
ABSTRACT

Title of dissertation: MECHANIZING ABSTRACT
INTERPRETATION

David Darais
Doctor of Philosophy, 2017

Dissertation directed by: Professor David Van Horn
Department of Computer Science

It is important when developing software to verify the absence of undesirable behavior

such as crashes, bugs and security vulnerabilities. Some settings require high

assurance in verification results, e.g., for embedded software in automobiles or

airplanes. To achieve high assurance in these verification results, formal methods

are used to automatically construct or check proofs of their correctness. However,

achieving high assurance for program analysis results is challenging, and current

methods are ill suited for both complex critical domains and mainstream use.

To verify the correctness of software we consider program analyzers—automated

tools which detect software defects—and to achieve high assurance in verification

results we consider mechanized verification—a rigorous process for establishing the

correctness of program analyzers via computer-checked proofs.

The key challenges to designing verified program analyzers are: (1) achieving

an analyzer design for a given programming language and correctness property;

(2) achieving an implementation for the design; and (3) achieving a mechanized

verification that the implementation is correct w.r.t. the design. The state of the art

in (1) and (2) is to use abstract interpretation: a guiding mathematical framework for

systematically constructing analyzers directly from programming language semantics.

However, achieving (3) in the presence of abstract interpretation has remained an

open problem since the late 1990’s. Furthermore, even the state-of-the art which

achieves (3) in the absence of abstract interpretation suffers from the inability to be

reused in the presence of new analyzer designs or programming language features.

First, we solve the open problem which has prevented the combination of

abstract interpretation (and in particular, calculational abstract interpretation)

with mechanized verification, which advances the state of the art in designing,

implementing, and verifying analyzers for critical software. We do this through

a new mathematical framework Constructive Galois Connections which supports

synthesizing specifications for program analyzers, calculating implementations from

these induced specifications, and is amenable to mechanized verification.

Finally, we introduce reusable components for implementing analyzers for a

wide range of designs and semantics. We do this though two new frameworks Galois

Transformers and Definitional Abstract Interpreters. These frameworks tightly couple

analyzer design decisions, implementation fragments, and verification properties into

compositional components which are (target) programming-language independent

and amenable to mechanized verification. Variations in the analysis design are

then recovered by simply re-assembling the combination of components. Using this

framework, sophisticated program analyzers can be assembled by non-experts, and

the result are guaranteed to be verified by construction.

MECHANIZING ABSTRACT INTERPRETATION

by

David Darais

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2017

Advisory Committee:
Professor David Van Horn, Chair/Advisor
Professor Patrick Cousot
Professor Jeff Foster
Professor Michael Hicks
Professor Larry Washington

© Copyright by
David Darais

2017

Preface

Much of the material in this thesis has previously appeared in the following peer-

reviewed publications, authored jointly with David Van Horn, Matthew Might,

Nicholas Labich and Phúc C. Nguyẽ̂n:

David Darais, Matthew Might, and David Van Horn. Galois transformers

and modular abstract interpreters: Reusable metatheory for program analy-

sis. In Object-Oriented Programming, Systems, Languages and Applications

(OOPSLA). ACM, New York, NY, USA, 2015

David Darais and David Van Horn. Constructive Galois connections: Taming

the Galois connection framework for mechanized metatheory. In International

Conference on Functional Programming (ICFP). ACM, New York, NY, USA,

2016

David Darais, Nicholas Labich, Phúc C. Nguyẽ̂n, and David Van Horn. Def-

initional abstract interpreters for higher-order programming languages. In

International Conference on Functional Programming (ICFP). ACM, New

York, NY, USA, 2017

ii

Dedicated to my grandparents.

Alexander and Norma Darais

Byron and Ingrid Forsyth

Bob and Doris Edmondson

Lewis and Doris Miner

Bob and Joyce Dustman

iii

Acknowledgments

Thanks to my advisor David Van Horn for being such an amazing mentor, and

for helping me every step of the way, even before I became his student. Thanks to

Matt Might for being such an amazing collaborator and role model. Thanks to Mike

Hicks, Jeff Foster and Nate Foster for their continued encouragement and support.

Thanks to Éric Tanter and Ron Garcia for many helpful discussions of their work, as

well as their warm encouragement ever since our meeting at OOPSLA ’15. Thanks

to Matthias Felleisen for giving me key advice at a pivotal moment during my PhD.

Thanks to Patrick Cousot for many detailed and insightful comments on this thesis.

Thanks to my partner and love of my life Olivia, for always believing in me and

taking care of me. Thanks to my parents—Tom and Suzanne Darais, and Karin and

Jay Larson—for their unwavering love and support. Thanks to my uncle Steve for

helping take care of me throughout my PhD studies, and for always being so loving,

wise and amazing. Thanks to my brothers Abraham and Jeremiah Darais and my

good friend Simon Williams for always being there for me. Thanks to my boston

fam: Guillaume Basse, Omar Shammas, John Coglianese, Yazan Abu Ghazal, Dan

Huang, Dan King, Scott Moore and Andrew Johnson; you never stopped supporting

me, believing in me and cheering me on. Thanks to Kris Micinski for being such a

solid friend ever since I moved to Maryland.

Thanks to those who peer-reviewed my scholarly submissions and provided

helpful feedback, regardless of the acceptance outcome. And finally, thanks to those

who I forgot to mention who have undoubtedly helped me along the way.

iv

Table of Contents

Preface ii

Dedication iii

Acknowledgements iv

List of Figures ix

1 Introduction 1
1.1 Outline . 7

2 Technical Background 8
2.1 Abstract Interpretation . 8

2.1.1 Galois Connection Mappings 9
2.1.2 Galois Connection Laws . 11
2.1.3 Abstract Interpreters . 13
2.1.4 Calculational Abstract Interpretation 14
2.1.5 Conclusion . 17

2.2 Abstracting Abstract Machines . 17
2.2.1 Small-step Semantics . 19
2.2.2 Adding Higher-order Functions 20
2.2.3 Adding Indirection through a Store 22
2.2.4 Abstraction . 23
2.2.5 Conclusion . 25

2.3 Mechanized Verification . 25
2.3.1 Equality . 27
2.3.2 Embedding Classical Powersets 28
2.3.3 Embedding General Classical Reasoning 29
2.3.4 Conclusion . 31

v

3 Technical Overview 32
3.1 Constructive Galois Connections . 32

3.1.1 The Problem . 33
3.1.2 The Main Ideas . 35
3.1.3 Evaluation . 37

3.2 Galois Transformers . 38
3.2.1 The Problem . 39
3.2.2 The Main Ideas . 41
3.2.3 Evaluation . 44

3.3 Abstracting Definitional Interpreters 45
3.3.1 The Problem . 46
3.3.2 The Main Ideas . 48
3.3.3 Evaluation . 50

4 Constructive Galois Connections 52
4.1 Introduction . 52
4.2 Verifying a Simple Static Analyzer 57

4.2.1 The Direct Approach . 58
4.2.2 Classical Abstract Interpretation 62

4.3 Constructive Galois Connections . 71
4.3.1 Partial Orders and Monotonicity 77
4.3.2 Relationship to Classical Galois Connections 79
4.3.3 The “Specification Effect” . 82

