILTERS q (z), i = 0,1,2,

OF TWO-LEVEL TREE-STRUCTURED FOUR-CHANNEL LOW-DELAY

TRIPLET-BASED WAVELET BASES IN EXAMPLE 3

filter pair using the proposed SDP method are comparable to
that reported in [9].

Next, we consider a wavelet FB with the same parameters
except the parameters , , are equal to one (as men-
tioned earlier, this problem has not been considered in [9], due
to the difficulties in imposing the regularity constraint). In other
words, the low-pass and high-pass analysis filters have one zero
at and 1, respectively. Fig. 3(b) and (c) shows the fre-
quency response and the pole-zero plot of the analysis filters. It
can be seen that the prescribed zeros are properly imposed. The
analysis scaling and wavelet functions so obtained are shown in
Fig. 3(d) and (e), respectively. This demonstrates the effective-
ness of the proposed SDP method in imposing the regularity
conditions.

Example 2—Structural PR Two-Channel Low-Delay FIR
Triplet Wavelet Bases: In this example, a structural PR
two-channel low-delay FIR triplet wavelet with prescribed
order of regularity was designed. The subfilter lengths
and cutoff frequencies of are identical to Example
1 except that the system delay is now reduced from 51 sam-
ples in the linear-phase case to 39 samples. Furthermore, a

regularity of is imposed. In other words,
the FB can be used to construct a wavelet basis. The third
column of Table I shows the parameters of the subfilters. The
frequency response and group delay of the triplet wavelet
FB are respectively shown in Fig. 4(a) and (b). It can be
seen that the low-delay triplet wavelet FB is approximately
linear-phase in the passband. The regularity of the analysis
filter pair, , was verified from the pole-zero
plot of and . Due to page limitation, the details
are omitted. Fig. 4(c) and (d) shows the analysis scaling and
wavelet functions, respectively. They are rather smooth, but
not symmetric due to the low-delay constraint. To demonstrate
the flexibility of the SDP formulation, the design was again
performed using the LS and LS with peak constraints (LSPC)
criteria. Fig. 4(e) shows the frequency response of the analysis
filter pair when the LS error criterion is employed. A similar
triplet FB with peak constraints of 40 dB
and 43 dB for, respectively, the low-pass and
high-pass analysis filters was designed as shown in Fig. 4(f).
The performances of the analysis filter pair using
minimax, LS and LSPC are summarized in the third column of
Table III. It can be seen that the passband and stopband ripple
errors for the minimax case are slightly increased, as compared
with Example 1, in exchange of a lower system delay and the

regularity constraints. Next, we shall consider the construc-
tion of a class of tree-structured -channel uniform FBs and
wavelets by cascading the two-channel triplet wavelet FBs.
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Fig. 4. Design results of the low-delay triplet FB in Example 2. (a) Frequency response and (b) group delay of the analysis filter pairH (z),m = 0,1 using the
minimax error criteria. (c) Analysis scaling function. (d) Analysis wavelet function. Frequency responses of the analysis filter pair using (e) the LS error criteria
and (f) LS with peak constraints. K = K = 3.

III. TRIPLET-BASED TREE-STRUCTURED

-CHANNEL UNIFORM FBs

A. Tree-Structured Uniform -Channel FBs and
Wavelet Bases

In this section, we exploit a type of tree-structured FB, which
when combined with the triplet FBs, closely resembles the fre-
quency response of an -channel FB with . There are,

of course, many other variations in choosing the tree decompo-
sition to approximate a desired time-frequency resolution. Here,
we are particularly interested in approximating a uniform linear-
phase or passband linear-phase -channel FBs, which usually
involve nonlinear constrained optimization with large number
of variables. It is shown in the following that by using the triplet
FBs and a particular tree-structure, the design complexity can be
greatly reduced. More precisely, the triplet FBs are cascaded in a
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Fig. 5. Design results of the low-delay tree-structured four-channel FB in Example 3. Frequency responses of the analysis filter pair H (z), m = 0,1, at
(a) level 1and (b) level 2 of the tree. Frequency response of the four-channel analysis banks using (c) Fig. 5(a) and (b) for level 1 and 2, respectively, and
(d) Fig. 5(a) for all levels of the tree. (e) Analysis scaling function. (f) Analysis wavelet function 1.

tree structure as shown in Fig. 1(b). Instead of using an identical
FB at each level, a different triplet FB pair: , ,1, is
used at the th level or stage of the tree, where .
The reason will become apparent later. From the noble identity
[14], the tree-structured FB can be redrawn as an -channel
FB as shown in Fig. 1(a) by moving to the left hand
side of the decimators in the tree structure. This gives rise to
analysis filters , . For notation con-
venience, let us treat the index “ ” in as the th digits in
a weighted binary representation and denote it by . The equiv-
alent transfer function obtained by passing the signal through

the branch can then be labeled as ,
where . Then,
the final analysis filters can be written as

