170 research outputs found

    POPLMark reloaded: Mechanizing proofs by logical relations

    Get PDF
    We propose a new collection of benchmark problems in mechanizing the metatheory of programming languages, in order to compare and push the state of the art of proof assistants. In particular, we focus on proofs using logical relations (LRs) and propose establishing strong normalization of a simply typed calculus with a proof by Kripke-style LRs as a benchmark. We give a modern view of this well-understood problem by formulating our LR on well-typed terms. Using this case study, we share some of the lessons learned tackling this problem in different dependently typed proof environments. In particular, we consider the mechanization in Beluga, a proof environment that supports higher-order abstract syntax encodings and contrast it to the development and strategies used in general-purpose proof assistants such as Coq and Agda. The goal of this paper is to engage the community in discussions on what support in proof environments is needed to truly bring mechanized metatheory to the masses and engage said community in the crafting of future benchmarks

    Martin-L\"of \`a la Coq

    Full text link
    We present an extensive mechanization of the meta-theory of Martin-L\"of Type Theory (MLTT) in the Coq proof assistant. Our development builds on pre-existing work in Agda to show not only the decidability of conversion, but also the decidability of type checking, using an approach guided by bidirectional type checking. From our proof of decidability, we obtain a certified and executable type checker for a full-fledged version of MLTT with support for Π\Pi, Σ\Sigma, N\mathbb{N}, and identity types, and one universe. Furthermore, our development does not rely on impredicativity, induction-recursion or any axiom beyond MLTT with a schema for indexed inductive types and a handful of predicative universes, narrowing the gap between the object theory and the meta-theory to a mere difference in universes. Finally, we explain our formalization choices, geared towards a modular development relying on Coq's features, e.g. meta-programming facilities provided by tactics and universe polymorphism

    Toward Semantic Foundations for Program Editors

    Get PDF
    Programming language definitions assign formal meaning to complete programs. Programmers, however, spend a substantial amount of time interacting with incomplete programs - programs with holes, type inconsistencies and binding inconsistencies - using tools like program editors and live programming environments (which interleave editing and evaluation). Semanticists have done comparatively little to formally characterize (1) the static and dynamic semantics of incomplete programs; (2) the actions available to programmers as they edit and inspect incomplete programs; and (3) the behavior of editor services that suggest likely edit actions to the programmer based on semantic information extracted from the incomplete program being edited, and from programs that the system has encountered in the past. This paper serves as a vision statement for a research program that seeks to develop these "missing" semantic foundations. Our hope is that these contributions, which will take the form of a series of simple formal calculi equipped with a tractable metatheory, will guide the design of a variety of current and future interactive programming tools, much as various lambda calculi have guided modern language designs. Our own research will apply these principles in the design of Hazel, an experimental live lab notebook programming environment designed for data science tasks. We plan to co-design the Hazel language with the editor so that we can explore concepts such as edit-time semantic conflict resolution mechanisms and mechanisms that allow library providers to install library-specific editor services

    αCheck: a mechanized metatheory model-checker

    Get PDF
    The problem of mechanically formalizing and proving metatheoretic properties of programming language calculi, type systems, operational semantics, and related formal systems has received considerable attention recently. However, the dual problem of searching for errors in such formalizations has attracted comparatively little attention. In this article, we present α\alphaCheck, a bounded model-checker for metatheoretic properties of formal systems specified using nominal logic. In contrast to the current state of the art for metatheory verification, our approach is fully automatic, does not require expertise in theorem proving on the part of the user, and produces counterexamples in the case that a flaw is detected. We present two implementations of this technique, one based on negation-as-failure and one based on negation elimination, along with experimental results showing that these techniques are fast enough to be used interactively to debug systems as they are developed.Comment: Under consideration for publication in Theory and Practice of Logic Programming (TPLP

    Mechanizing Abstract Interpretation

    Get PDF
    It is important when developing software to verify the absence of undesirable behavior such as crashes, bugs and security vulnerabilities. Some settings require high assurance in verification results, e.g., for embedded software in automobiles or airplanes. To achieve high assurance in these verification results, formal methods are used to automatically construct or check proofs of their correctness. However, achieving high assurance for program analysis results is challenging, and current methods are ill suited for both complex critical domains and mainstream use. To verify the correctness of software we consider program analyzers---automated tools which detect software defects---and to achieve high assurance in verification results we consider mechanized verification---a rigorous process for establishing the correctness of program analyzers via computer-checked proofs. The key challenges to designing verified program analyzers are: (1) achieving an analyzer design for a given programming language and correctness property; (2) achieving an implementation for the design; and (3) achieving a mechanized verification that the implementation is correct w.r.t. the design. The state of the art in (1) and (2) is to use abstract interpretation: a guiding mathematical framework for systematically constructing analyzers directly from programming language semantics. However, achieving (3) in the presence of abstract interpretation has remained an open problem since the late 1990's. Furthermore, even the state-of-the art which achieves (3) in the absence of abstract interpretation suffers from the inability to be reused in the presence of new analyzer designs or programming language features. First, we solve the open problem which has prevented the combination of abstract interpretation (and in particular, calculational abstract interpretation) with mechanized verification, which advances the state of the art in designing, implementing, and verifying analyzers for critical software. We do this through a new mathematical framework Constructive Galois Connections which supports synthesizing specifications for program analyzers, calculating implementations from these induced specifications, and is amenable to mechanized verification. Finally, we introduce reusable components for implementing analyzers for a wide range of designs and semantics. We do this though two new frameworks Galois Transformers and Definitional Abstract Interpreters. These frameworks tightly couple analyzer design decisions, implementation fragments, and verification properties into compositional components which are (target) programming-language independent and amenable to mechanized verification. Variations in the analysis design are then recovered by simply re-assembling the combination of components. Using this framework, sophisticated program analyzers can be assembled by non-experts, and the result are guaranteed to be verified by construction

    Mechanized semantics

    Get PDF
    The goal of this lecture is to show how modern theorem provers---in this case, the Coq proof assistant---can be used to mechanize the specification of programming languages and their semantics, and to reason over individual programs and over generic program transformations, as typically found in compilers. The topics covered include: operational semantics (small-step, big-step, definitional interpreters); a simple form of denotational semantics; axiomatic semantics and Hoare logic; generation of verification conditions, with application to program proof; compilation to virtual machine code and its proof of correctness; an example of an optimizing program transformation (dead code elimination) and its proof of correctness
    corecore