4.4 Case Study 1: Calculational AI . 85
4.4.1 Concrete Semantics . 86
4.4.2 Abstract Semantics with Constructive GCs 87

4.5 Case Study 2: Gradual Type Systems 98
4.6 Constructive Galois Connection Metatheory 103
4.7 Constructing Constructive Galois Connections 110

4.7.1 Strictly Classical Galois Connections 111
4.7.2 Strictly Constructive Galois Connections 111
4.7.3 Primitive Galois Connections—Classical and Constructive . . 112
4.7.4 Composing Galois Connections—Classical and Constructive . 113

4.8 Comparing Classical and Constructive Approaches 115
4.8.1 Review: Cousot’s Original Classical Calculation 116
4.8.2 Using Independent Attributes Explicitly 119
4.8.3 Calculating with Constructive Galois Connections 121

4.9 Optimal Calculations—Constructive and Classical 123
4.10 Multivalued Constructive Galois Connections 130

4.10.1 Review: Cousot’s Original Classical Calculation 130
4.10.2 The Constructive Calculation 132

4.11 Related Work . 138
4.12 Conclusions . 140

vi

5 Galois Transformers 142
5.1 Introduction . 142
5.2 Semantics . 146
5.3 Path and Flow Sensitivity in Analysis 151
5.4 Analysis Parameters . 153

5.4.1 The Analysis Monad . 154
5.4.2 The Abstract Domain . 155
5.4.3 Abstract Time . 157

5.5 The Interpreter . 158
5.6 Recovering Analyses . 162

5.6.1 Recovering a Concrete Interpreter 162
5.6.2 Recovering an Abstract Interpreter 165
5.6.3 End-to-end Correctness . 167

5.7 Varying Path and Flow Sensitivity 168
5.7.1 Flow Insensitive Monad . 169

5.8 A Compositional Monadic Framework 171
5.8.1 State Galois Transformer . 173
5.8.2 Nondeterminism Galois Transformer 173
5.8.3 Flow Sensitivity Galois Transformer 176
5.8.4 Galois Transformers . 178
5.8.5 End-to-End Correctness with Galois Transformers 181
5.8.6 Applying the Framework to Our Semantics 183
5.8.7 Applying the Framework to Another Semantics 184

5.9 Implementation . 185
5.10 Related Work . 187
5.11 Conclusions . 191

6 Abstracting Definitional Interpreters 192
6.1 Introduction . 192

6.1.1 Outline . 194
6.2 From Machines to Compositional Evaluators 196
6.3 A Definitional Interpreter . 198

6.3.1 Instantiating the Interpreter 201
6.3.2 Collecting Variations . 204
6.3.3 Abstracting Base Values . 208
6.3.4 Abstracting Closures . 210

6.4 Caching and Finding Fixed-points . 212
6.4.1 Formal soundness and termination 217

6.5 Pushdown à la Reynolds . 218
6.6 Widening the Store . 219
6.7 An Alternative Abstraction . 221
6.8 Symbolic Execution and Garbage Collection 224
6.9 Try It Out . 225
6.10 Formalism . 226
6.11 Related Work . 244

vii

6.12 Conclusions . 247

7 Concluding Remarks 249

A Galois Transformer Proofs 251
A.0.1 Lemma 5 [Galois Transformers] (Section 5.8.4) 251
A.0.2 Lemma 3 [P t laws] (Section 5.8.2) 272
A.0.3 Lemma 4 [F t laws] (Section 5.8.3) 277

Bibliography 283

viii

List of Figures

4.1 Case Study 1: WHILE Abstract Syntax 86
4.2 Case Study 1: WHILE Concrete Semantics 88
4.3 Case Study 1: Select Constructive Galois Connection Calculations . . 96
4.4 Case Study 1: Constructive Galois Connection Calculations in Agda . 97
4.5 Case Study 2: Syntax Directed Precise Type System 100
4.6 Case Study 2: Systematically Constructed Gradual Type System . . . 102
4.7 Comparison of Constructive and Classical Galois Connection Adjunctions103
4.8 Relationship Between Classical, Kleisli and Constructive GCs 107
4.9 Review: Calculational Derivation for Binary Arithmetic Expressions . 116
4.10 Classical Calculation for Binary Arithmetic Expressions 118
4.11 Classical Calculation for Binary Arithmetic Expressions Using Inde-

pendent Attributes . 120
4.12 Constructive Calculation for Binary Arithmetic Expressions 124
4.13 Constructive Calculation for Binary Arithmetic Expressions—Optimal

and η-directed . 127
4.14 Classical Calculation for Binary Arithmetic Expressions—Optimal

and α-directed . 129
4.15 Review: calculating abstraction for conditional expressions 131
4.16 Classical Calculation for Conditional Command Expressions 133
4.17 Conditional Expressions Constructive Calculation 136
4.18 Conditional Expressions Constructive Calculation (Cont.) 137

5.1 λIF Syntax and Concrete State Space 147
5.2 Concrete Semantics . 149
5.3 Garbage Collected Collecting Semantics 150
5.4 Monadic Semantics . 159
5.5 Monadic helper functions . 160
5.6 Concrete Interpreter Values and Time 163
5.7 Concrete Interpreter Monad . 164
5.8 Abstract Interpreter Parameters . 166
5.9 Flow Insensitive Monad Parameter 170
5.10 State Galois Transformer . 174
5.11 Nondeterminism Galois Transformer 175

ix

5.12 Flow Sensitivity Galois Transformer 177
5.13 Galois Transformer Commuting Cube of Abstractions 180

6.1 Programming Language Syntax . 198
6.2 The Extensible Definitional Interpreter 200
6.3 Components for Definitional Interpreters 202
6.4 Trace Collecting Semantics . 205
6.5 Dead Code Collecting Semantics . 207
6.6 Abstracting Primitive Operations . 208
6.7 Abstracting Allocation: 0CFA . 211
6.8 Co-inductive Caching Algorithm . 214
6.9 Finding Fixed-Points in the Cache . 215
6.10 An Alternative Abstraction for Precise Primitives 222
6.11 λIF Big-step Concrete Evaluation Semantics 227
6.12 λIF Big-step Concrete Reachability Semantics 229
6.13 Big-step Collecting Evaluation Semantics 231
6.14 Big-step Collecting Reachability Semantics 232
6.15 Big-step Abstract Evaluation Semantics 235
6.16 Big-step Abstract Reachability Semantics 236

x

Chapter 1: Introduction

This thesis aims to improve the correctness and reliability of software. The results

from this thesis offer methods to cost-effectively prevent software failures and exploits,

and reduce their costs on society. The methods we develop are a new mathematical

theory which improves the state-of-the art in foundational approaches to software

reliability, and two new program analysis frameworks which help reduce the cost

of achieving software reliability. These contributions support the following thesis:

Constructing mechanically verified program analyzers via calculation and composition

is feasible using constructive Galois connections and modular abstract interpreters.

