
FATODE: A LIBRARY FOR FORWARD, ADJOINT, AND TANGENT
LINEAR INTEGRATION OF ODES∗

HONG ZHANG† AND ADRIAN SANDU‡

Abstract. Fatode is a fortran library for the integration of ordinary differential equations
with direct and adjoint sensitivity analysis capabilities. The paper describes the capabilities, im-
plementation, code organization, and usage of this package. Fatode implements four families of
methods – explicit Runge-Kutta for nonstiff problems and fully implicit Runge-Kutta, singly diago-
nally implicit Runge-Kutta, and Rosenbrock for stiff problems. Each family contains several methods
with different orders of accuracy; users can add new methods by simply providing their coefficients.
For each family the forward, adjoint, and tangent linear models are implemented. General purpose
solvers for dense and sparse linear algebra are used; users can easily incorporate problem-tailored
linear algebra routines. The performance of the package is demonstrated on several test problems.
To the best of our knowledge fatode is the first publicly available general purpose package that offers
forward and adjoint sensitivity analysis capabilities in the context of Runge Kutta methods. A wide
range of applications are expected to benefit from its use; examples include parameter estimation,
data assimilation, optimal control, and uncertainty quantification.

Key words. Runge Kutta methods, tangent linear model, adjoint model, sensitivity analysis.

AMS subject classifications. 97N80, 65L99, 49Q12

1. Introduction. Many dynamical systems in science and engineering are mod-
eled by ordinary differential equations (ODEs)

y′ = f (t, y; p) , t0 ≤ t ≤ tf , y(t0) = y0 .(1.1)

Here y(t) ∈ Rd is the solution vector, y0 the initial condition, and p ∈ Rm a vec-
tor of model parameters. Stiffness results from the existence of multiple dynamical
scales, with the fastest characteristic times being much smaller than the time scales
of interest in the simulation. It is well known that the numerical solution of stiff
systems requires unconditionally stable discretizations which allow time steps that
are not bounded by the fastest time scales in the system [17]. Here we assume that
the system parameters p are independent of time. In the context of the ODE system
(1.1), sensitivity analysis yields derivatives of the solution with respect to the initial
conditions or system parameters, as follows

S`(t) =
∂y(t)
∂p`

, 1 ≤ ` ≤ m.(1.2)

Two main approaches are available for computing the sensitivities (1.2). The direct
(or tangent linear) method is efficient when the number of parameters is smaller than
the dimension of the system (m � d), while the adjoint method is efficient when
the number of parameters is larger than the dimension of the system (m � d). Fur-
thermore, two distinct approaches can be taken for defining adjoint sensitivities; the
continuous adjoint (differentiate then discretize) and the discrete adjoint (discretize
then differentiate) approaches typically lead to different computational results.

∗This work is supported by the National Science Foundation through the awards NSF DMS–
0915047, NSF CCF–0916493, NSF OCI–0904397.

†Computational Science Laboratory, Department of Computer Science, Virginia Polytechnic In-
stitute and State University, Blacksburg, VA 24061 (zhang@vt.edu)

‡Computational Science Laboratory, Department of Computer Science, Virginia Polytechnic In-
stitute and State University, Blacksburg, VA 24061 (sandu@cs.vt.edu)

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Computer Science Technical Reports @Virginia Tech

https://core.ac.uk/display/10676270?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Sensitivity analysis is an essential ingredient for uncertainty quantification, pa-
rameter estimation, optimization, optimal control, and construction of reduced order
models. Only a few available software packages for the solution of ODEs have the
capability to compute sensitivities. One of the earlier packages is Odessa [19], which
performs direct sensitivity analysis. A modern package is cvodes within sundials
[26] from Lawrence Livermore National Laboratory. cvodes is able to compute direct
and continuous adjoint sensitivities. Both Odessa and cvodes are based on backward
differentiation formulas (BDF). A software based on explicit Runge-Kutta discretiza-
tions is denserks [2] which implements continuous adjoint sensitivity analysis for
non-stiff ODEs. The Kinetic PreProcessor KPP [23, 1] is a widely used tool for
the simulation of chemical kinetics, and incorporates Runge-Kutta and Rosenbrock
solvers that are endowed with tangent linear and discrete adjoint sensitivity analysis
capabilities.

In this paper we present a library of explicit/implicit Runge-Kutta and Rosen-
brock solvers for the simulation of nonstiff and stiff ODEs. The library, called fatode,
performs forward simulations, and sensitivity analysis via the discrete adjoint and the
tangent linear methods. Fatode is based on the KPP library of solvers. While the
KPP implementation is specifically aimed at chemical kinetic systems, the fatode
implementation is general and suitable for a wide range of applications.

The paper is organized as follows. Section 2 reviews several numerical integration
algorithms. Section 3 discusses the structure and implementation of fatode. The
code usage in applications is summarized in Section 4. An example is shown in Section
5, and conclusions are drawn in Section 6.

2. Numerical integration methods in fatode. Explicit Runge-Kutta meth-
ods [16] are well suited for solving nonstiff systems of ODEs. Implicit methods are
preferred for solving stiff systems due to their better numerical stability properties.
Fatode implements four families of methods: explicit Runge-Kutta, Rosenbrock,
fully implicit Runge-Kutta, and singly diagonally implicit Runge-Kutta, as well as
their tangent linear models and discrete adjoint models. The implicit methods have
been implemented in implemented in KPP [23, 1] and have proved to be very effi-
cient for solving many stiff chemical problems including CBM-IV [11], SAPRC [5] and
NASA HSRP/AESA.

Runge-Kutta methods. A general s-stage Runge-Kutta method reads [16]

Ti = tn + cj h , Yi = yn + h
s∑

j=1

ai,j f (Tj , Yj) , i = 1, . . . , s ,(2.1a)

yn+1 = yn + h

s∑
j=1

bj f (Tj , Yj) .(2.1b)

where the coefficients

A = [ai,j]1≤i,j≤s , b = [bi]1≤i≤s , c = [ci]1≤i≤s = A · 1(s,1) ,(2.2)

define the method and determine its accuracy and stability properties. Explicit
Runge-Kutta methods are characterized by the coefficients ai,j = 0 for all i and
j ≥ i. Singly diagonal implicit Runge-Kutta methods are defined by (2.1) with the
coefficients ai,i = γ and ai,j = 0 for all i and j > i. Fully implicit methods have three
stages and require a coupled solution of all of them. Detailed information on available
Runge Kutta methods is given in Table 2.1.

2

Rosenbrock methods. An s-stage Rosenbrock method [16] is given by the formulas

Ti = tn + αih , Yi = yn +
i−1∑
j=1

αi,j kj ,(2.3a)

ki = h f (Ti, Yi) + hfy(tn, yn) ·
i∑

j=1

γi,jkj + γih
2ft(tn, yn), i = 1, . . . , s ,(2.3b)

yn+1 = yn +
s∑

j=1

bjkj ,(2.3c)

where particular methods are defined by their coefficients

α = [αi,j]1≤i,j≤s , b = [bi]1≤i≤s , γ = [γi,j]1≤i,j≤s ,(2.4)

and

αi =
s∑

j=1

αi,j , γi =
s∑

j=1

γi,j ; γi,i = γ , αi,i = 0 ; αi,j = γi,j = 0 , ∀ i > j .

We have γi,i = γ for all i for computational efficiency. Here fy = ∂f/∂y repre-
sents the Jacobian of the ODE function, as discussed in Appendix A. We will denote
matrices and tensors by bold symbols, and vectors and scalar by regular symbols.
Rosenbrock methods are attractive because of their outstanding stability properties
and conservation of the linear invariants of the system. They typically outperform
backward differentiation formulas such as those implemented in SMVGEAR [10] for
medium accuracy solutions.

Detailed information regarding these methods is given in Table 2.1.

3. Implementation. This section summarizes several implementation aspects
of fatode. We start with the the forward integrators, and continue with the imple-
mentation of the tangent linear models and discrete adjoint models. The derivation of
the sensitivity models can be found in earlier literature [24, 6]. We also describe linear
algebra olvers and error control schemes in fatode, which are important factors in
determining the efficiency of the code.

3.1. Forward model integration.
Explicit Runge Kutta methods. The implementation of explicit methods is based

on (2.1). The stage vectors are computed in succession using

Y1 = yn ; Yi = yn + h
i−1∑
j=1

ai,j f(Tj , Yj) , i = 2, . . . , s .(3.1)

Matrices for solving implicit methods. The implementations of implicit methods
use the following matrices

Rn (γ, t, y) = I(d,d) − h γ fy(t , y) ,(3.2a)

R̃n (γ, t, y) =
1

h γ
I(d,d) − fy(t , y) ,(3.2b)

3

Table 2.1
Time stepping methods implemented in fatode. (ERK, FIRK, SDIRK and ROS stand for Ex-

plicit Runge-Kutta, Fully Implicit Runge-Kutta, Singly Diagonally Implicit Runge-Kutta and Rosen-
brock, respectively.)

Family Method Stages Order Stability properties

ERK

RK2(3) [16] 3 2 conditionally stable
RK3(2) [16] 4 3 conditionally stable
RK4(3) [16] 5 4 conditionally stable
DOPRI-5 [16] 7 5 conditionally stable
Verner [16] 8 6 conditionally stable
DOPRI-853 [16] 12 8 conditionally stable

FIRK

Radau-1A [17] 3 5 Stiffly-accurate
Radau-2A [17] 3 5 Stiffly-accurate
Lobatto-3C [17] 3 4 Stiffly-accurate
Gauss [17] 3 6 Stiffly-accurate

SDIRK

Sdirk-2a 2 2 L-stable
Sdirk-2b 2 2 L-stable
Sdirk-3a 3 2 Stiffly-accurate
Sdirk-4a [17] 5 4 L-stable
Sdirk-4b [17] 5 4 L-stable

ROS

Ros-2 [28] 2 2 L-stable
Ros-3 [25] 3 3 L-stable
Rodas-3 [25] 4 3 Stiffly-stable
Ros-4 [17] 4 4 L-stable
Rodas-4 [17] 6 4 Stiffly-stable

and

R̂n =

 1 − h a1,1 fy(T1, Y1) · · · −h a1,s fy(Ts, Ys)
...