(3.1)

A similar equation can be derived for the final synthesis filters
. It is clear that the whole system using the tree struc-

ture preserves the PR and linear-phase properties if all the two-
channel FBs in the tree are also PR and linear phase. Besides, if
all the two-channel FBs are wavelet FBs, then, the -channel
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TABLE IV
DESIGN SUMMARY OF TWO-LEVEL TREE-STRUCTURED FOUR-CHANNEL LOW-DELAY TRIPLET-BASED WAVELET BASES IN EXAMPLE3

TABLE V
DESIGN SPECIFICATIONS AND PARAMETERS FOR SUBFILTERS q (z), i = 0,1,2, OF FIVE-LEVEL TREE-STRUCTURED 32-CHANNEL

LINEAR-PHASE TRIPLET-BASED WAVELE

FB is also a wavelet FB. Next, we consider the choice of transi-
tion bandwidths and filter length of the two-channel FBs. Sup-
pose that identical two-channel FBs are employed at all levels
in the tree. Then, the transition bandwidth of will not be
identical due to the upsampling of in moving to the
left hand side of the decimators. As a result, higher implemen-
tation complexity is required to achieve a given transition band-
width and stopband attenuation of the -channel FB. This is
illustrated in Fig. 5(d) by cascading the FB in Fig. 5(a) to form a
tree structure of two levels. The resulting four-channel FB does
not have a constant transition bandwidth. This also significantly
increases the total system delay (237 samples in the above ex-
ample). To avoid this problem, it is therefore advantageous to
properly widen the transition bandwidth of the two-channel FB
as the level increases so that an identical transition bandwidth
can be achieved in the final -channel FB [15], [17], [18]. More
precisely, due to the upsampling by a factor of at the th
level, the transition bandwidth of will be times

narrower than that of . To achieve a uniform transition

bandwidth, the transition bandwidth of should satisfy

(3.2)

where is the transition bandwidth of the analysis filter
pair at the th level. It can be seen that the deeper the level,
the wider will be the transition bandwidth. For a given stop-
band attenuation, the filter lengths of the two-channel FBs in
the tree can therefore be reduced approximately by a factor of
two when the level of the tree increases. This considerably re-
duces the total system delay and the hardware complexity of
the tree-structured -channel FB. Using the triplet FBs and
the SDP approach, the design and implementation complexities
can be considerably reduced. For a given transition bandwidth
of the -channel uniform FB, the transition bandwidths of the
triplet FBs in each level of the tree can be determined according
to (3.2). A triplet FB satisfying the given stopband attenuation
and transition bandwidth at the first level is first designed. Let
the subfilter lengths of the subfilters at the first level be

. Then, the subfilter lengths of at the th level are

approximately . They can be independently designed
by the SDP method and cascaded to form the final -channel
FB. For channels, only different two-channel triplet
FBs need to be designed separately using the SDP method. Due
to this nice property, the proposed method serves as a very at-
tractive alternative for designing uniform FB with very large
number of channels, which usually involves constrained non-
linear optimization with a large number of variables, causing
considerable difficulties in converging to the optimal solution.
In addition, the PR and regularity conditions are structurally im-
posed and the final FB can be realized efficiently using SOPOT
coefficients, as we shall see later in Section IV. We now consider
two design examples.

B. Design Examples

Example 3—Structural PR Four-Channel Low-Delay
Triplet-Based Wavelet Bases: A structural PR uniform
four-channel low-delay triplet-based wavelet bases was
designed by cascading two levels of two-channel low-delay
FIR triplet wavelet FB. They are independently designed using
the proposed SDP method. The specifications and parameters
of the subfilters at all levels are summarized in Table III.
The frequency responses of , ,2, so obtained are
shown in Fig. 5(a) and (b), respectively. Fig. 5(c) shows the
final analysis banks of the four-channel wavelet FB. It can be
seen that a uniform transition bandwidth of is
achieved by properly widening the transition bandwidths of
the two-channel FBs as the level of the tree increases. This
four-channel triplet wavelet FB has a regularity of fourth
order and its stopband attenuation and system delay are 40 dB
and 165 samples, respectively. It will be increased to 225 sam-
ples if linear-phase triplet wavelets are employed to achieve the
same stopband attenuation. The design results are summarized
in Table IV. Fig. 5(e) and (f) shows the analysis scaling and
the first wavelet functions of the four-channel triplet wavelets
(other wavelet functions are not shown here). They are rather
smooth, but not symmetric due to the low-delay constraint. The
design time is 123 seconds for the whole system. Next, we shall
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Fig. 6. Design results of the 32-channel linear-phase wavelet FB in Example 4. (a)–(e) Frequency responses of the analysis filter pair at level 1–5, respectively.
(f) Analysis scaling function.

consider a triplet-based tree-structured -channel FBs with
larger number of channels.