The Software Reliability Problem Software bugs are expensive. Software

plays an important role in critical systems like automobiles, aircraft, medical de-

vices and military systems. When bugs appear in these systems the result can

be catastrophic. Software also appears in general-purpose systems like cell-phones,

smart-devices, and web infrastructure like email, banking and e-commerce. Bugs in

general-purpose software systems are also costly: malware on cell-phones and web-

sites compromise user privacy, and bugs in web-infrastructure lead to cyber-attacks,

data corruption and service failures, costing billions of dollars annually [Tassey, 2002,

Zhivich and Cunningham, 2009].

1

Achieving Software Reliability To achieve high assurance for software, we

must establish the absence of entire classes of bugs and/or conformance with specific

behavior. For example, a high-assurance medical device should not only be immune

to a well-specified class of security exploits, it should also guaranteed to perform its

intended medical function for the patient. Establishing high assurance is challenging,

and current techniques are either unable to achieve it or too costly to adopt for many

important applications.

What we do know is that testing software is not enough on its own to achieve

high assurance. Most software systems have an infinite number of possible in-

put/output behaviors, and testing is restricted to exploring only a finite subset of

such behaviors. To achieve high assurance, one must use verification tools, which

are able to reason symbolically about the infinite behavior of software.

Program Analyzers This thesis considers program analyzers, which are tools

for automating large portions of the verification proofs required to establish high

assurance in software. Our results address the limitations of current approaches to

building program analyzers, and contribute towards increased adoptions of tools which

achieve high assurance in settings where software reliability remains an expensive

and unsolved problem.

The Importance of Reusable Tools In order to have a positive impact on

the way we produce software, program analyzers must not only be usable, they

must be reusable. New programming languages are invented every year, for which

2

we lack tools like program analyzers. Likewise, new analysis techniques are also

invented every year, for which implementations only exist for our oldest, most

decrepit programming languages. What is missing is program analysis machinery

which supports reuse across new programming languages, emerging software domains,

and changing software correctness criteria.

To achieve reuse in program analyzer implementations, support for program-

ming language features (e.g., while loops) must be isolated from analysis properties

(e.g., buffer overflows). Techniques exist for isolating simple properties like arith-

metic relationships (e.g., x < y), but not for sophisticated properties like those used

for security (e.g., passwords are not leaked). Even in cases where implementation

fragments can be reused, it is not possible to reuse the proof fragments used to

establish the correctness of the resulting analyzer.

program

analyzer

compiler

. . .

Software Pipeline

The Importance of Verified Tools Software is cre-

ated through a complex pipeline: a program is written in

a programming language, translated to machine code by a

compiler, loaded by an operating system, and executed with

hardware. To gain any amount of trust in the result, each

component of the pipeline should be trustworthy. For this

reason, it is just important to achieve verified software tools as it is to achieve the

end goal of verified software, for the latter is not achievable without the former.

Integrating program analyzers into this pipeline (see figure) comes with challenges

similar to designing a compiler: implementations are often not reusable, and the

3

correctness of the tool must be established to achieve high assurance in the resulting

software. This means analyzers must often be written from scratch to support new

programming languages, and these new analyzers must then be verified if their results

are to be trusted.

Mechanized Verification To achieve high assurance in program analyzer imple-

mentations, the gold standard is mechanized verification using automated theorem

provers or semi-automated proof assistants. Consider for instance the compiler phase

of the pipeline: a recent study showed that each of the 11 industry-strength C

compilers examined had correctness bugs [Yang et al., 2011]. One of these compilers

was CompCert, a mechanically verified C compiler [Leroy, 2009], however the only

bugs present were in the unverified front-end. Program analyzers are similarly

complex components of the software pipeline, and—like compilers—mechanized

verification is the only technique known which can guarantee the absence of bugs in

an implementation. For mechanization, the state of the art is to use proof assistants

based on dependent type theory, which support extraction of certified algorithms.

Contributions This thesis improves the state of the art for both lightweight

and heavyweight verification. One goal is for practitioners to eventually use at least

lightweight verification for every piece of software—there is no reason not to. Another

goal is to achieve heavyweight verification for mission critical software in settings

which weren’t possible or feasible before.

This thesis addresses reuse and high assurance—and their combination—for

4

program analyzer implementations, and our overarching insight is to tightly couple

the implementation of a program analyzer with its proof of correctness. By tightly

coupling implementation with proof, we design building blocks for constructing

reliable analyzers from reusable components, and identify ways to reduce the proof

effort required to mechanically verify analyzers.

High Assurance for Analyzer Implementations In this thesis we

develop a new mathematical framework called Constructive Galois Connections

(CGCs) [Darais and Van Horn, 2016] to mechanically verify a large class high-

assurance program analyzers which previous approaches were unable to verify. These

analyzers are called correct-by-construction because the implementation and proof of

correctness for the analyzer are tightly coupled throughout their definition. Correct-

by-construction analyzers are advantageous for mechanized verification because there

is only one artifact to verify (the coupled implementation/proof), rather than two

artifacts (the uncoupled implementation and proof), effectively reducing the proof

burden by half. Constructing analyzers in this way also has the benefit of catching

implementation bugs early, because incorrect implementation are not even possible to

define. Central to these correct-by-construction program analyzers is a mathematical

theory of sound approximation called abstract interpretation [Cousot and Cousot,

1977], however this theory is fundamentally limited in ways that prevent mechanized

verification.

To design CGCs we addressed the limitations of abstract interpretation by re-

instantiating the more general mathematical theory of adjunctions, of which abstract

5

interpretation is one instance. CGCs are an alternative instantiation of adjunctions

which supports defining correct-by-construction program analyzers, but doesn’t

suffer from the same limitations to mechanized verification. One result of CGCs

is the first mathematical foundation for program analyzers which simultaneously

supports correct-by-construction design and mechanized verification. Other results

from CGCs are case studies which construct the first mechanically verified and

correct-by-construction program analyzer, as well as other mechanically verified

applications which benefit from using abstract interpretation.

Reuse for Analyzer Implementations In this thesis we develop a

program analysis framework called Galois Transformers (GTs) [Darais et al., 2015]

to build reliable program analyzers from reusable components. The central principle

of GTs is to unify the mathematical design of the analyzer with its implementation

using executable state transition systems [Van Horn and Might, 2010]. However, state

transition systems are not reusable across programming languages or for obtaining

variations in analyzer precision. GTs solve half of the reuse problem for program

analyzers—reuse of analyzer precision—by enriching the general structure of state

transitions, and by implementing analysis machinery within this structure. As a

result, GTs support implementing one important aspect of precision called path and

flow sensitivity in a library. This library can be reused to construct new analyzers

which feature path and flow sensitive precision for arbitrary programming languages,

and without re-implementing complex analysis machinery.