. . .
...

−h as,1 fy(T1, Y1) · · · 1 − h as,s fy(Ts, Ys)

 ∈ Rds×ds .(3.2c)

Replacing each fy(Ti, Yi) in (3.2c) by fy(tn, tn) leads to the approximation:

Rn = I(ds,ds) − h A ⊗ fy(tn , yn) ≈ R̂n ,(3.2d)

where ⊗ is the matrix Kronecker product [17].
Implicit Runge-Kutta methods. To reduce the influence of round-off errors, we

apply the transformation zi = Yi − yn [17] in the formulas (2.1) to obtain

Ti = tn + ci h , zi = h
s∑

j=1

ai,j f(Tj , yn + zj) , i = 1, . . . , s ,(3.3a)

yn+1 = yn +
s∑

i=1

di zi .(3.3b)

The new coefficients are

d = [di]1≤i≤s , dT = bT · A−1 .(3.4)

4

Singly diagonally implicit Runge-Kutta methods. The stage equations (3.3a) read

zi = h

i−1∑
j=1

ai,j f(Tj , yn + zj) + h γ f(Ti , yn + zi) .(3.5)

The nonlinear systems of equations (3.5) are solved in succession for each stage i =
1, . . . , s by simplified Newton iterations of the form

Rn (γ, tn, yn) · ∆z
[k]
i = z

[k]
i − h

i−1∑
j=1

ai,j f(Tj , yn + zj)

z
[k+1]
i = z

[k]
i − ∆z

[k]
i , k = 0, 1, · · · .(3.6)

The same matrix is shared for all iterations and all stages, so that only one LU
decomposition of Rn is performed in each time step.

Fully implicit Runge-Kutta methods. Fully implicit Runge-Kutta methods require
the solution of the ds × ds nonlinear system (3.3a) [24]. With the compact notation

Z =
[
zT
1 · · · zT

s

]T
, F (Z) =

[
fT (T1, yn + z1) · · · fT (Ts, yn + zs)

]T
,(3.7)

where Z, F (Z) ∈ Rds, the nonlinear system (3.3a) can be written as

Z =
(
A ⊗ I(d,d)

)
· F (Z) .(3.8)

The system (3.8) is solved by simplified Newton iterations [17],

Rn · ∆Z [k] = Z [k] − (h A ⊗ I(d,d)) · F (Z [k])

Z [k+1] = Z [k] − ∆Z [k] , k = 0, 1, · · · .(3.9)

Note that only the Jacobian at the beginning of the time step is used in Newton’s
iterations. Following [17], our implementation of the fully implicit s-stage Runge-
Kutta method uses a transformation of the system (3.9) to a complex form such that
the costly ds-dimensional real LU decomposition is replaced by d-dimensional LU
decompositions of matrices of the form R (λi, tn, yn), where λi are the eigenvalues of
A. For the 3-stage methods implemented in fatode the coefficient matrices A have
one real and two complex conjugate eigenvalues, which leads to solving one real and
one complex d-dimensional systems.

Rosenbrock methods. For implementation purpose, we use the alternative formu-
lation [16] of the formula (2.3)

Ti = tn + αih , Yi = yn +
i−1∑
j=1

αi,j kj ,(3.10a)

R̃n (γ, tn, yn) · ki = f (Ti, Yi) +
i−1∑
j=1

ci,j

h
kj + h γi ft (tn, yn) ,(3.10b)

yn+1 = yn +
s∑

i=1

mi ki ,(3.10c)

where

[ai,j]1≤i,j≤s = α · γ−1 , [ci,j]1≤i,j≤s = diag(γ−1) − γ−1 , [mi]1≤i≤s = γ−T · b .

5

At each stage (3.10b) the solution of a linear system of dimension d × d is required.
The same matrix R̃n is shared by all the stages and one LU decomposition per step
is required.

3.2. Tangent linear model integration. Small changes δy0 in the initial con-
ditions result in small perturbations δy(t) of the solution of ODE system (1.1). Let
ẏ = δy/ ‖δy0‖ be the directions of solution change. These directions propagate for-
ward in time according to the tangent linear ODE:

ẏ′ = fy(t , y) · ẏ , t0 ≤ t ≤ tf , ẏ(t0) = ẏ0 , ẏ(t) ∈ Rd .(3.11)

The sensitivity equations (3.11) are solved forward in time together with original
ODE system (1.1). Tangent linear models are derived for direct sensitivity analysis
with each of the families of methods in fatode. Highly efficient implementations
are obtained by re-using the LU decompositions from the forward solution on the
sensitivity equations [9].

Tangent linear Runge Kutta methods. A tangent linear Runge-Kutta (2.1) method
reads

Yi = yn + h

s∑
j=1

ai,jf(Tj , Yj), Ẏi = ẏn + h

s∑
j=1

ai,j fy(Ti , Yi) · Ẏi,(3.12a)

yn+1 = yn + h
s∑

i=1

bif(Ti, Yi), ẏn+1 = ẏn + h
s∑

i=1

bi fy(Ti , Yi) · Ẏi .(3.12b)

Similar to the implementation of implicit forward integrators, we introduce the sen-
sitivity stage variables żi = Ẏi − ẏn and the sensitivity part becomes

żi − h

s∑
j=1

ai,j fy(Tj , Yj) · żj = h

s∑
j=1

ai,j fy(Tj , Yj) · ẏn , i = 1, · · · , s ,(3.13a)

ẏn+1 = ẏn +
s∑

i=1

di żi .(3.13b)

Using the compact notation (3.7) and the matrix (3.2c) the stage equations (3.13a)
can be written as

R̂n · Ż =
(
I(sd,sd) − R̂n

)
· (1s ⊗ ẏn) .(3.14)

Explicit RK methods. For ERK methods the equations (3.12a) are solved succes-
sively for each stage i = 1, · · · , s, using

Ẏ1 = ẏn ; Ẏi = ẏn + h
i−1∑
j=1

ai,j fy(Tj , Yj) · Ẏj , i = 2, · · · , s .

Singly diagonally implicit RK methods. For SDIRK methods the system (3.13a)
reduces to s independent d-dimensional linear systems that are solved successively for
each stage i = 1, · · · , s

Rn (γ, Ti, Yi) · żi = h

i−1∑
j=1

ai,j fy(Tj , Yj) · (ẏn + żj) + h γ fy(Ti , Yi) · ẏn .

6

fatode allows users to choose to solve the linear system (3.15) directly at the expense
of an additional LU decomposition of the matrix Rn (γ, Ti, Yi) per stage, or to apply
simplified Newton iterations of the form

Rn (γ, tn, yn) · ∆ż
[m]
i = ż

[m]
i − h

i∑
j=1

ai,j fy(Tj , Yj) · (ẏn + ż
[m]
j)

ż
[m+1]
i = ż

[m]
i − ∆ż

[m]
i , m = 0, 1, · · · .(3.15)

The LU decomposition of the matrix Rn (γ, tn, yn) is also necessary in forward inte-
gration. So the equations (3.15) re-use the LU decomposition which is available after
the equations (3.6) are calculated in each step.

Fully implicit RK methods. For fully implicit Runge-Kutta methods two options
are available for solving the system (3.14). One is to construct the ds × ds linear
system (3.14) explicitly and solve it directly by factorizing the matrix R̂n.

The other is to apply simplified Newton iterations of the form

Rn · ∆Ż [m] = R̂n ·
(
1s ⊗ ẏn + Ż [m]

)
− 1s ⊗ ẏn

Ż [m+1] = Ż [m] − ∆Ż [m] , m = 0, 1, · · · .(3.16)

The matrix Rn of the resulting ds × ds linear system is available from the forward
solution process, i.e., the calculations of the equations (3.9). The real and complex
LU decompositions can be reused. According to our experience, the second option is
usually more efficient than the first one for large systems.

Rosenbrock methods. The tangent linear Rosenbrock method consists of the for-
mula formula (3.10) plus the sensitivity part, which is obtained by differentiating the
formula (3.10). In each step we solve the combined set of equations

R̃ (hγ, tn, yn) · ki = f (Ti, Yi) +
i−1∑
j=1

ci,j

h
kj + hγikift(tn, yn) ,(3.17a)

R̃ (hγ, tn, yn) · k̇i = fy (Ti, Yi) ·

ẏn +
i−1∑
j=1

ai,j k̇j

+
i−1∑
j=1

ci,j

h
k̇j(3.17b)

+ (ẏn · fy,y(tn, yn)) · ki + h γi fy,t(tn, yn) · ẏn ,

yn+1 = yn +
s∑

i=1

mi ki,(3.17c)

ẏn+1 = ẏn +
s∑

i=1

mi k̇i .(3.17d)

The stage vectors k̇i are obtained in succession by solving a sequence of linear sys-
tems, all of which re-use the LU decomposition of R̃ (hγ, tn, yn) performed in (3.10).
Formula (3.17b) involves the Hessian tensor fy,y(tn, yn). In practice, an analyti-
cal Hessian tensor is difficult to obtain, and its evaluation is costly in both CPU
time and memory storage. Note that the above equation only needs the product
(ẏn · fy,y(tn, yn)) · ki. Such terms can be obtained efficiently using automatic differ-
entiation [4, 13] twice, in forward over reverse mode.

7

3.3. Adjoint model integration. Adjoint sensitivity analysis provides an ef-
ficient alternative to the direct method when gradients of a relatively few derived
functionals with respect to many model parameters required. The continuous (dif-
ferentiate then discretize) and the discrete (discretize-then-differentiate) adjoint ap-
proaches lead, in general, to different computational results [27]. The continuous
adjoint approach requires interpolation to obtain intermediate state variables at the
times required by the the backward integration, which brings additional computa-
tional effort. The discrete adjoint approach follows exactly the same sequence of time
steps as the forward integration, but in reverse order.

