research

Complete intersections in binomial and lattice ideals

Abstract

For the family of graded lattice ideals of dimension 1, we establish a complete intersection criterion in algebraic and geometric terms. In positive characteristic, it is shown that all ideals of this family are binomial set theoretic complete intersections. In characteristic zero, we show that an arbitrary lattice ideal which is a binomial set theoretic complete intersection is a complete intersection.Comment: Internat. J. Algebra Comput., to appea

    Similar works

    Full text

    thumbnail-image

    Available Versions