Building on GTs, we develop a program analysis framework called Abstracting

6

Definitional Interpreters (ADI) [Darais et al., 2017], also for the purpose of building

reliable analyzers from reusable components. ADI solves the other half of the

reuse problem for program analyzers—reuse of programming language features—by

adopting programming language interpreters in place of state transition systems as

the unified platform for designing and implementing analyzers. As a result, ADI

supports implementing analysis machinery for individual programming language

features in a library, as well as a second important variation in analysis precision

called pushdown precision. In combination with the results of GTs, ADI supports

rapidly prototyping reliable program analyzers using reusable components: first for

the features of the programming language being analyzed, and second for obtaining

variations in analysis precision required by the application domain.

1.1 Outline

The remainder of this thesis is structured as follows: Chapter 2 presents necessary

technical background. Chapter 3 presents an overview of the technical problems, main

ideas, and evaluation methods presented in the remainder of the thesis. Chapters 4, 5

and 6 present the three main results of this thesis: Constructive Galois Connections,

Galois Transformers and Abstracting Definitional Interpreters respectively. Chapter 7

concludes, and Chapter A provides supplementary proofs for Galois Transformer

theorems from Chapter 5.

7

Chapter 2: Technical Background

2.1 Abstract Interpretation

Abstract Interpretation is a foundational framework for designing and implementing

program analyzers and type systems—as well as a plethora of other useful pro-

gramming language tools [Cousot, 2008]—invented and developed by Cousot and

Cousot [1999, 1976, 1977, 1979, 1992, 1994, 2014].

At a high level, the goal of abstract interpretation is to make precise what it

means for some collection of objects to be an “abstraction” of another, and what it

means for operations over abstract objects to be “representative” of operations over

the objects which they abstract. This concept of abstraction is made precise as a

particular mathematical relationship between sets.

For example, any classification hierarchy can be seen as an abstraction, such as

the class of “fruit,” for which both “apples” and “mangos” are represented. There

are operations which can performed on fruit, such as juicing—which turns “apples”

into “apple juice“—blending—which turns “apples” into “an apple smoothie”—and

slicing plus dehydrating—which turns “apples” into “apple chips.” Likewise, these

operations can be performed on “mangos,” with similar results.

In the framework of abstract interpretation, the notion of an “abstract oper-

8

ation” is made precise such that one can specify each of juicing, blending, slicing

and dehydrating at the abstract level of “fruit.” These abstract operations for

creating “fruit juice,” “fruit smoothies” and “fruit chips” can then be shown to

be compatible with all of the representative elements of “fruit,” that is “apples,”

“mangos,” “pineapples” etc.

We apply abstract interpretation in this thesis not for the purposes of describing

fruit operations, but for describing program analyzers and their correctness criteria.

The “apples” and “mangos” in this setting are computer programs—like the ones

that implement Google’s search algorithm, or instruct the camera on your mobile

phone to take a photo and store the contents in memory. The “fruit” in this setting

are abstract classifications of these programs such as “safe,” “secure” or “efficient.”

By making a formal connection between a particular program (the “apple”) and a

property of interest like safety (the “fruit”), we design algorithms which automatically

check whether or not this property holds—and justify their correctness—all within

the guiding mathematical framework of abstract interpretation.

2.1.1 Galois Connection Mappings

Central to the framework of abstract interpretation is a mathematical structure

called a Galois connection, consisting of an abstraction mapping α which maps from

a concrete domain C to an abstract domain A, and a concretization mapping γ which

maps in the reverse direction.1 In general, the concrete and abstract domains are

1According to Cousot, the abstraction and concretizatio mappings are notated α and γ because
they appear as the first and third letters of the greek alphabet, which mirror “a” and “c”, the first
letters for each mapping, and the first and third letters of the english alphabet.

9

partially ordered sets, and the mappings are required to be monotonic, which we

notate with an upward slanted arrow.

(concrete domain) C : poset

(abstract domain) A : poset

(abstraction mapping) α : C → A

(concretization mapping) γ : A → C

Example Consider a very simple abstraction: the latin alphabet (L) which includes

both lowercase and uppercase letters, and the logical latin alphabet (L̂) which unifies

the letters a and A as the same “logical” letter.

(latin characters) L = {a, A, . . . , z, Z}

(logical characters) L̂ = {A, . . . , Z}

We represent “logical” letters as the uppercase form. In order to map between each

set, we lift them to powersets. This means elements of the concrete domain are sets

of latin characters (e.g., {x, Y, z}), and elements of the abstract domain are sets of

logical characters (e.g., {X, Y, Z}).

(concrete domain) C := ℘(L)

(abstract domain) A := ℘(L̂)

The abstraction function (α) maps a set of latin characters (e.g., {x, y, Y, Z}) to the

set of logical characters in that set (e.g., {X, Y, Z}). The concretization function is

not an inverse mapping, rather it maps set of logical characters to the smallest set

of latin characters which contains every set that abstracts to the original logical set

of characters. For example, the concretization of {X, Y, Z} is {x, X, y, Y, z, Z}, because

it is the smallest set that contains {x, y, z}, {X, y, z}, {x, X, y, z}, {x, Y, z}, etc., each

of which abstract to {X, Y, Z}. For this example, we notate the pointwise abstraction

of a single latin character η, and the pointwise concretization of a single logical

10

character µ.

α : ℘(L) → ℘(L̂)

γ : ℘(L̂) → ℘(L)

η : L → L̂

µ : L̂ → ℘(L)

α(X) := {η(x) | x ∈ X}

γ(Y) :=
⋃
y∈Y

µ(y)

η(a) := A

. . .

η(z) := Z

η(A) := A

. . .

η(Z) := Z

µ(A) := {a, A}

. . .

µ(Z) := {z, Z}

2.1.2 Galois Connection Laws

In addition to mapping between concrete and abstract domains, a Galois connection

〈α, γ〉 must obey the following laws:

X v γ(α(X)) (GC-Extensive)

α(γ(Y)) v Y (GC-Reductive)

or equivalently, the following correspondence:

X v γ(Y) ⇐⇒ α(X) v Y (GC-Corr)

Example Continuing the previous example: consider the collection of characters

c := {X, y, Y, z}. We can describe which logical characters are contained in c as

α(c) = {X, Y, Z}. We can also describe which literal characters are represented by this

set of logical characters as γ(α(c)) = {x, X, y, Y, z, Z}. However, repeatedly applying

11

α and γ eventually converges:

c = {X, y, Y, z}

α(c) = {X, Y, Z}

γ(α(c)) = {x,X, y, Y, z, Z}

α(γ(α(c))) = {X, Y, Z} = α(c)

γ(α(γ(α(c)))) = {x,X, y, Y, z, Z} = γ(α(c))

What (GC-Extensive) ensures in our example is that γ(α(c)) ⊇ c, or that “the

abstraction for c (α(c)) includes c in its representation (γ(α(c))).” The second law

(GC-Reductive) ensures that α(γ(α(c))) ⊆ α(c), or that “the abstraction for c (α(c))

is no smaller than the abstraction of its representation (α(γ(α(c)))).” Repeated

applications of α and γ (in either direction) will necessarily converge after one

iteration, which is referred to as idempotenecy :

γ(α(γ(α(X)))) = γ(α(X))

α(γ(α(γ(Y)))) = α(γ(Y))

(Idempotency follows as a consequence of (GC-Extensive), (GC-Reductive), and

partial order antisymmetry.)