Fatode implements discrete adjoints of all the methods. Such discrete adjoints
have good theoretical properties, in the sense that they are consistent discretizations
of the adjoint ODE [21, 22]. For efficiency our implementation distinguishes between
sensitivities with respect to initial conditions and sensitivities with respect to param-
eters. We first discuss sensitivities with respect to initial conditions.

The goal is to evaluate the sensitivities a scalar function of interest

Ψ = g(y(tF))(3.18)

with respect to the initial conditions. The discrete adjoint model equations are ob-
tained directly from the discrete forward model equations

yn+1 = Φn(yn), n = 0, . . . , N − 1(3.19)

where Φn represents the one-step numerical integration formula which advances the
solution from tn to tn+1.

The discrete adjoint model equations propagates the adjoint variables λn back-
wards in time

λN = gT
y (yN) ; λn = Φn

y(yn)T · λn+1, n = N − 1, . . . , 1.(3.20)

The adjoint solution at the initial time represents the sensitivities

(∂Ψ/∂y0)
T = λ0.(3.21)

For details on derivation see [23, 21].
The discrete adjoint Runge-Kutta method [15] solving the discrete adjoint equa-

tions (3.20) reads

ui = h fT
y (Ti, Yi) ·

biλn+1 +
s∑

j=1

aj,iuj

 , i = s, . . . , 1 ,(3.22a)

λn = λn+1 +
s∑

j=1

uj .(3.22b)

The stage equations (3.22a) form a ds× ds linear system involving the transpose
of matrix (3.2c):

U =
[
uT

1 · · ·uT
s

]T
,

R̂T
n · U = h

[
b1λ

T
n+1 fy (T1, Y1) · · · bsλ

T
n+1 fy (Ts, Ys)

]T
.(3.23)

8

Explicit RK methods. The stage equations (3.22a) are solved in succession for
stages s down to 1:

us = h bs fT
y (Ts, Ys) λn+1 ,

ui = h fT
y (Ti, Yi) ·

bi λn+1 +
s∑

j=i+1

aj,i uj

 , i = s − 1, . . . , 1 .(3.24)

Each stage i requires the computation of the Jacobian fy(Ti, Yi), forming the vector
bi λn+1 +

∑s
j=i+1 aj,iuj from previously computed stages us . . . ui+1, and performing

one Jacobian vector product.
Singly diagonally implicit Runge-Kutta methods. For SDIRK methods the s stages

of the system (3.22a) are solved successively from the last stage to the first. Each
stage requires the solution of a different linear system:

Rn(γ, Ti, Yi) · ui = h fT
y (Ti, Yi) ·

bi λn+1 +
s∑

j=i+1

aj,iuj

 , i = s, . . . , 1 .(3.25)

Fatode offers two options: to form and solve one linear system (3.25) per stage, or
to employ simplified Newton iterations of the form (3.15) and re-use the LU decom-
position of Rn(γ, tn, yn) for all stages.

Fully implicit Runge-Kutta methods. For the fully implicit Runge-Kutta methods
the ds × ds system (3.23) is fully coupled. fatode offers two approaches to solve it.
The first is to build and solve directly (3.23) via a ds × ds LU decomposition of R̂n.
The second approach uses simplified Newton iterations of the form (3.14), where R̂n

is replaced by Rn in (3.23), and the transformation to real and complex systems is
performed. The real and complex LU factorizations associated with the matrix Rn

are re-used in all iterations. These factorizations are computed during the forward
solution, and in principle they can be checkpointed. The tradeoff between the size of
the LU factorizations to store and the time needed to recompute them will determine
the best strategy.

Rosenbrock methods. The discrete Rosenbrock adjoint [1] is

R̃T (hγ, tn, yn) · ui = mi λn+1 +
s∑

j=i+1

(
aj,i vj +

cj,i

h
uj

)
,(3.26a)

vi = fT
y (Ti , Yi) · ui , i = s, . . . , 1 ,(3.26b)

λn = λn+1 +
s∑

i=1

(ui · fy,y(tn, yn)) · ki + hfT
y,t(tn, yn) ·

s∑
i=1

γiui +
s∑

i=1

vi .(3.26c)

The linear system (3.26a) can be solved directly at each stage. Users have to supply
a routine for calculating the term (ui · fy,y(tn, yn)) · ki, whose meaning is explained
in Appendix A. Automatic differentiation tools like TAMC [13] provide considerable
help: the product between the Hessian transposed times vector can be obtained by
two consecutive runs of TAMC in forward mode.

Checkpointing. The adjoint model requires two runs. First the forward code
performs a regular integration of the ODE system. At each step the time tn, the
step size h, the state vector yn, and the intermediate stage vectors zi or ki are all
saved in checkpoints. Next, the discrete adjoint code is run backward in time and

9

traces the same sequence of steps, but in reverse order. At each step, the data in the
checkpoint storage is retrieved and used to construct the adjoint system. The results
of LU factorizations can, in principle, be checkpointed and reused in the adjoint
calculations. This is not done in our implementation, due to the following reasons.
The memory and input/output costs for storing LU factors can be extremely large
when the system is large or when many steps are taken. Next, fatode is designed
such that the details of the linear solver are transparent to the main integrator. This
transparency cannot be preserved when one builds and manages a stack for data
structures that are specific to particular linear solvers.

3.4. Adjoint sensitivities with respect to a vector of parameters. We
now consider the case where the adjoint sensitivity is computed with respect to a
time-independent vector of parameters p ∈ Rm which appears in the right hand side
of (1.1). The quantity of interest is a scalar derived function in the general form

Ψ = g (y(tF), p) +
∫ tF

t0

r (t, y(t), p) dt .(3.27)

To account for the evolution of the parameters we add the formal equations for the
parameter evolution p′ = 0. To compute the cost function (3.27) we add the quadra-
ture variables q ∈ R whose evolution is defined by q(t0) = 0 and q′ = r (y, p). We
have that Ψ = g (y(tF), p) + q(tF). The equation (1.1) becomes y

p
q

′

=

 f (t, y, p)
0

r (t, y, p)

 , t0 ≤ t ≤ tf ;

 y(t0)
p(t0)
q(t0)

 =

 y0

p
0

 .(3.28)

As shown in Appendix C the numerical solution of (3.28) provides the discrete yn and
qn. The discrete adjoint model equations calculate the adjoint variables λn and µn

backward in time, such that

λN = gT
y (yN , p) , µN = gT

p (yN , p) ; λ0 = (∂Ψ/∂y0)
T

, µ0 = (∂Ψ/∂p)T
.(3.29)

For details on derivation see [21] and Appendix C .
Runge-Kutta methods. The derivation of sensitivities with respect to parameters

for Runge Kutta methods is detailed in Appendix D. Consider the Runge-Kutta
method (2.1) applied to the extended ODE system (3.28)

Yi = yn + h
s∑

j=1

ai,j f (Tj , Yj , p) , i = 1, . . . , s ,(3.30a)

yn+1 = yn + h
s∑

j=1

bj f (Tj , Yj , p) ,(3.30b)

qn+1 = qn + h

s∑
j=1

bj r (Tj , Yj , p) .(3.30c)

Note that, since r does not depend on q, there is no need to compute the stage values
for the quadrature variable.

As shown in Appendix D the discrete adjoint Runge-Kutta method (D.2) reads

ui = h fT
y (Ti, Yi, p) ·

bi λn+1 +
s∑

j=1

aj,i uj

+ h bi rT
y (Ti, Yi, p) ,(3.31a)

10

vi = h fT
p (Ti, Yi, p) ·

bi λn+1 +
s∑

j=1

aj,i uj

(3.31b)

+h bi rT
p (Ti, Yi, p) , i = s . . . 1 ,

λn = λn+1 +
s∑

j=1

uj ,(3.31c)

µn = µn+1 +
s∑

j=1

vj .(3.31d)

The stages ui are obtained by solving the system in a similar way as solving sys-
tem (3.24) and the implementation differs between SDIRK and fully implicit 3-stage
Runge-Kutta method. Then vi can be readily obtained from the right-hand side
calculation.

Rosenbrock methods. Applying the Rosenbrock method (3.10) to the extended
system (3.28) gives the following formula for evaluating the quadrature term in the
cost functional (3.27):

`i = hγ

r(Ti, Yi) +
i−1∑
j=1

ci,j

h
`j + hγirt + ry · ki

 ,(3.32a)

qn+1 = qn +
s∑

i=1

mi`i .(3.32b)

Equation (3.32) is evaluated simultaneously with the ODE integration. The deriva-
tion of the adjoint Rosenbrock method for computing sensitivities with respect to
parameters is given in Appendix E.

R̃T
n (γ, tn, yn) ui = ûi rT

y (tn, yn, p) + mi λn+1 +
s∑

j=i+1

(
aj,i vj +

cj,i

h
uj

)
vi = h fT

y (Ti, Yi, p) · ui + h ûi rT
y (Ti, Yi, p)

vi = h fT
p (Ti, Yi, p) · ui + h ûi rT

p (Ti, Yi, p)

λn = λn+1 +
s∑

i=1

(
(ui · fy,y) · ki + (ûi · ry,y) · ki

)
+h fT

y,t(tn, yn, p) ·
s∑

i=1

γiui + h rT
y,t(tn, yn, p) ·

s∑
i=1

γiui +
s∑

i=1

vi

µn = µn+1 +
s∑

i=1

(
(ui · fp,y) · ki + (ûi · rp,y) · ki

)
+h fT

p,t(tn, yn, p) ·
s∑

i=1

γiui + h rT
p,t(tn, yn, p) ·

s∑
i=1

γiui +
s∑

i=1

vi .

where

û = γ · diag(γ−1) · γ−T · b .

11

3.5. Linear solvers. The most computationally intensive part in solving large-
scale ODE systems by implicit methods is the solution of linear systems at each
step. Linear systems arise from the simplified Newton iterations applied to solve
the nonlinear systems in case of fully implicit Runge-Kutta methods and SDIRK
methods. For Rosenbrock methods, linear systems appear directly in the formula
(2.3). In general, all implicit time stepping methods in fatode require the solution
of linear systems with matrices R or R̃ defined in (3.2). These matrices inherit the
sparsity structure of the system Jacobian.

