1,940 research outputs found

    Regularity and algebraic properties of certain lattice ideals

    Full text link
    We study the regularity and the algebraic properties of certain lattice ideals. We establish a map I --> I\~ between the family of graded lattice ideals in an N-graded polynomial ring over a field K and the family of graded lattice ideals in a polynomial ring with the standard grading. This map is shown to preserve the complete intersection property and the regularity of I but not the degree. We relate the Hilbert series and the generators of I and I\~. If dim(I)=1, we relate the degrees of I and I\~. It is shown that the regularity of certain lattice ideals is additive in a certain sense. Then, we give some applications. For finite fields, we give a formula for the regularity of the vanishing ideal of a degenerate torus in terms of the Frobenius number of a semigroup. We construct vanishing ideals, over finite fields, with prescribed regularity and degree of a certain type. Let X be a subset of a projective space over a field K. It is shown that the vanishing ideal of X is a lattice ideal of dimension 1 if and only if X is a finite subgroup of a projective torus. For finite fields, it is shown that X is a subgroup of a projective torus if and only if X is parameterized by monomials. We express the regularity of the vanishing ideal over a bipartie graph in terms of the regularities of the vanishing ideals of the blocks of the graph.Comment: Bull. Braz. Math. Soc. (N.S.), to appea

    Binomial D-modules

    Get PDF
    We study quotients of the Weyl algebra by left ideals whose generators consist of an arbitrary Z^d-graded binomial ideal I along with Euler operators defined by the grading and a parameter in C^d. We determine the parameters for which these D-modules (i) are holonomic (equivalently, regular holonomic, when I is standard-graded); (ii) decompose as direct sums indexed by the primary components of I; and (iii) have holonomic rank greater than the generic rank. In each of these three cases, the parameters in question are precisely those outside of a certain explicitly described affine subspace arrangement in C^d. In the special case of Horn hypergeometric D-modules, when I is a lattice basis ideal, we furthermore compute the generic holonomic rank combinatorially and write down a basis of solutions in terms of associated A-hypergeometric functions. This study relies fundamentally on the explicit lattice point description of the primary components of an arbitrary binomial ideal in characteristic zero, which we derive in our companion article arxiv:0803.3846.Comment: This version is shorter than v2. The material on binomial primary decomposition has been split off and now appears in its own paper arxiv:0803.384

    Binomial generation of the radical of a lattice ideal

    Get PDF
    Let IL,ĻI_{L, \rho} be a lattice ideal. We provide a necessary and sufficient criterion under which a set of binomials in IL,ĻI_{L, \rho} generate the radical of IL,ĻI_{L, \rho} up to radical. We apply our results to the problem of determining the minimal number of generators of IL,ĻI_{L, \rho} or of the rad(IL,Ļ)rad(I_{L, \rho}) up to radical.Comment: 14 pages, to appear in Journal of Algebr

    Complete intersection vanishing ideals on degenerate tori over finite fields

    Full text link
    We study the complete intersection property and the algebraic invariants (index of regularity, degree) of vanishing ideals on degenerate tori over finite fields. We establish a correspondence between vanishing ideals and toric ideals associated to numerical semigroups. This correspondence is shown to preserve the complete intersection property, and allows us to use some available algorithms to determine whether a given vanishing ideal is a complete intersection. We give formulae for the degree, and for the index of regularity of a complete intersection in terms of the Frobenius number and the generators of a numerical semigroup.Comment: Arabian Journal of Mathematics, to appea

    Complete intersections in binomial and lattice ideals

    Full text link
    For the family of graded lattice ideals of dimension 1, we establish a complete intersection criterion in algebraic and geometric terms. In positive characteristic, it is shown that all ideals of this family are binomial set theoretic complete intersections. In characteristic zero, we show that an arbitrary lattice ideal which is a binomial set theoretic complete intersection is a complete intersection.Comment: Internat. J. Algebra Comput., to appea
    • ā€¦
    corecore