It is often the case (as in our example) that a stronger form of (GC-Reductive)

holds, that is with an equality rather than partial ordering:

α(γ(Y)) = Y (GC-Red-Strict)

at which point the Galois connection is called a Galois insertion, or Galois surjection.

12

2.1.3 Abstract Interpreters

The structure of a Galois connection 〈α, γ〉 determines both the meaning of soundness

and optimality for an abstract operation (f̂)—which maps between elements of the

abstract domain (A → A)—w.r.t. a concrete operation (f)—which maps between

elements of the concrete domain (C → C).

concrete operation: f : C → C

abstract operation: f̂ : A → A

Soundness or optimality is then demonstrated by relating the abstract operation (f̂)

to an optimal specification induced from the concrete operation (α ◦ f ◦ γ), either

using a partial order to establish soundness, or equality to establish optimality.

α ◦ f ◦ γ v f̂ (GC-Sound)

α ◦ f ◦ γ = f̂ (GC-Optimal)

Example Continuing the running example: consider the concrete operation of

concatenating two latin characters together to form a string, notated c1 ++ c2, e.g.,

x ++ y = xy. We lift this operation to operate over powersets in order to express

concatenation over properties of characters (℘(L)), which is also the concrete domain

C. This is often called the collecting semantics, because it supports expressing

properties of interest over inputs and outputs to the operation, encoded as powersets.

+̃+ : ℘(L)× ℘(L) → ℘(L × L) X1 +̃+ X2 := {c1 ++ c2 | c1 ∈ X1 ∧ c2 ∈ X2}

13

An abstraction of this operation Y1 +̂+ Y2 is considered sound if the abstract concate-

nation of two sets of logical characters Y1 and Y2 contains all of the concatenations of

sets of concrete characters γ(Y1) and γ(Y2), and optimal if the abstract concatenation

of two sets of logical characters Y1 and Y1 is equal to all of the concrete concatenations.

These are exactly the notions generated by the induced specifications (GC-Sound)

and (GC-Optimal).

It turns out that for this example, abstract concatenation is identical to concrete

concatenation, that is:

+̂+ : ℘(L̂)× ℘(L̂) → ℘(L̂ × L̂) Y1 +̂+ Y2 := {d1 ++ d2 | d1 ∈ Y1 ∧ d2 ∈ Y2}

The statement that abstract concatenation (+̂+) is a sound approximation of the

concrete concatenation (+̃+) is induced by the Galois connection defined previously:

α(γ(Y1) +̃+ (Y2)) v Y1 +̂+ Y2

although its proof is nontrivial, and likewise for optimality:

α(γ(Y1) +̃+ (Y2)) = Y1 +̂+ Y2

2.1.4 Calculational Abstract Interpretation

Rather than postulate the definition of an abstract operation (f̂) and verify its

soundness or optimality (via (GC-Sound) or (GC-Optimal)), one can instead derive

a sound or optimal implementation directly from the induced specification. The chain

of reasoning begins on the left-hand side with the induced optimal specification—

14

which is often not directly implementable as an algorithm—and proceeds through

directed rewrites of the specification. At some point, the current state of reasoning is

observed to have algorithmic content, or can be easily translated into an algorithm,

and is declared to be the implementation of the abstract operator:

α(f(γ(Y))) . . . v . . . v . . . , f̂

If directed reasoning was used, as shown in the above mock-derivation, then the

result is guaranteed to be sound by construction. If purely equational reasoning was

used—so equalities (=) for each step rather than partial orders (v)—then the result

is guaranteed to be optimal by construction as well.

Example Continuing the running example: we will now derive a sound and optimal

abstract concatenation operator using calculational abstract interpretation.

First, the concrete collecting operation (+̃+) is lifted to a specification for an

abstract operation through composition with abstraction and concretization mappings.

We demonstrate the calculation using a specific instantiation of parameters Y1 and

Y2, and later generalize the result. For now, consider Y1 = {X, Y} and Y2 = {Z}:

α(γ({X, Y}) +̃+ γ({Z})) = . . .

The first step in the calculation is to apply the concretization mapping (γ):

. . . = α({x, X, y, Y} +̃+ {z, Z}) = . . .

15

The next step is to apply the collecting concatenation operation (+̃+):

. . . = α({xz, yz, Xz, Yz, xZ, yZ, XZ, YZ}) = . . .

The final step is to apply the abstraction mapping (α), after which we declare the

result the implementation of abstract concatenation:

. . . = {XZ, YZ} , {X, Y} +̂+ {Z}

To generalize over arbitrary inputs Y1 and Y2, the derivation is carried out

symbolically. The first step applies concretization, effectively containing the union of

Y1 interpreted as both uppercase and lowercase, and likewise for Y2. The next step

applies the collecting concatenation of these sets, which interleaves every possible

combination of uppercase and lowercase. The final step applies abstraction, which

eliminates redundant occurrences of uppercase and lowercase in the concrete set:

α(γ(Y1) +̃+ γ(Y2))

= * applying γ +

α((upper(Y1) ∪ lower(Y1)) +̃+ (upper(Y2) ∪ lower(Y2)))

= * applying +̃+ +

α


⋃



{x1x2 | x1 ∈ upper(Y1) ∧ x2 ∈ upper(Y2)}

{x1x2 | x1 ∈ lower(Y1) ∧ x2 ∈ upper(Y2)}

{x1x2 | x1 ∈ upper(Y1) ∧ x2 ∈ lower(Y2)}

{x1x2 | x1 ∈ lower(Y1) ∧ x2 ∈ lower(Y2)}


= * applying α +

{y1y2 | y1 ∈ Y1 ∧ y2 ∈ Y2}

, * by defining Y1 +̂+ Y2 := {y1y2 | y1 ∈ Y1 ∧ y2 ∈ Y2} +

Y1+̂+Y2 �

16

2.1.5 Conclusion

In this section we reviewed the essential structure of calculational abstract interpretation—

both through its general definition, and through a simple running example based

on an abstraction for latin characters which ignores whether or not a character is

uppercase or lowercase. The capstone of the exercise was an implementation for an

abstract concatenation operator, which was derived by calculus, and is therefore

both sound and optimal by construction.

The remainder of this thesis will make heavy use of abstract interpretation as

a technique for justifying the soundness and optimality of program analyzers. One

of the contributions in this thesis is an alternative setup for abstract interpretation

called constructive Galois connections which allows deriving algorithms which not

only sound or optimal, but computable by construction as well.

2.2 Abstracting Abstract Machines

Abstracting Abstract Machines (AAM) is a technique for systematically deriving

program analyzers directly from a description of that programming language, invented

by Van Horn and Might [2010, 2012].