Best efficiency is achieved when taking advantage of the problem-specific char-
acteristics. Consequently, fatode was designed to allow users to provide their own
linear solvers and sparse data structures. The linear system can be solved by either
direct methods or iterative methods. Direct methods perform LU factorizations which
are reused for efficiency. We have incorporated three direct methods in current ver-
sion of fatode. For dense systems calls to lapack [3] routines are provided. For
large sparse systems, substantial memory and execution time benefits can be gained
by calling the direct sparse solvers umfpack [7] and superlu [8] and representing
the sparse matrices in a compressed column format. Interfaces to both these codes
are provided. Iterative methods can be more efficient than direct methods for solving
extremely large linear systems regardless of the reuse of LU decompositions. The
choice between direct and iterative methods depends on the specific properties of the
problems. Fatode does not provide iterative solvers; these need to be supplied by
the user.

3.6. Step size control. Variable step size control is routinely adopted by gen-
eral ODE solvers to control numerical errors and maximize efficiency. Fatode’s for-
ward integrators use estimates of the truncation error to decide whether the step is
accepted or rejected and to compute the next step size. The maximum number of
integration steps before unsuccessful return can be specified by the user.

Two different error estimation options are provided for fully implicit Runge-Kutta
methods. One is the classical error estimation [17] which uses an embedded third order
method based on an additional explicit stage. The embedded solution is

ŷn+1 = yn + h

(
b̂0 f(tn, yn) +

s∑
i=1

b̂i f(tn + ci h, yn + zi)

)
(3.33)

where the increment vectors zi are already computed in previous stages. The second
estimator uses two additional stages: an explicit stage at the beginning of the time
step and another SDIRK stage which re-uses the LU decomposition from the solution
of the main integrator. The SDIRK stage reads

ŷn+1 = yn + h

(
b̂0 f(tn, yn) +

s∑
i=1

b̂i f(tn + cih, yn + zi) + γ f(tn + h, yn + zs+1)

)
.

The coefficients are chosen such that the order of consistency of ŷn+1 is p̂ = p − 1,
where p is the order of yn+1. The difference vector Est = ŷn+1−yn+1 is used as a local
error estimator. Based on our experience, the classical error estimator is inaccurate
for low relative tolerances, while the SDIRK error estimator yields very good results
and keeps the accuracy of the solution below the specified tolerance. For the ERK,
SDIRK, and Rosenbrock methods the classical error estimators based on embedded
solutions are implemented; they proved to work well in practice.

12

The local error test is performed as follows. Let Tolk = atolk + rtolk · |yn+1,k|,
where atol and rtol are the absolute and relative error tolerance specified by users and
|yn+1,k| is the absolute value of the k-th component of yn+1. The relative and absolute
error tolerances can be either vector or scalar (in which case the same tolerance values
are used for all components k). The local error test takes the form

Err =

√√√√1
d

d∑
k=1

(
Estk
Tolk

)2

< 1 .(3.34)

If the test passes the step size is accepted, otherwise it rejected and the step is re-
computed. The new step size, for both accepted and rejected cases, is given by the
formula

hnew = hold · min
(
Fmax, max

(
Fmin,Fsafe · Err−1/(p̂+1)

))
,

where Fmax is the upper bound on step increase factor, Fmin the lower bound on step
decrease factor, and Fsafe is a safety factor. The default values of these factors depend
on the specific method. All of them can be changed by the user in the parameter
settings. If the step size is rejected at the first step, the step increase factor Fmax is
set to 1. and the step size is reduced by a factor of 10. Furthermore, the step size can
be constrained by minimum (hmin) and maximum (hmax) values. The starting step
size hstart can be specified by the user.

For the tangent linear model integration fatode provides two options for con-
trolling errors in the sensitivities. The first option is to use only the forward error
estimates for step size control. The second option is to estimate the truncation errors
for both the forward solution and the tangent linear model solution. The solution er-
ror is taken as the maximum between the forward truncation error and the truncation
error of any column of the sensitivities. This solution error is then used to control the
step size.

The discrete adjoint model integration traces the same sequence of steps as the
forward integration, in reverse order. Therefore, the choice of the step sizes is com-
pletely determined during the forward integration, and the accuracy of the adjoint
solution will depend on the error control performed during the forward run.

3.7. Code organization. Fatode implements four types of methods: explicit,
fully implicit, and singly diagonally implicit Runge-Kutta methods, and Rosenbrock
methods. For each family of methods, a module is given for the main integrator,
a module for linear system solver interface, and a set of modules for generic linear
system solvers. They form the basic structure shown in Figure 3.1.

The main integration module provides the basic time stepping framework, and
is independent of the linear system solver. The forward integrator calls the user-
supplied right-hand side function and Jacobian and accesses the linear system solver,
in order to compute the ODE solution. The tangent linear integrator and the adjoint
integrator require users to also specify the parameters of interest as additional inputs.
The tangent linear integrator, by default, considers the initial conditions of the ODE
system as the parameters of interest and computes the sensitivity of the ODE solution
with respect to them. The adjoint integrator, by default, computes the sensitivity of
an objective function Ψ with respect to the initial conditions. The function and
its derivatives are supplied by the user; function derivatives are used to define the
adjoint initial conditions, see (3.20) and (C.3). Fatode also implements sensitivities

13

Fig. 3.1. Overall structure of fatode

of a general cost function (3.27) with respect to parameters other than the initial
conditions (e.g., reaction coefficients in a chemical kinetic ODE system). This version
of adjoint code is based on the techniques described in Section 3.4.

The linear system solver module provides interfaces to generic linear solvers, which
can be called seamlessly by the routines in the integrator modules. Specifically, we pro-
vide interfaces to the following four generic routines: LS Init, LS Decomp, LS Solve,
and LS Free. LS Init deals with initialization and memory allocation required by
the specific linear solver. LS Decomp performs the LU decomposition, and LU Solve
solves the triangular systems by substitution. LS Free frees the memory allocated
and clears the objects created during the initialization stage. The main integrator
makes calls to these functions without having to consider the implementation details
of these routines; many linear algebra packages can be used without having to mod-
ify the time stepping code. The user can choose one of the linear solvers provided
(lapack, umfpack, superlu), or can add a new linear solver by providing their
own implementation and add it to this module. The linear system solver module
also contains several routines related to computing the Jacobian and its transpose,
and taking the product of the Jacobian (or its transpose) with a vector vector. The
implementation of these operations depends critically on the data structures used to
represent the Jacobian. For example, Jacobian matrix could be stored in either dense
format or in one of the many available sparse formats, and each representation leads
to a totally different implementation. For computational efficiency users should to
take advantage of the appropriate data structure for the Jacobian matrix when they
add a new linear solver. All the required code modifications are done within this
single module.

Different families of methods require solving different types of linear systems.
Fully implicit Runge-Kutta methods involve real and complex linear systems of di-
mension d× d, or real linear systems of dimension ds× ds. Singly diagonally implicit
Runge-Kutta and Rosenbrock methods deal with only real-valued linear systems of
dimension d × d. Jacobian related operations also vary greatly between the three
families of implicit methods. To manage this complexity we provide individual linear
solver modules for each of the implicit time stepping families in fatode.

The linear system modules in fatode currently include three linear solvers: la-
pack [3], umfpack [7] and superlu [8]. Each requires its own data format, e.g., a

14

full matrix is used with the lapack version, while a compressed column sparse matrix
is needed with umfpack or superlu versions. The existing linear solvers can be used
as templates for users who wish to add their own. A new solver requires the user to
provide the four basic solution routines, as well as the Jacobian related routines if
necessary.

4. Code usage. This section discusses the usage of fatode for forward ODE
integration, direct sensitivity analysis via tangent linear models, and computing sen-
sitivities of a cost function with respect to initial conditions and specified parameters
via adjoint models. The user interface is very similar to classic ODE solvers such
as lsode, vode, radau5. A uniform interface is provided for all four integration
families in fatode. This interface allows users to control nearly every aspect of the
solution process, such as method selection, step size adjustment, error estimation,
convergence of simplified Newton iterations, and so on.

4.1. ODE integration. The call to the integrator routine is as follows:

CALL INTEGRATE(
TIN ,TOUT,NVAR,NNZERO,VAR,RTOL,ATOL,FUN,ICNTRL,
RCNTRL, ISTATUS,RSTATUS, IERR)

All arguments except ISTATUS, RSTATUS, IERR are input arguments. ICNTRL,
RCNTRL, ISTATUS, RSTATUS, IERR are optional. The arguments have the fol-
lowing meaning:

TIN start time
TOUT end time
NVAR the number of ordinary differential equations to be solved
NNZERO number of non-zero elements in the Jacobian matrix
VAR a vector of length NVAR containing the initial values of the de-

pendent variables. Upon return, VAR is the numerical solution
at the last step.

RTOL relative error tolerance
ATOL absolute error tolerance
FUN the name of the user-supplied subroutine that computes the f

in the ODE
ICNTRL an optional integer-valued array containing input parameters
RCNTRL an optional real-valued array containing input parameters
ISTATUS an optional integer-valued array containing output statistics
RSTATUS an optional real-valued array containing output statistics
IERR job status upon return

The value of variable NNZERO is only needed in the case that a sparse linear solver
is used. ICNTRL and RCNTRL provide a wide range of options for users to tune
the behavior of the integrator. The first four elements in ICNTRL and the first seven
elements in RCNTRL are general options which apply to all families. ICNTRL(1) in-
dicates whether the system is autonomous. ICNTRL(2) indicates whether ATOL and
RTOL are vectors or scalars. ICNTRL(3) allows the user to select a particular method
within each family. ICNTRL(4) specifies maximum number of integration steps be-
fore unsuccessful return. RCNTRL(1-7) control the behavior of the integration step
size adjustment process.

Some switches are specific to certain families of methods. Simplified Newton iter-
ations are used in fully implicit and singly diagonally implicit Runge-Kutta methods.