Example 4—Structural PR 32-Channel Linear-Phase
Triplet-Based Wavelet Bases: In this example, a structural
PR 32-channel uniform linear-phase triplet-based wavelet
bases was constructed by cascading five levels of two-channel
linear-phase FIR triplet wavelet FB in a tree structure. Table V
summarizes the parameters of the subfilters . The fre-
quency responses of , ,2,3,4,5, so obtained are
shown in Fig. 6(a)–(e), respectively. The 32-channel analysis
banks are shown in Fig. 7, which has a regularity of the fifth

order. The transition bandwidth and the stopband attenuation
are respectively and around 40 dB. The design
results are summarized in Table VI. The total system delay
is 2185 samples. If identical two-channel triplet wavelet FB
(at level 1) are employed for all levels, the total system delay
will be drastically increased to 10 509 samples. Moreover, the
implementation complexity will be significantly increased.
Fig. 6(f) shows the analysis scaling function of the 32-channel
triplet-based wavelets. Due to page limitation, details of the
wavelet functions are omitted. They are very smooth and unlike
those in [12], all of them are symmetric. The design time is 533
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Fig. 7. Frequency response of the 32-channel linear-phase wavelet FB in
Example 4.

s for the whole system. It is clear that uniform FBs with even
larger number of channels, say 256, can be designed without
much difficulty. Due to page limitation, design results for a
similar triplet-based 32-channel FB with a lower system delay
using the low-delay two-channel triplet FB is omitted.

IV. MULTIPLIERLESS TRIPLET-BASED

FIR FBs AND WAVELETS

In this section, we shall study the multiplierless realization
of the two-channel triplet wavelet FB. In practical realization
of the triplet-based wavelet FBs, the subfilter coefficients of

, ,1,2, have to be quantized, and the regularity
conditions might no longer hold. Here, we adopt a new realiza-
tion technique that we have recently proposed in [30] for pre-
serving the regularity conditions of the two-channel struc-
tural PR FIR FB [1] when the filter coefficients are expressed as
SOPOT coefficients of the form: , where

and . The larger
the numbers , , and , the closer the SOPOT approximation
will be to the original real number. In particular, the method in
[30] is used to enforce the necessary zeros for in (2.10),
even when their coefficients are quantized to SOPOT coeffi-
cients. Unfortunately, it was found that because of the inter-re-
lationship of , ,1,2, the regularity condition can
only be achieved exactly when they are real numbers. In prac-
tical implementation, their wordlengths have to be long enough
so that the error generated will be well below the round-off
noise. In design example 5 to be presented, a wordlength of 16
bits is found to yield a good approximation up to 120 dB. As
mentioned earlier in Section II-B, the regularity of
and are respectively and

, where is the number of zeros of the
halfband filter at . To
structurally impose the required zeros at , one may ex-
press the halfband filters using the Bernstein polynomial
expansion. Since the subfilter coefficients of are linear
combination of the Bernstein coefficients, which will be quan-
tized to SOPOT coefficients, so are the subfilter coefficients.
Therefore, it is possible to construct triplet-based wavelet bases
with SOPOT coefficients. Note, the triplet FBs are not restricted
to be linear phase. Unfortunately, it was found in [30] that this
approach usually yields SOPOT coefficients with very long co-
efficient wordlength. A new realization technique [30] with a

much lower coefficient wordlength, which provides multiplier-
less realization up to fifth order of zero moments, is employed.
More precisely, the subfilter is written as

(4.1)

where and
are respectively the remainder and

quotient obtained by dividing by .
Substituting (4.1) into (2.6), we have

(4.2)
from which we see that if contains the factor

, so is . This is equivalent to
the condition that the halfband filter
has maximal flatness at , and the remainder coefficients
of are [6]

for (4.3)

Once (4.3) is satisfied, the quotient coefficients of
can be quantized to arbitrary accuracy without vi-

olating the prescribed regularity conditions (if s are
exact). In [6], Pei and Wang proposed another efficient form
for implementing such maximally flat halfband filter. In-
stead of expanding the remainder coefficients about ,

is expanded as ,
where the coefficients is given by: , and

, .
It can be shown that and are related by

, where is the binomial
coefficient. If can be exactly represented as SOPOT co-
efficients, then so are the coefficients . This was shown
to be true for ,1,2,3,4 [30]. To obtain a multiplierless
PR wavelet FB, the coefficients of are represented as
SOPOT coefficients. To further reduce the number of adders
in realizing , they can be implemented in transposed
form using the technique of multiplier block (MB) [27]. It is a
very useful technique to reduce the number of adders needed
to implement the multiplications of an integer input with a set
of constant integer coefficients. Therefore, the implementation
complexity of the structural PR FB can be drastically reduced.
Following [30], the random search algorithm proposed in [25],
[30] is employed, because of its simplicity and effectiveness.
Due to page limitation, the detail is omitted and interested
readers are referred to [25] and [30] for more details. Note,
from Fig. 2, the constant parameters and are not imple-
mented in practice since the product of is exactly equal
to 0.5. It can be done by shifting the signal by one bit to the
least-significant-bit (LSB) direction. However, for ,

