603 research outputs found

    Second order adjoints for solving PDE-constrained optimization problems

    Get PDF
    Inverse problems are of utmost importance in many fields of science and engineering. In the variational approach inverse problems are formulated as PDE-constrained optimization problems, where the optimal estimate of the uncertain parameters is the minimizer of a certain cost functional subject to the constraints posed by the model equations. The numerical solution of such optimization problems requires the computation of derivatives of the model output with respect to model parameters. The first order derivatives of a cost functional (defined on the model output) with respect to a large number of model parameters can be calculated efficiently through first order adjoint sensitivity analysis. Second order adjoint models give second derivative information in the form of matrix-vector products between the Hessian of the cost functional and user defined vectors. Traditionally, the construction of second order derivatives for large scale models has been considered too costly. Consequently, data assimilation applications employ optimization algorithms that use only first order derivative information, like nonlinear conjugate gradients and quasi-Newton methods. In this paper we discuss the mathematical foundations of second order adjoint sensitivity analysis and show that it provides an efficient approach to obtain Hessian-vector products. We study the benefits of using of second order information in the numerical optimization process for data assimilation applications. The numerical studies are performed in a twin experiment setting with a two-dimensional shallow water model. Different scenarios are considered with different discretization approaches, observation sets, and noise levels. Optimization algorithms that employ second order derivatives are tested against widely used methods that require only first order derivatives. Conclusions are drawn regarding the potential benefits and the limitations of using high-order information in large scale data assimilation problems

    FATODE: A Library for Forward, Adjoint, and Tangent Linear Integration of ODEs

    Get PDF
    FATODE is a FORTRAN library for the integration of ordinary differential equations with direct and adjoint sensitivity analysis capabilities. The paper describes the capabilities, implementation, code organization, and usage of this package. FATODE implements four families of methods -- explicit Runge-Kutta for nonstiff problems and fully implicit Runge-Kutta, singly diagonally implicit Runge-Kutta, and Rosenbrock for stiff problems. Each family contains several methods with different orders of accuracy; users can add new methods by simply providing their coefficients. For each family the forward, adjoint, and tangent linear models are implemented. General purpose solvers for dense and sparse linear algebra are used; users can easily incorporate problem-tailored linear algebra routines. The performance of the package is demonstrated on several test problems. To the best of our knowledge FATODE is the first publicly available general purpose package that offers forward and adjoint sensitivity analysis capabilities in the context of Runge Kutta methods. A wide range of applications are expected to benefit from its use; examples include parameter estimation, data assimilation, optimal control, and uncertainty quantification

    Different Approaches to Proof Systems

    Get PDF
    The classical approach to proof complexity perceives proof systems as deterministic, uniform, surjective, polynomial-time computable functions that map strings to (propositional) tautologies. This approach has been intensively studied since the late 70’s and a lot of progress has been made. During the last years research was started investigating alternative notions of proof systems. There are interesting results stemming from dropping the uniformity requirement, allowing oracle access, using quantum computations, or employing probabilism. These lead to different notions of proof systems for which we survey recent results in this paper

    Automatic differentiation in machine learning: a survey

    Get PDF
    Derivatives, mostly in the form of gradients and Hessians, are ubiquitous in machine learning. Automatic differentiation (AD), also called algorithmic differentiation or simply "autodiff", is a family of techniques similar to but more general than backpropagation for efficiently and accurately evaluating derivatives of numeric functions expressed as computer programs. AD is a small but established field with applications in areas including computational fluid dynamics, atmospheric sciences, and engineering design optimization. Until very recently, the fields of machine learning and AD have largely been unaware of each other and, in some cases, have independently discovered each other's results. Despite its relevance, general-purpose AD has been missing from the machine learning toolbox, a situation slowly changing with its ongoing adoption under the names "dynamic computational graphs" and "differentiable programming". We survey the intersection of AD and machine learning, cover applications where AD has direct relevance, and address the main implementation techniques. By precisely defining the main differentiation techniques and their interrelationships, we aim to bring clarity to the usage of the terms "autodiff", "automatic differentiation", and "symbolic differentiation" as these are encountered more and more in machine learning settings.Comment: 43 pages, 5 figure
    • …
    corecore