15

For these two families, users can specify the maximum number of Newton iterations,
stopping criterion, bounds on step decrease, increase, and on step rejection. Default
values are assigned to these parameters after careful experimenting and using [16].
Additional options regarding step size control and error estimation are provided for
the fully implicit Runge-Kutta family. In this family two step-size strategies are im-
plemented: the classical approach and the modified predictive controller [14]. There
are also two strategies implemented for error estimation: the classical error estima-
tion [16] using the embedded third order method based on an additional explicit stage,
and an error estimator based on an additional SDIRK stage which re-uses the real
LU decomposition from the main method.

4.2. Tangent linear methods and forward sensitivity calculations. The
call to the tangent linear model integrator is as follows:

CALL INTEGRATE TLM(
NVAR,NTLM,NNZERO,Y,Y TLM,TIN ,TOUT,ATOL TLM,RTOL TLM,
ATOL,RTOL,FUN,ICNTRL,RCNTRL, ISTATUS,RSTATUS, IERR)

There are four more arguments compared to forward integrator: NTLM specifies the
number of sensitivity coefficients to be computed, Y TLM contains sensitivities of
Y with respect to the specified coefficients, and ATOL TLM and RTOL TLM are
used to calculate error estimates for sensitivity coefficients if the switch ICNTRL(9)
is set to 1. All the options of the forward code also apply to TLM code. Several
TLM-specific options are as follows:

• use forward error estimation only, or control the truncation errors for both
the forward and the sensitivity solutions; and

• control the convergence of TLM simplified Newton iterations (3.15), (3.16),
for fully implicit Runge-Kutta and SDIRK families.

The TLM integrators generate sensitivity results along with the numerical solution of
forward ODE system. When sensitivities of y(t) with respect to fixed model param-
eters are desired the augmenting technique described in Section 3.4 can be applied.
Note that the argument list for the Rosenbrock method includes the additional func-
tion HESS VEC for calculating the Hessian times vector term in (3.17b).

4.3. Adjoint methods and discrete adjoint sensitivity calculations. The
call to the adjoint model integrator is as follows:

CALL INTEGRATE ADJ(
NVAR,NP,NADJ,NNZERO,Y, Lambda ,Mu,TIN ,TOUT, ATOL adj ,
RTOL adj ,ATOL,RTOL,FUN,JAC,ADJINIT ,HESSTR VEC,JACP,
DRDY,DRDP,HESSTR VEC F PY,HESSTR VEC R PY,HESSTR VEC R,
ICNTRL U,RCNTRL U, ISTATUS U,RSTATUS U,Q,QFUN)

The integer arguments NADJ and NP specify the number of cost functionals and
the number of system parameters for which adjoints are evaluated simultaneously.
Lambda (of dimension NVAR × NADJ) and Mu (optional variable of dimension NP
× NADJ) contain the sensitivities of the cost functional(s) with respect to the initial
conditions and system parameters respectively. ADJINIT is a routine provided by
users to initialize the adjoint variables; it is called after the forward run ends, and
before the backward run starts. The optional variable Q represents the quadrature
term in the cost functional and the optional routine QFUN computes the integrand
for the quadrature term. JACP, DRDY, DRDP are optional routines to calculate the
derivatives fp, ry, and rp discussed in Section 3.4.

16

Several additional optional arguments (with names beginning with HESS), per-
form Hessian related operations and are only available in the interface for the Rosen-
brock methods. The behavior of the program is controlled by the user through these
optional arguments.

• Mu and JACP are required when the sensitivities with respect to system
parameters are desired.

• Q and QFUN are required when the cost functional(s) contain(s) a quadrature
term. Upon completion Q stores the value of the quadrature term at the final
step.

• DRDY (DRDP) are required when the cost functional(s) contain(s) a quadra-
ture term and the sensitivities with respect to initial conditions (or system
parameters, respectively) are desired.

The integrator performs a forward run from t0 (specified by TIN) to tF (specified
by TOUT) followed by a backward, adjoint run from tF to t0. ATOL and RTOL
define the tolerances for the forward run while ATOL ADJ and RTOL ADJ for the
backward run. Note that ATOL ADJ and RTOL ADJ control only the convergence
of the iterations, not the time steps since the backward run follows exactly the same
sequence of time steps as the forward run in reverse order.

If the simplified Newton iterations for solving the adjoint stage variables do not
converge, the code switches automatically to a direct solution method (3.23) – at the
expense of additional LU decompositions. The other options for adjoint methods are
the same as with the forward code.

5. Numerical experiments. In this section we illustrate the capabilities of
fatode and evaluate the performance of each family of methods. We compare fatode
with the well established code cvode and cvodes within sundials [18] for both the
ODE solution, and direct and adjoint sensitivity analysis. In addition, we assess
the efficiency of sparse linear solvers incorporated in fatode by comparing their
performance with lapack full linear solvers. All the experiments are performed on
a 8-core (1.86Ghz) Intel Xeon workstation running Fedora 14 (x86 64) Linux. PGI
fortran Version 7.2-5 is used for compilation, with level O3 optimization. Unless
stated otherwise, the default settings for parameters are used in all fatode calls.

We consider the two-dimensional Saint-Venant system of shallow water equations

∂

∂t
h +

∂

∂x
(uh) +

∂

∂y
(vh) = 0,

∂

∂t
(uh) +

∂

∂x
(u2 +

1
2
gh2) +

∂

∂y
(uvh) = 0,(5.1)

∂

∂t
(vh) +

∂

∂t
(uvh) +

∂

∂y
(v2h +

1
2
gh2) = 0,

on the spatial domain Ω = [−3, 3]2, where u(t, x, y), v(t, x, y) are the components of
the velocity field, h(t, x, y) is the fluid layer thickness, and g denotes the standard
value of the gravitational acceleration.

The shallow water equations (5.2) are converted to a semi-discrete form using
third order upwind finite differences. The spatial domain is covered by a grid of size
40× 40, resulting in an ODE system of dimension 40× 40× 3 = 4800 which is solved
by fatode.

5.1. ODE solution. Cvode [18] is a general-purpose ODE solver which uses
the Adams-Moulton method for non-stiff ODE systems and the BDF method for

17

15 22 32 47 68 99 145 211 308 450
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Number of steps

R
el

at
iv

e
er

ro
r

RK
SDIRK
ROS
CVODE

(a) Relative error vs number of steps

20 29 43 64 94 138 204 300 441 650
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CPU time (in seconds)

R
el

at
iv

e
er

ro
r

RK
SDIRK
ROS
CVODE

(b) Relative error vs CPU time

Fig. 5.1. Work-precision diagrams for the forward integration of the shallow water equations
(5.2) over the time interval [t0, tF] ≈ [0, 0.11] using stiff integrators. Comparison is made be-
tween FIRK, SDIRK, and Rosenbrock methods infatode with the BDF method in cvode. Differ-
ent points on the plots correspond to different absolute and relative tolerances levels in the range
10−2, . . . , 10−7.

stiff ODE systems. Both methods are implemented in a variable-order variable-step
form. In our test, we choose the option of the BDF method for the comparison
with implicit methods in fatode and the option of the Adams-Moulton method for
the comparison with explicit Runge-Kutta methods in fatode. From each family of
implicit integrators in fatode we select a representative fourth-order method for the
tests: Lobatto3C (fully implicit Runge-Kutta), Rodas4 (Rosenbrock), and Sdirk-4a
(singly diagonally implicit Runge-Kutta). The Gustafsson predictive error controller
is used for all integrators. An additional SDIRK stage was used in the error estimator
in the fully implicit Runge-Kutta integrator. For the explicit Runge-Kutta family we
select the fifth-order seven-stage method DOPRI5.

Since solution of linear systems dominates the computational cost of implicit
integration, especially for large-scale ODE systems, it is necessary to use the same
linear solvers for both cvode and fatode for a fair performance comparison. In our
comparison experiments we use the direct linear solver (dgetrf and dgetrs) from
lapack. In all cases, the full Jacobian is supplied.

We vary both absolute and relative error tolerances from 10−2 to 10−7 to obtain
solutions of different levels of accuracy (the absolute and relative error tolerances
are equal to each other). A reference solution is obtained by using lsode [20], a
well known but relatively slow ODE solver, with a very tight relative and absolute
tolerances of 10−9. The relative error is defined in the L2 norm:

err =
‖ytF

− yref‖2

‖yref‖2

(5.2)

where ytF is the numerical solution at the final step and yref is the reference solution
at tF . The work-precision diagrams for the stiff solvers are shown in Figure 5.1. The
results indicate that singly diagonally implicit and fully implicit Runge-Kutta meth-
ods implemented in fatode outperform the BDF method implemented in cvode,
requiring considerably less time steps to reach a desired accuracy. The Rosenbrock
method is also more efficient than cvode for accuracy levels below 10−6 . The work-
precision diagrams for the non-stiff solvers are shown in Figure 5.2. For the same level
of accuracy, the explicit Runge-Kutta method in fatode takes fewer steps than the

18

20 25 31 39 49 61 77 96 120 150
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

Number of steps

R
el

at
iv

e
er

ro
r

ERK
CVODE

(a) Relative error vs number of steps

80 100 125 157 196 245 307 383 480 600
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

Number of right−hand side evaluations

R
el

at
iv

e
er

ro
r

ERK
CVODE

(b) relative error vs number of right-hand side
evaluations

25 48 94 181 350
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

CPU time (in milliseconds)

R
el

at
iv

e
er

ro
r

ERK
CVODE

(c) Relative error vs CPU time

Fig. 5.2. Computational statistics for the forward integration of the shallow water equations
(5.2) over the time interval [t0, tF] ≈ [0, 0.11] using nonstiff integrators. Comparison is made
between the explicit RK method in fatode with the Adams-Moulton method in cvode. Different
points on the plots correspond to different absolute and relative tolerances levels in the range 0.3 ×
10−2, . . . , 0.3 × 10−7.

Adams-Moulton method in cvode, but the cost per step is higher. The performance
is similar in terms of CPU time.