At a high level, the goal of AAM is to make designing program analyzers

easier, and in particular for new and feature-rich programming languages. A program

analyzer is essentially an algorithm which attempts to predict the behavior of

individual programs, typically by classifying programs as either “definitely good”

or “possibly bad.” To justify the correctness of the prediction, an exercise must be

17

performed which examines the semantics of the programming language—i.e. a formal

description of what individual programs “mean”—and the content of the program

analysis algorithm. Given these two artifacts, the exercise is to establish that every

result computed by the algorithm offers a reliable prediction of the behavior of the

program being analyzed.

The core approach of AAM is:

1. To describe the semantics of the programming language using small-step

operational semantics [Felleisen and Hieb, 1992, Plotkin, 1981]; and

2. A technique for systematically abstracting a concrete small-step semantics into

an abstract small-step semantics

Because the technique is systematic, it leaves little room for error (a good thing) or

complex analysis techniques (a limitation). Therefore, to recover complex analysis

techniques, the essence of the technique must be embedding in the concrete version

of the semantics, such that it is present in the program analyzer after systematic

abstraction.

Although the abstraction process is mostly systematic, there is one parameter

exposed after abstraction which has a large determining factor on the resulting

program analysis: abstract allocation. In order to execute the program analysis, one

must define an allocation strategy, and different strategies give rise to a wide range

of possible program analysis techniques, with varying precision and performance

tradeoffs [Gilray et al., 2016a].

18

2.2.1 Small-step Semantics

Central to the Abstracting Abstract Machines (AAM) technique [Van Horn and

Might, 2010, 2012] is the setting of small-step operational semantics [Felleisen and

Hieb, 1992, Felleisen et al., 1987, Plotkin, 1981]. A small-step operational semantics

for a programming language is a mathematical relation between purely syntactic

terms, which describes a relatively small unit of computation. The reflexive-transitive-

closure of this relation is then taken to describe evaluation for the programming

language, which fully reduces a program text to the output it computes.

One distinguishing feature between approaches to small-step semantics is the

treatment of the context of sub-computations. The approach we take is to treat

contexts as an explicit object in the reduction system, à la Felleisen and Friedman’s

CEK machine [1987].

Example Consider a very simple programming language for adding natural num-

bers, e.g., 5, PLUS(1, 2) and PLUS(PLUS(1, 2), PLUS(3, 4)) are all valid programs. The

syntax for this language is described in BNF [Backus, 1959]:

n ∈ N := {0, 1, 3, 4, . . .}

e ∈ exp ::= n | PLUS(e, e)

To represent contexts explicitly in the semantics, we define a language for evaluation

contexts, and define configurations as a pairing of an expression to evaluate, and the

19

context for the evaluation:

κ ∈ context ::= PLUS(�, e) :: κ | PLUS(e,�) :: κ | HALT

ς ∈ config := exp× context

The small-step semantics for these expressions is then expressed as a set of relational

rules, describing in which configurations a step of computation occurs:

(Small-step Evaluation) ς ς

(Plus) 〈PLUS(n1, n2), κ〉 〈n1 + n2, κ〉

(PPushL) 〈PLUS(e1, e2), κ〉 〈e1, PLUS(�, e2) :: κ〉

(PPushR) 〈PLUS(e1, e2), κ〉 〈e2, PLUS(e1,�) :: κ〉

(PPopL) 〈n, PLUS(�, e2) :: κ〉 〈PLUS(n, e2), κ〉

(PPopR) 〈n, PLUS(e1,�) :: κ〉 〈PLUS(e1, n), κ〉

This relation is nondeterministic; for example, both

〈PLUS(PLUS(1, 2), PLUS(3, 4)), HALT〉 〈PLUS(1, 2), PLUS(�, PLUS(3, 4)) :: HALT〉

〈PLUS(PLUS(1, 2), PLUS(3, 4)), HALT〉 〈PLUS(3, 4), PLUS(PLUS(1, 2),�) :: HALT〉

are described by the relation. The reflexive-transitive-closure is often notated ∗,

and for our example relates the example program to its evaluation result of 10:

〈PLUS(PLUS(1, 2), PLUS(3, 4)), HALT〉 ∗ 〈10, HALT〉

2.2.2 Adding Higher-order Functions

To transition our concrete semantics to an abstract semantics, the primary goal

is to achieve a finite state space for the domain of the relation. The reason for

this is so that all the behavior of a program can be explored in finite time, which

constitutes a decidable program analysis algorithm. This becomes challenging for

20

inductively defined components of the domain, and particularly challenging for

mutually inductively defined components. The AAM approach to this problem

is to introduce an explicit level of indirection between recursive occurrences of a

structure, and to apply an allocation mechanism for referencing child-structures from

parent-structures.

Example Continuing the running example: currently the only source of non-

finiteness in the state space for the relation (℘(exp × exp)) is the set of natural

numbers (N). Thus, the goal of abstracting the current semantics poses no great

challenge, and the AAM technique doesn’t necessarily apply. Let’s extend the

language with higher-order functions, i.e lambda-terms, to see the AAM technique

at work. First, we add variables (x), anonymous functions (λx. e), and function

application (e(e)) as syntactic terms to the expression language:

n ∈ N := {0, 1, 3, 4, . . .}

x ∈ var := {x, y, . . .}

e ∈ exp ::= n | PLUS(e, e) | x | λx. e | e(e)

Next, we add environments to the domain of configurations, closures (〈λx. e, ρ〉)

to the domain of values and control expressions, and extend contexts to carry the

21

environment under which that computation was initiatied:

v ∈ val := N ∪ {〈λx. e, ρ〉}

ρ ∈ env := var ⇀ val

c ∈ control ::= v | n | PLUS(c, c) | x | λx. e | c(c)

κ ∈ context := 〈PLUS(�, c), ρ〉 :: κ | 〈PLUS(c,�), ρ〉 :: κ

| 〈�(c), ρ〉 :: κ | 〈c(�), ρ〉 :: κ | HALT

ς ∈ config := control× env× context

and we add the following rules to the small-step semantic relation:

(Small-step Evaluation) ς ς

(Var) 〈x, ρ, κ〉 〈ρ(x), ρ, κ〉

(Lam) 〈λx. e, ρ, κ〉 〈〈λx. e, ρ〉, ρ, κ〉

(Apply) 〈〈λx. e, ρ′〉(v), ρ, κ〉 〈e, ρ′[x 7→ v], κ〉

(APushL) 〈c1(c2), ρ, κ〉 〈c1, ρ, 〈�(c2), ρ〉 :: κ〉

(APushR) 〈c1(c2), ρ, κ〉 〈c2, ρ, 〈c1(�), ρ〉 :: κ〉

(APopL) 〈v, ρ, 〈�(e), ρ′〉 :: κ〉 〈v(e), ρ′, κ〉

(APopR) 〈v, ρ, 〈e(�), ρ′〉 :: κ〉 〈e(v), ρ′, κ〉

2.2.3 Adding Indirection through a Store

Now our language supports higher-order-functions, but it has become much harder to

abstract and finitize the state space. The key challenge is how to abstract contexts,

which are defined recursively, and how to abstract both values and environments,

which are defined mutually recursively. The AAM solution to abstraction in this

setting is to introduce an explicit level of indirection through a store for recursively

defined constructs.