, and , there is no
SOPOT approximation of with finite number of terms such
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TABLE VI
DESIGN SUMMARY OF FIVE-LEVEL TREE-STRUCTURED 32-CHANNEL LINEAR-PHASE TRIPLET-BASED WAVELET BASES IN EXAMPLE 4

TABLE VII
SOPOT COEFFICIENTS OF R (z), i = 0,1,2, FOR MULTIPLIERLESS FOUR-CHANNEL WAVELET FB IN EXAMPLE 5

TABLE VIII
SOPOT COEFFICIENTS OF Q (z), i = 0,1,2, FOR MULTIPLIERLESS FOUR-CHANNEL WAVELET FB IN EXAMPLE 5

that the above relationship between ’s can be maintained.
Therefore, even though the zeros of are properly im-
posed, the regularity condition can only be achieved by
real-valued . Another possibility is to allow ’s to be rational
numbers so that only simple integer divisions are involved. For
simplicity, a longer wordlength for ’s is chosen here to limit
this error to an arbitrary low level. An example is now given to
illustrate this effect.

Example 5. Multiplierless Four-Channel Triplet-Based
Wavelet FBs: In this example, an four-channel multiplierless
PR triplet-based FIR wavelet FB is designed. The specifications
are identical to Example 3. With the use of (4.3), the remainder
coefficients in Tables VII and IX, are obtained. To determine
the SOPOT coefficients of the quotient coefficients using the
random search algorithm, an objective function is performed
to minimize the number of SOPOT terms while satisfying the
given specifications. The target stopband attenuation of the

analysis filter pair is 38 dB. The optimized SOPOT coefficients
of are given in Tables VIII and X and the frequency
response of the multiplierless FB is shown in Fig. 8(a)–(c).
The passband deviation (stopband attenuation) of
and are 0.0731 (38.66) dB and 0.0718 (39.01) dB,
respectively. For and , they are 0.0728 (38.03)
dB and 0.0852 (39.72) dB. It can be seen that the error at
is below dB, when the wordlength of ’s are chosen as
16 bits. The number of adders required to synthesize ,
without using MB, are 179 and 31, respectively. After using
MB, the number of adders is reduced to 92 and 20, respectively.
The multiplierless four-channel FB has a stopband attenuation
of approximately 38 dB and its phase response is approximately
linear in the passband (not shown here). The corresponding
analysis scaling function in Fig. 8(d) and the wavelet functions
(not shown here) are also quite smooth even though is imple-
mented as a 16-bit fixed-point number.
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TABLE IX
SOPOT COEFFICIENTS OF R (z), i = 0,1,2, FOR MULTIPLIERLESS FOUR-CHANNEL WAVELET FB IN EXAMPLE 5

TABLE X
SOPOT COEFFICIENTS OF Q (z), i = 0,1,2, FOR MULTIPLIERLESS FOUR-CHANNEL WAVELET FB IN EXAMPLE 5

Fig. 8. Design results of the multiplierless four-channel triplet-based FB in Example 5: Frequency responses of the analysis filter pair at (a) level 1 and (b) level
2 of the tree. (c) Frequency responses of the multiplierless four-channel analysis banks. (d) Analysis scaling function. (Originally K = K = 4).

V. CONCLUSION

New methods for the efficient design and realization of PR
two-channel triplet-based FIR FBs and wavelet bases are pre-

sented. The design problem is formulated as an SDP problem,
while the regularity conditions are expressed as a set of
linear equality constraints and they are structurally imposed
into the design problem by eliminating the redundant variables.
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Design examples demonstrate the effectiveness of the proposed
method for both linear-phase and low-delay FIR triplet FB.
The more symmetric frequency response of the triplet FBs is
exploited to construct a class of PR -channel uniform FBs
and wavelets with using a particular tree structure.
The filter lengths of the two-channel FBs down the tree are
approximately reduced by a factor of two at each level, while
the transition bandwidths are successively increased by the
same factor. This triplet-based uniform -channel FB has very
low design complexity and the PR condition and regularity
conditions are structurally imposed. It has considerably lower
arithmetic complexity and system delay than conventional tree
structure using an identical FB. The multiplierless realization
of these FBs using SOPOT coefficients and MB are also pre-
sented. Using a new factorization for structurally imposing the
zeros of the subfilters, new multiplierless approximation of the
triplet-based -channel wavelet FBs with SOPOT coefficients
are obtained.
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