5.2. Direct sensitivity analysis. We now calculate the sensitivities of all solu-
tion components at the final time with respect to the initial value of the first solution
component ∂yi(tF)/∂y1(t0), i = 1 . . . n using tangent linear model integration. The
fatode results are compared against those obtained with cvodes [26], an extension
of cvode capable to perform sensitivity analysis. The lapack linear solvers are used
in both cvodes and fatode.

Tangent linear model results with stiff integrators are shown in Figure 5.3 and
5.4). The three implicit methods in fatode and cvodes require nearly the same
number of LU decompositions for relative errors below 10−4. The performance of the
SDIRK and Rosenbrock methods is comparable to that of the BDF method in cvodes.
The fully implicit Runge-Kutta method is nearly three times more costly because it
requires either solving a large real-valued system or solving a complex-valued system.
It is also observed that fatode saves a considerable number of steps and right-hand
side evaluations. Tangent linear model results with non-stiff integrators are shown in
Figure 5.4. A finite difference approximation to the product of Jacobian matrix and

19

5 7 9 11 15 20 26 35 46 60
10

−5

10
−4

10
−3

10
−2

10
−1

Number of steps

R
el

at
iv

e
er

ro
r

RK_TLM
SDIRK_TLM
ROS_TLM
CVODES_TLM

(a) Relative error vs number of steps

4 5 7 9 11 14 19 24 31 40
10

−5

10
−4

10
−3

10
−2

10
−1

Number of LU decompositions

R
el

at
iv

e
er

ro
r

RK_TLM
SDIRK_TLM
ROS_TLM
CVODES_TLM

(b) Relative error vs number of LU decomposi-
tions

30 39 50 65 83 108 139 180 232 300
10

−5

10
−4

10
−3

10
−2

10
−1

Number of right−hand side evaluations

R
el

at
iv

e
er

ro
r

RK_TLM
SDIRK_TLM
ROS_TLM
CVODES_TLM

(c) Relative error vs number of right-hand side
evaluations

100 135 183 247 333 450 608 822 1110 1500
10

−5

10
−4

10
−3

10
−2

10
−1

CPU time (in seconds)

R
el

at
iv

e
er

ro
r

RK_TLM
SDIRK_TLM
ROS_TLM
CVODES_TLM

(d) Relative error vs CPU time

Fig. 5.3. Computational statistics for the tangent linear model integration of the shallow water
equations (5.2) over the time interval [t0, tF] ≈ [0, 0.011] using stiff integrators. Comparison is
made between implicit methods infatode with the BDF method in cvodes. Different points on the
plots correspond to different absolute and relative tolerances levels in the range 10−2, . . . , 10−6. The
tangent linear model computes the sensitivity ∂yi(tF)/∂y1(t0), i = 1 . . . d.

sensitivity vector is used with both the explicit Runge-Kutta method in fatode and
the Adams-Moulton method in cvodes for a fair comparison. The performance of
the two codes is similar in terms of both CPU time and number of right-hand side
evaluations.

5.3. Adjoint sensitivity analysis. We calculate the sensitivities of the first
solution component at the final time with respect to all initial values ∂y1(tF)/∂yi(t0),
i = 1 . . . d using adjoint model integration. Work-precision diagrams for the implicit
solvers are shown in Figure 5.5. All implicit methods in fatode outperforms the
BDF method in cvodes in terms of work-precision ratio, with the highest efficiency
being achieved by the Rosenbrock method. Work-precision diagrams for the explicit
solvers are shown in Figure 5.6. The explicit Runge-Kutta method in fatode runs
slightly slower than the Adams-Moulton method in cvodes, though the former takes
fewer steps. This is due to the fact that the explicit Runge-Kutta method in fatode
requires more Jacobian evaluations and Jacobian-vector products during the adjoint
backward run.

20

5 6 8 11 14 18 23 30 39 50
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

Number of steps

R
el

at
iv

e
er

ro
r

ERK_TLM
CVODES_TLM

(a) Relative error vs number of steps

50 61 74 91 111 135 165 201 246 300
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

Number of right−hand side evaluations

R
el

at
iv

e
er

ro
r

ERK_TLM
CVODES_TLM

(b) relative error vs number of right-hand side
evaluations

25 29 34 40 46 54 63 73 86 100
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

CPU time (in milliseconds)

R
el

at
iv

e
er

ro
r

ERK_TLM
CVODES_TLM

(c) Relative error vs CPU time

Fig. 5.4. Computational statistics for the tangent linear model integration of the shallow water
equations (5.2) over the time interval [t0, tF] ≈ [0, 0.011] using nonstiff integrators. Comparison
is made between the explicit RK method infatode with the Adams-Moulton method in cvodes.
Different points on the plots correspond to different absolute and relative tolerances levels in the range
10−2, . . . , 10−6. The tangent linear model computes the sensitivity ∂yi(tF)/∂y1(t0), i = 1 . . . d. In
fatode, we choose the option to use only the forward error for step size control.

5.4. Efficiency of sparse linear solvers. In our test, the Jacobian matrix is
of dimension 4800, but only 100,800 elements are non-zeros; about 99.5625% of the
entries of this sparse matrix are zeros. The incorporation of sparse linear solvers leads
to significant computational savings and allows for very efficient forward, tangent
linear, and adjoint model integration. Table 5.1 shows the compute times for all
integrators in fatode using different linear solvers. The tolerances are set as ATOL =
RTOL = 10−6 and time interval is from t0 = 0 to tF = 0.011. As expected, fatode
benefits significantly from sparse linear solvers. Umfpack is typically a little faster
than superlu, both of them give essentially the same results as the full algebra linear
solver does.

6. Conclusions. This paper presents the fatode library for the integration of
stiff ODE systems, and for performing direct and discrete adjoint sensitivity analysis.
fatode generalizes the KPP numerical library, and implements fully implicit Runge-
Kutta, singly diagonally implicit Runge-Kutta, and Rosenbrock methods. While KPP
is specifically designed to solve chemical kinetic systems, fatode offers a general pur-
pose implementation that makes it potentially useful for a wide range of applications.

21

8 11 14 19 25 33 43 57 76 100
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Number of steps

R
el

at
iv

e
er

ro
r

RK_ADJ
SDIRK_ADJ
ROS_ADJ
CVODES_ADJ

(a) Relative error vs number of steps

7 10 13 19 26 35 49 68 94 130
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Number of LU decompositions

R
el

at
iv

e
er

ro
r

RK_ADJ
SDIRK_ADJ
ROS_ADJ
CVODES_ADJ

(b) Relative error vs number of LU decomposi-
tions

12 17 24 33 46 65 91 127 178 250
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Number of right−hand side evaluations

R
el

at
iv

e
er

ro
r

RK_ADJ
SDIRK_ADJ
ROS_ADJ
CVODES_ADJ

(c) Relative error vs number of right-hand side
evaluations

200 292 426 621 907 1323 1931 2818 4112 6000
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CPU time (in seconds)

R
el

at
iv

e
er

ro
r

RK_ADJ
SDIRK_ADJ
ROS_ADJ
CVODES_ADJ

(d) Relative error vs CPU time

Fig. 5.5. Computational statistics for the adjoint integration of the shallow water equations
(5.2) over the time interval [t0, tF] ≈ [0, 0.011] using stiff integrators. Comparison is made between
implicit methods infatode with the BDF method in cvodes. Different points on the plots correspond
to different absolute and relative tolerances levels in the range 10−2, . . . , 10−6. The adjoint model
computes the sensitivity ∂y1(tF)/∂yi(t0), i = 1 . . . d.

Its capabilities of direct and adjoint sensitivity analysis will enable users to tackle
important problems such as uncertainty quantification, parameter estimation, and
data assimilation within these application domains. In addition, fatode contains
stand-alone generic linear system solvers to deal with different types of systems. The
decoupling between main integrators and linear solvers makes it feasible and conve-
nient for users to provide their own implementations of linear solvers.

Code availability. The code is available from the web page http://people.cs.
vt.edu/~asandu/Software/FATODE/index.html. The code has been tested under
the following compilers: Portland group’s pgf90, Lahey’s lf95, Sun’s sunf90, gfortran,
g95, Absoft.

REFERENCES

[1] A. Sandu and D. Daescu and G.R. Carmichael, Direct and adjoint sensitivity analysis of
chemical kinetic systems with KPP: II – Numerical validation and applications, Atmo-
spheric Environment, 37 (2003), pp. 5097–5114.

22

10 13 16 21 27 34 43 55 71 90
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

Number of steps

R
el

at
iv

e
er

ro
r

ERK_ADJ
CVODES_ADJ

(a) Relative error vs number of steps

35 41 48 57 67 79 92 109 128 150
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

Number of right−hand side evaluations

R
el

at
iv

e
er

ro
r

ERK_ADJ
CVODES_ADJ

(b) relative error vs number of right-hand side
evaluations

15 19 24 30 38 48 60 76 95 120
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

CPU time (in milliseconds)

R
el

at
iv

e
er

ro
r

ERK_ADJ
CVODES_ADJ

(c) Relative error vs CPU time

Fig. 5.6. Computational statistics for the adjoint integration of the shallow water equations
(5.2) over the time interval [t0, tF] ≈ [0, 0.011] using nonstiff integrators. Comparison is made
between the explicit RK method infatode with the Adams-Moulton method in cvodes. Differ-
ent points on the plots correspond to different absolute and relative tolerances levels in the range
10−2, . . . , 10−6. The adjoint model computes the sensitivity ∂y1(tF)/∂yi(t0), i = 1 . . . d.

[2] M. Alexe and A. Sandu, Forward and adjoint sensitivity analysis with continuous explicit
Runge-Kutta schemes, Applied Mathematics and Computation, 208 (2009), pp. 328–334.

[3] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. Dongarra, J. Du
Croz, S. Hammarling, A. Greenbaum, A. McKenney, and D. Sorensen, LAPACK
Users’ guide (third ed.), Society for Industrial and Applied Mathematics, Philadelphia,
PA, USA, 1999.