22

Example To continue the running example: we modify the language with a level

of indirection between linked contexts, and between values and environments:

v ∈ val := N ∪ {〈λx. e, ρ〉}

` ∈ addr := (parameter)

ρ ∈ env := var ⇀ addr

σ ∈ store := addr ⇀ val ∪ context

c ∈ control ::= v | n | PLUS(c, c) | x | λx. e | c(c)

κ ∈ context := 〈PLUS(�, c), ρ〉 :: ` | 〈PLUS(c,�), ρ〉 :: `

| 〈�(c), ρ〉 :: ` | 〈c(�), ρ〉 :: ` | HALT

ς ∈ config := control× env× store× context

which requires modifying each reduction rule, only four of which we show here:

(Small-step Evaluation) ς ς

(Var) 〈x, ρ, σ, κ〉 〈σ(ρ(x)), ρ, σ, κ〉

(Apply) 〈〈λx. e, ρ′〉(v), ρ, σ, κ〉 〈e, ρ′[x 7→ `], σ[` 7→ v], κ〉

where ` := fresh

(APushL) 〈c1(c2), ρ, σ, κ〉 〈c1, ρ, σ[` 7→ κ], 〈�(c2), ρ〉 :: `〉

where ` := fresh

(APopL) 〈v, ρ, σ, 〈�(e), ρ′〉 :: `〉 〈v(e), ρ′, σ, σ(`)〉

2.2.4 Abstraction

Once we have introduced indirection into the semantics to mediate between values and

environments, we can then finitize the entire configuration space ς merely by picking

finite abstractions for each of natural numbers (N) and addresses (addr). Once

finitizing abstractions are picked for numbers and addresses, then the AAM approach

systematically constructs an abstract semantics, which are directly implementable

as an executable program analyzer.

23

Example To continue ther unning example, consider some abstraction for natural

numbers N̂ and abstraction for addresses âddr, after which the state space becomes:

v ∈ v̂al := N̂ ∪ ℘({〈λx. e, ρ〉})

ρ ∈ ênv := var ⇀ âddr

σ ∈ ŝtore := âddr→ v̂al ∪ ℘(ĉontext)

c ∈ ĉontrol ::= v | n | PLUS(c, c) | x | λx. e | c(c)

κ ∈ ĉontext := 〈PLUS(�, c), ρ〉 :: ` | 〈PLUS(c,�), ρ〉 :: `

| 〈�(c), ρ〉 :: ` | 〈c(�), ρ〉 :: ` | HALT

ς ∈ ĉonfig := ̂control × ênv× ŝtore× âddr

and the following six (only, for brevity) rules become:

(Small-step Evaluation) ς ς

(Plus) 〈PLUS(v1, v2), ρ, σ, `〉 〈v1 +̂ v2, ρ, σ, `〉

(PPushL)

ς︷ ︸︸ ︷
〈PLUS(c1, c2), ρ, σ, `〉 〈c1, ρ, σ t [`′ 7→ 〈PLUS(�, c2), ρ〉 :: `], `′〉

where `′ := alloc(ς)

(PPopL) 〈v, ρ, σ, `〉 〈PLUS(v, c2), ρ′, σ, `′〉

where 〈PLUS(�, c2), ρ′〉 :: `′ ∈ σ(`)

(Apply)

ς︷ ︸︸ ︷
〈v1(v2), ρ, σ, κ〉 〈e, ρ′[x 7→ `], σ t [` 7→ v2], κ〉

where 〈λx. e, ρ′〉 ∈ v1

` := alloc(〈λx. e, ρ′〉, ς〉)

(APushL)

ς︷ ︸︸ ︷
〈c1(c2), ρ, σ, κ〉 〈c1, ρ, σ t [`′ 7→ 〈�(c2), ρ〉 :: `], `′〉

where `′ := alloc(ς)

(APopL) 〈v, ρ, σ, `〉 (v(c2), ρ′, σ, `′〉

where 〈�(c2), ρ′〉 :: `′ ∈ σ(`)

(The alteration of the rest of the rules is analogous.) Note in particular the transition

to multiple elements found in the store on function calls and stack popping, and the

joining of results in the store on function application and stack pushing, e.g., when

24

the address already exists in the store from a separate binding instance.

2.2.5 Conclusion

In this section we reviewed small-step operational semantics and the AAM approach to

systematic abstraction of a concrete to an abstract semantics. This was done through

a running example which extended a simple arithmetic expression programming

language into one which includes higher-order functions. Allocation was introduced

to break the recursive structure of the state space, and finitization was achieved by

finitizing the domains for natural numbers and addresses.

The remainder of this thesis will build heavily on the AAM approach to

semantics abstraction. One of the contributions in this thesis is a technique called

Galois transformers which introduces another parameter to the semantics alongside

alloc for recovering variations in path and flow sensitivity. Another contribution in

this thesis is a technique called abstract definitional interpreters which extends the

AAM technique in full generality to the semantic setting of definitional interpreters

(as opposed to operational small-step relations).

2.3 Mechanized Verification

Mechanized Verification is a technique for establishing the correctness of a piece of

software with the highest possible confidence we know how to achieve. In mechanized

verification, formal proofs are constructed to establish the correctness of a piece of

software—down to the smallest detail—and computers are used to check the validity

25

of these proofs rather than an expert human. To gain the highest level of assurance,

the software which checks the proofs must be small, simple, and easy to inspect by

experts to establish its correctness.

The approach to mechanized verification for software considered in this thesis

is that which uses (in spirit) intuitionist type theory (ITT) [Martin-Löf, 1975, 1984],

as embodied in proof assistants like Coq [development team, 2004] and Agda [Norell,

2007], each of which are implementations based on the calculus of inductive con-

structions (CIC) [Coquand and Huet, 1988, 1985, Coquand and Paulin, 1990], a

descendent of ITT. These proof assistants unify the language used to describe pro-

grams, the language used to describe properties of programs, and the language used

to describe proofs of these properties. At the center of this unified framework is

an intrinsic notion of computation, which each of programs, properties, and proofs

must carry. As a consequence of this, classical reasoning principles—such as the

Law of Excluded Middle (LEM)—are disallowed in the theory, because they do not

carry computational content. (Although LEM can be added as an axiom without

interfering with the logic’s consistency, its use will interfere with the computational

nature of the system.)

Because ITT terms carry computational content, they can be interpreted and

run as programs, typically by extraction to a functional language like OCaml, Haskell,

or Scheme. It is in this way that certified implementations of various algorithms (like

program analyzers) are produced: by embedding the algorithm as well as its proof

of correctness in a proof assistant, and then extracting a functional program from

the algorithm description, which is run using a conventional functional programming

26

language compiler and runtime.