[4] H. M. Bcker, G. F. Corliss, P. D. Hovland, U. Naumann, and B. Norris, Automatic
Differentiation: Applications, Theory, and Tools, Lecture Notes in Computational Science
and Engineering, Springer, New York, 2005.

[5] W. P. L. Carter, A detailed mechanism for the gas-phase atmospheric reactions of organic
compounds, Atmospheric Environment, 24 (1990), p. 481518.

[6] D. Daescu, G. R. Carmichael, and A. Sandu, Adjoint implementation of Rosenbrock meth-
ods applied to variational data assimilation problems, Journal of Computational Physics,
165 (2000), pp. 496–510.

[7] Timothy A. Davis, Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern multifrontal
method, ACM Transactions on Mathematical Software, 30 (2004), pp. 196–199.

[8] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J. W. H. Liu, A supernodal
approach to sparse partial pivoting, SIAM Journal on Matrix Analysis and Applications,
20 (1999), pp. 720–755.

[9] A. M. Dunker, The decoupled direct method for calculating sensitivity coefficients in chemical
kinetics, 81 (1984), pp. 2385–2393.

[10] P. Eller, K. Singh, A. Sandu, K. Bowman, D. K. Henze, and M. Lee, Implementation

23

Table 5.1
Overall compute time (in seconds) using different linear solvers

Full algebra Sparse algebra
Solver lapack umfpack superlu
ROS 286.4 18.7 26.8
ROS TLM 1093.2 300.4 321.5
ROS ADJ 1832.6 363.5 399.9
RK 857.7 25.6 44.9
RK TLM 1390.0 92.4 126.9
RK ADJ 2467.9 149.9 206.6
SDIRK 175.3 9.9 15.4
SDIRK TLM 499.9 122.0 135.8
SDIRK ADJ 2631.5 174.2 238.0

and evaluation of an array of chemical solvers in the Global Chemical Transport Model
GEOS-Chem, Geoscientific Model Development, 2 (2009), p. 8996.

[11] M. W. Gery, G. Z. Whitten, J. P. Killus, and M. C. Dodge, A photochemical kinet-
ics mechanism for urban and regional scale computer modeling, Journal of Geophysical
Research, 94 (1989), p. 1292512956.

[12] R. Giering, Tangent linear and adjoint model compiler, users manual 1.4, (1999).
[13] R. Giering and T. Kaminski, Recipes for adjoint code construction, ACM Transactions on

Mathematical Software, 24 (1998), pp. 437–474.
[14] K. Gustafsson, Control-theoretic techniques for stepsize selection in implicit Runge-Kutta

methods, ACM Transactions on Mathematical Software, 20 (1994), pp. 496–517.
[15] W. Hager, Runge Kutta methods in optimal control and the transformed adjoint system,

Numerische Mathematik, 87 (2000), pp. 247–282.
[16] E. Hairer, S.P. Norsett, and G. Wanner, Solving Ordinary Differential Equations I. Non-

stiff Problems, Springer-Verlag, Berlin, 1993.
[17] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II. Stiff and Differential-

Algebraic Problems, Springer Series in Computational Mathematics, Berlin, 1991.
[18] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker, and

C. S. Woodward, SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation
Solvers, ACM Transactions on Mathematical Software, 31 (2005), pp. 363–396.

[19] J.R. Leis and M.A. Kramer, ODESSA - an ordinary differential equation solver with explicit
simultaneous sensitivity analysis, ACM Transactions on Mathematical Software, 14 (1986),
pp. 61–75.

[20] K. Radhakrishnan and A. C. Hindmarsh, Description and use of lsode, the livermore solver
for ordinary differential equations, Tech. Report UCRL-ID-113855, Lawrence Livermore
National Laboratory, 1993.

[21] A. Sandu, On the properties of Runge Kutta discrete adjoints, in ICCS 2006, IV,LNCS 3994,
Berlin Heidelberg, 2006, Springer-Verlag, pp. 550–557.

[22] , Solution of inverse ODE problems using discrete adjoints, Large Scale Inverse Problems
and Quantification of Uncertainty, (2010), pp. 345–364.

[23] A. Sandu, D. Daescu, and G.R. Carmichael, Direct and Adjoint Sensitivity Analysis of
Chemical Kinetic Systems with KPP: I – Theory and Software Tools, Atmospheric Envi-
ronment, 37 (2003), pp. 5083–5096.

[24] A. Sandu and P. Miehe, Forward, Tangent Linear,and Adjoint Runge Kutta Methods in
KPP–2.2 for Efficient Chemical Kinetic Simulations, International Journal of Computer
Mathematics, (2008).

[25] A. Sandu, J.G. Verwer, J.G. Blom, E.J. Spee, G.R. Carmichael, and F.A. Potra, Bench-
marking stiff ODE solvers for atmospheric chemistry problems II: Rosenbrock methods,
Atmospheric Environment, 31 (1997), pp. 3459–3472.

[26] R. Serban and A.C. Hindmarsh, CVODES, the sensitivity-enabled ODE solver in SUNDI-
ALS, Tech. Report UCRL-PROC-210300, Lawrence Livermore National Laboratory, 2003.

[27] Z. Sirkes and E. Tziperman, Finite difference of adjoint or adjoint of finite difference,
Monthly Weather Review, 125 (1997), pp. 3373–3378.

[28] J. Verwer, E.J. Spee, J. G. Blom, and W. Hunsdorfer, A second order Rosenbrock method

24

applied to photochemical dispersion problems, SIAM Journal on Scientific Computing, 20
(1999), pp. 1456–1480.

Appendix A. Derivatives.
Consider the following derivatives of f(y)

fy =
(

∂fi

∂yj

)
1≤i,j≤d

, fp =
(

∂fi

∂pj

)
1≤i≤d,1≤j≤m

, fy,y =
(

∂2fi

∂yj ∂yk

)
1≤i,j,k≤d

.

For u, v ∈ Rd we have that

(u · fy,y) · v =

 n∑
j,k=1

uj
∂2fj

∂yi ∂yk
vk


1≤i≤d

,

(fy,y · u) · v = (fyy · v) · u = fy,y(u, v) =

 n∑
j,k=1

∂2fi

∂yj ∂yk
uj vk


1≤i≤d

.

The derivatives of Jacobian-vector products are(
d

dy
(fy · u)

)
· v = (fy,y · u) · v ,

(
d

dy

(
fT

y · u
))

· v = (u · fy,y) · v .

For the Hessian (extended) transpose times vector term we have that uy

up

uz

 · H̃T

 ·

 vy

vp

vz

 =
d

d(y, p, z)

 fT
y 0 rT

y

fT
p 0 rT

p

0 0 0

 ·

 uy

up

uz

 ·

 vy

vp

vz


=

d

d(y, p, z)

 fT
y · uy + rT

y · uz

fT
p · uy + rT

p · uz

0

 ·

 vy

vp

vz


=

 (uy · fy,y) · vy + (uy · fy,p) · vp + (uz · ry,y) · vy + (uz · ry,p) · vp

(uy · fp,y) · vy + (uy · fp,p) · vp + (uz · rp,y) · vy + (uz · rp,p) · vp

0



Appendix B. Automatic differentiation.
In the following we illustrate the use of the well-known automatic differentiation

tool TAMC for code generation. Detailed information on TAMC is given in the users
manual [12].

Consider a given subroutine with the following parameter list:
subroutine fun(n, t, y, f)
! dimension of state vector y
integer :: n
double precision :: t
! y is the numerical solution at time t and p is the
! right hand side function at time t
double precision :: y(n), f(n)

The forward mode of TAMC can generate derivative code to compute the sensi-
tivity of the dependent variable f with respect to the independent variable y by:

25

./stamc -reply <your_email> -toplevel fun -input y
-output f -forward -pure -Jacobian <m> <source file name>

The generated code has the following parameter list:
subroutine g_fun(n, t, y, g_y, g_f)
! dimension of state vector y
integer :: n
double precision :: t
! y is the numerical solution at time t and p is the
! right hand side function at time t
double precision :: y(n), p(n)
double precision :: g_y(n,m), g_f(n,m)

If you specify the number after option ’-Jacobian’ with the number of dependent
variables and initialize the input variable g f with identity matrix, full Jacobian will
be obtained and stored in g y. Otherwise, the number after option ’-Jacobian’ defines
the number of columns of a seed matrix S, denoted by m.

∂f

∂y
· S[n×m](B.1)

The backward mode of TAMC can generate derivative code to compute the sen-
sitivity of the dependent variable with respect to the many independent variables
by:
./stamc -reply <your_email> -toplevel fun -input y

-output f -reverse -pure -Jacobian <m> <source file name>
The generated code has the following parameter list:

subroutine adfun(n, t, y, ady, adf)
! dimension of state vector y
integer :: n
double precision :: t
! y is the numerical solution at time t and p is the
! right hand side function at time t
double precision :: y(n), p(n)
double precision :: ady(m,n), adf(m,n)

If you specify the number after option ’-Jacobian’ with the number of dependent
variables and initialize the input variable adf with identity matrix, full Jacobian will
be obtained and stored in ady. Otherwise, the number after option ’-Jacobian’ defines
the number of rows of a seed matrix S, denoted by m.

S[m×n] ·
∂f

∂y
(B.2)

Note that if you use the option ’-Jacobian 1’, product of Jacobian times a vector ∂f
∂y ·v

is provided by the forward mode while product of Jacobian transpose times a vector(
∂f
∂y

)T

· v is provided by the backward mode.
To obtain the code calculating the Hessian times vector term (u · H) · v, we run

TAMC in forward over reverse mode
./stamc -reply <your_email> -toplevel fun -input y

-output f -reverse -pure -Jacobian 1 <source file name>
./stamc -reply <your_email> -toplevel fun -input y

-output g_y -forward -pure -Jacobian 1 <source file name>

26

The generated code has the following parameter list:
subroutine g_adfun(n, t, y, adf, g_y, g_ady)
! dimension of state vector y
integer :: n
double precision :: t
! y is the numerical solution at time t and p is the
! right hand side function at time t
double precision :: y(n), p(n)
double precision :: g_y(1,n), adf(1,n),g_ady(1,n)

where the variable adf corresponds to the vector v and gy correspond to the vector u.
Similarly the Hessian transpose times vector term (u ·HT) · v can be obtained by

two consecutive forward runs:
./stamc -reply <your_email> -toplevel fun -input y

-output f -forward -pure -Jacobian 1 <source file name>
./stamc -reply <your_email> -toplevel fun -input y

-output g_y -forward -pure -Jacobian 1 <source file name>
The generated code has the following parameter list:

subroutine g_g_fun(n, t, y, g_y, g_f, g_g_y)
! dimension of state vector y
integer :: n
double precision :: t
! y is the numerical solution at time t and p is the
! right hand side function at time t
double precision :: y(n), p(n)
double precision :: g_y(1,n), g_f(1,n),g_g_y(1,n)

where the variable g f corresponds to the vector v and g y correspond to the vector
u.

Appendix C. Discrete sensitivities with respect to parameters. A nu-
merical solution of (3.28) provides the discrete forward model equations:

yn+1 = Φn (yn, pn) ,

pn+1 = pn,(C.1)
qn+1 = qn + Ωn (yn, pn) , n = 0, . . . , N − 1 ,

Replacing pn = p for all n leads to (C.2)

yn+1 = Φn (yn, p) ; qn+1 = qn + Ωn (yn, p) , n = 0, . . . , N − 1 ,(C.2)

We define the following co-state variables at tN = tF λN

µN

θN

 =
(

dΨ
d[yN , pN , qN]

)T

=

 gT
y (yN , p)

gT
p (yN , p)

1

(C.3)

and calculate the adjoint variables in time according to the discrete adjoint model
equations λi

µi

θi

 =

 Φi
y(yi, p) Φi

p(yi, p) 0
0 I 0

Ωi
y(yi, p) Ωi

p(yi, p) I

T  λi+1

µi+1

θi+1

 , i = N − 1, . . . , 1.

27

or  λi

µi

θi

 =

 Φi
y(yi, p) 0 Ωi

y(yi, p)
Φi

p(yi, p) I Ωi
p(yi, p)

0 0 Ωi
z

  λi+1

µi+1

θi+1

 , i = N − 1, . . . , 1.

or, equivalently,

λn =
(
Φn

y (yn, pn)
)T · λn+1 +

(
Ωn

y (yn, pn)
)T · θn+1 ,

µn = µn+1 +
(
Φn

p (yn, p)
)T · λn+1 +

(
Ωn

p (yn, p)
)T · θn+1 ,

θn = Ωn
q (yn, p, qn) θn+1 .

and finally

λn =
(
Φn

y (yn, p)
)T

λn+1 +
(
Ωn

y (yn, pn)
)T

θn+1 ,(C.4)

µn = µn+1 +
(
Φn

p (yn, pn)
)T

λn+1 +
(
Ωn

p (yn, pn)
)T

θn+1 ,

θn = θn+1 .

Replacing in (C.4) leads to equations (C.5)

λN = gT
y (yN , p) , µN = gT

p (yN , p) ,

λn =
(
Φn

y (yn, p)
)T · λn+1 +

(
Ωn

y (yn, p)
)T

,(C.5)

µn = µn+1 +
(
Φn

p (yn, p)
)T · λn+1 +

(
Ωn

p (yn, p)
)T

, n = N − 1, . . . , 0 .

The following sensitivities are obtained(
∂Ψ
∂y0

)T

= λ0 ,

(
∂Ψ
∂p

)T

= µ0 .(C.6)

For details on derivation see [21].

Appendix D. Discrete sensitivities with respect to parameters: Runge-
Kutta methods.

The extended ODE (3.28) has the following extended Jacobian

J(t, y, p) =

 fy(t, y, p) fp(t, y, p) 0(d,1)

0(m,d) 0(m,m) 0(m,1)

ry(t, y, p) rp(t, y, p) 0(1,1)

 .(D.1)

JT (t, y, p) =

 fT
y (t, y, p) 0(d,m) rT

y (t, y, p)
fT

p (t, y, p) 0(m,m) rT
p (t, y, p)

0(1,d) 0(1,m) 0(1,1)

 .

Using the extended co-state vector and the extended Jacobian (D.1) into the
discrete Runge-Kutta adjoint (3.22) leads to ui

vi

wi

 = h

 fT
y (t, y, p) 0(d,m) rT

y (t, y, p)
fT

p (t, y, p) 0(m,m) rT
p (t, y, p)

0(1,d) 0(1,m) 0(1,1)

(D.2a)

·

bi

 λn+1

µn+1

θn+1

+
s∑

j=1

aj,i

 uj

vj

wj

 , i = s, . . . , 1 ,

 λn

µn

θn

 =

 λn+1

µn+1

θn+1

+
s∑

j=1

 uj

vj

wj

 .(D.2b)

28

From the last equation of (D.2b) we see that wi = 0, ∀ i, and therefore θn = θn+1 =
· · · = θN = 1. The discrete adjoint Runge-Kutta method (D.2) can be rewritten as
(3.31).

Appendix E. Discrete sensitivities with respect to parameters: Rosen-
brock methods.

Extending the discrete Rosenbrock adjoint (3.26) in the same way as we did for
Runge Kutta methods yields

I(d,d)

hγi,i
− fT

y (tn, yn, p) 0 −rT
y (tn, yn, p)

−fT
p (tn, yn, p) I(d,d)

hγi,i
−rT

p (tn, yn, p)

0 0 I(d,d)

hγi,i

 ·

 ui

ui

ûi

 = mi

 λn+1

µn+1

θn+1



+
s∑

j=i+1

aj,i

 vj

vj

v̂j

+
cj,i

h

 uj

uj

ûj

 ,

 vi

vi

v̂i

 = h

 fT
y (Ti, Yi, p) 0 rT

y (Ti, Yi, p)
fT

p (Ti, Yi, p) 0 rT
p (Ti, Yi, p)

0 0 0

 ·

 ui

ui

ûi

 , i = s, s − 1, · · · , 1 ,

 λn

µn

θn

 =

 λn+1

µn+1

θn+1

+
s∑

i=1

 ui

ui

ûi

 · ˜fy,y
T

 ·

 ki

ki

k̂i


+h

 fT
y,t(tn, yn, p) 0 rT

y,t(tn, yn, p)
fT

p,t(tn, yn, p) 0 rT
p,t(tn, yn, p)

0 0 0

 ·
s∑

i=1

γi

 ui

ui

ûi

+
s∑

i=1

 vi

vi

v̂i

 .

Using the derivative notation in Appendix A, this equation can be written component
by component as follows:

1
hγi,i

ûi = mi θn+1 +
s∑

j=i+1

(
aj,i v̂j +

cj,i

h
ûj

)
,

(
I(d,d)

hγi,i
− fT

y (tn, yn, p)
)

ui = rT
y (t, y, p) ûi + mi λn+1 +

s∑
j=i+1

(
aj,i vj +

cj,i

h
uj

)
,

1
hγi,i

ui = fT
p (tn, yn, p)ui + rT

p (tn, yn, p)ûi + mi µn+1 +
s∑

j=i+1

(
aj,i vj +

cj,i

h
uj

)
,

vi = h fT
y (Ti, Yi, p)ui + h rT

y (Ti, Yi, p) ûi ,

vi = h fT
p (Ti, Yi, p) ui + h rT

p (Ti, Yi, p) ûi ,

v̂i = 0 ,

λn = λn+1 +
s∑

i=1

(
(ui · fy,y) · ki + (ui · fy,p) · ki + (ûi · ry,y) · ki + (ûi · ry,p) · ki

)
,

+h fT
y,t(t, y, p) ·

s∑
i=1

γiui + h rT
y,t(t, y, p) ·

s∑
i=1

γiui +
s∑

i=1

vi ,

µn = µn+1 +
s∑

i=1

(
(ui · fp,y) · ki + (ui · fp,p) · ki + (ûi · rp,y) · ki + (ûi · rp,p) · ki

)
,

29

+h fT
p,t(t, y, p) ·

s∑
i=1

γiui + h rT
p,t(t, y, p) ·

s∑
i=1

γiui +
s∑

i=1

vi ,

θn = θn+1 +
s∑

i=1

v̂i .

This can be further simplified. Note that θn = 1 for all n and that the numbers ûi

can be computed by the simple recurrence

1
hγi,i

ûi = mi +
s∑

j=i+1

(cj,i

h
ûj

)
;

ûs = h γss ms ; ûi = h γi,i mi + γi,i

s∑
j=i+1

cj,i ûj , i = s − 1, · · · , 1 .

The vector combined by ki, ki, and k̂i is obtained from the solution of the extended
form of forward integration (3.10), where the second equation yn+1

pn+1

qn+1

 =

 yn

pn

qn

+
s∑

i=1

mi

 ki

ki

k̂i

(E.1)

indicates ki = 0 for all time steps since p = 0 as assumption. And the quantity u is
not needed to update the adjoint variables λ and µ so that the third equation can be
omitted.

Thus we obtain:(
I(d,d)

hγi,i
− fT

y (tn, yn, p)
)

ui = ûi rT
y (tn, yn, p) + mi λn+1 +

s∑
j=i+1

(
aj,i vj +

cj,i

h
uj

)
vi = h fT

y (Ti, Yi, p) · ui + h ûi rT
y (Ti, Yi, p)

vi = h fT
p (Ti, Yi, p) · ui + h ûi rT

p (Ti, Yi, p)

λn = λn+1 +
s∑

i=1

(
(ui · fy,y) · ki + (ûi · ry,y) · ki

)
+h fT

y,t(tn, yn, p) ·
s∑

i=1

γiui + h rT
y,t(tn, yn, p) ·

s∑
i=1

γiui +
s∑

i=1

vi

µn = µn+1 +
s∑

i=1

(
(ui · fp,y) · ki + (ûi · rp,y) · ki

)
+h fT

p,t(tn, yn, p) ·
s∑

i=1

γiui + h rT
p,t(tn, yn, p) ·

s∑
i=1

γiui +
s∑

i=1

vi .

30