2.3.1 Equality

Central to any mechanized verification technique is a fundamental tradeoff between

automatic proof construction (what you get for free), and manual proof construction

(what you don’t get for free). In ITT (and therefore CIC), this tradeoff is embodied

in two distinct notions of equality: so-called definitional equality, and so-called

propositional equality, respectively. Definitional equalities, notated with

=, are

judgments which can be justified entirely through computation, e.g., 1 + 2

= 3 or

[1, 2] ++ [3]

= [1, 2, 3]. These equalities cannot be mentioned internally in the proof

system, rather this equality is used as a congruence, that is the proof system is always

considering the validity of judgemental equalities modulo definitional equality, i.e.

modulo computation. Propositional equalities, notated with ≡, are judgements which

require a manually or semi-automatically constructed proof. When the judgment

is an embedding of a definitional equality, e.g., 1 + 2 ≡ 3, then the trivial proof

term Refl is sufficient evidence, because the system carries out the reasoning of

equality modulo computation automatically. When the judgment is non-trivial, e.g.,

∀x. x+ 0 ≡ x, then a proof must be supplied in the form of a witness term, which is

also a program with computational content, due to the unification of these concepts.

27

Example Consider the proof term of the right identity for addition in Agda:

right-identity : ∀ x→ x+ 0 ≡ x

right-identity Zero = Refl

right-identity (Succ x′) rewrite right-identity x′ = Refl

The proof performs case analysis on the universally quantified x. In the case x = 0,

the goal becomes 0 + 0 ≡ 0. The system reasons automatically that 0 + 0

= 0, and so

the proof term Refl is able to discharge the goal, which is equivalent to 0 ≡ 0 modulo

computation. In the case x = 1+x′ for some x′, the goal becomes (1+x′)+0 ≡ 1+x′,

which the system automatically converts to 1 + (x′ + 0) ≡ 1 + x′ via computation.

The rewrite command explicitly rewrites the goal using the inductive hypothesis,

that is x′ + 0 ≡ x, resulting in the goal 1 + x′ ≡ 1 + x′, which is directly provable by

the reflexivity judgment Refl.

2.3.2 Embedding Classical Powersets

A common occurrence in mathematics is to represent the set of predicates, or

classifications, over some set A as the powerset ℘(A). In ITT, these powersets are

represented directly as their characteristic functions φ : A→ prop. Because these

characteristic functions can be undecidable in general, there is little that can be done

with powersets other than construct other powersets. This leads to the powerset

℘(A) := A→ prop behaving as a modality in ITT which can’t be escaped from.

28

Example Consider the set of of integers which are odd. Classically this is repre-

sented:

odd-integers ∈ ℘(Z) := {z | odd(z)}

However, In ITT this set is represented directly as its characteristic function φ :=

odd : Z→ prop.

Next consider the following classical function which classifies an arbitrary set

of integers using an abstract description:

classify ∈ ℘(Z)→ {all-even, all-odd, empty, even-and-odd}

classify(I) :=



all-even if ∃i ∈ I ∧ ∀i ∈ I. even(i)

all-odd if ∃i ∈ I ∧ ∀i ∈ I. odd(i)

empty if I = ∅

even-and-odd if ∃i1, i2 ∈ I. even(i1) ∧ odd(i2)

This function is not representable in ITT because it requires computing the abstract

description given an arbitrary set of integers. However, this function is definable by

mapping to a singleton powerset:

classify : ℘(Z)→ 1
℘({all-even, all-odd, empty, even-and-odd})

classify(I) :=
⋃



{all-even | ∃i ∈ I ∧ ∀i ∈ I. even(i)}

{all-odd | ∃i ∈ I ∧ ∀i ∈ I. odd(i)}

{empty | I = ∅}

{even-and-odd | ∃i1, i2 ∈ I. even(i1) ∧ odd(i2)}

This is a mapping between specifications, and is perfectly definable in ITT. The

escape-hatch used here is the fact that singleton powersets
1
℘(A) are not isomorphic to

the underlying carrier A in a constructive setting (no mapping exists for
1
℘(A)→ A),

whereas in a classical setting
1
℘(A) and A are isomorphic and interchangeable.

29

2.3.3 Embedding General Classical Reasoning

Although variants of ITT do not allow direct definitions of the Law of Excluded

Middle (LEM), they do support defining LEM and all other classical logical formulas

via an embedding called double negation. This embedding serves as a modality in

the logic which explicitly separates proofs which carry computational content (i.e.

constructive) from those that don’t (i.e. classical), while still supporting fully general

mathematical reasoning.

Because of the existence of the double negation embedding, it would be incorrect

to say ITT supports fewer theorems than a non-constructive higher-order logic. Terms

embedded in the double negation type are still manifestations of “truth.”

Example Consider the law of excluded middle, as stated classically:

∀p ∈ prop. p ∨ ¬p (LEM)

The direct embedding of this proposition in ITT is a dependent product:

∏
p : prop

p ∨ ¬p (LEM-ITT)

the proof of which in ITT would be a dependent function:

λp : prop. (. . . : p ∨ ¬p) (LEM-ITT-TERM)

However, the constructive interpretation of λ-terms prohibit such a definition for

arbitrary propositions, which are not always decidable. For example, consider

instantiating (LEM-ITT) with the proposition “the Nth turing machine halts.” The

30

hypothetical (LEM-ITT-TERM) would then have to compute in finite time whether

or not the proposition is true, however it is well known that this particular proposition

is not decidable in general, hence there is no term which can inhabit (LEM-ITT).

LEM can, however, be embedded in ITT in a way which explicitly discards the

constraint that it carries computational content. The embedding is that of double

negation, so:

∏
p : prop

¬¬(p ∨ ¬p)) (LEM-ITT-DN)

where the definition of negation is:

¬p := p→ false

The proposition (LEM-ITT-DN) is then a refutation of terms which claim to refute

LEM. This proposition is inhabited in ITT:

λp : prop. λX : ¬(p ∨ ¬p). X(Inr(λx : p. X(Inl(x))))

2.3.4 Conclusion

In this section we reviewed mechanized verification as achieved through Intuitionistic

Type Theory (ITT). This was done through a discussion of how ITT is formulated as

a logic where constructions carry computational content, which are then extracted

and executed as certified programs. We then followed with discussions of equality

and embedding classical notions like powersets and the Law of Excluded Middle

(LEM), as well as supporting examples.

31

Portions of this thesis rely on mechanized verification using the Agda proof

assistant, based on CIC, a descendent in the ITT family of logics. The computational

nature of ITT is crucial in our use of these tools, as we extract certified programs not

only from algorithms directly embedded in Agda, but we extract programs directly

from proofs as well. The ability to extract programs directly from proofs is a well

known feature of ITT, but has yet to be realized in the setting of calculational

abstract interpretation until the results presented in this thesis.

Chapter 3: Technical Overview

3.1 Constructive Galois Connections

Galois connections are a foundational tool for structuring abstraction in semantics and

their use lies at the heart of the theory of abstract interpretation. Yet, mechanization

of Galois connections remains limited to restricted modes of use, preventing their

general application in mechanized metatheory and certified programming.

We present Constructive Galois Connections [Darais and Van Horn, 2016], a

variant of Galois connections that is effective both on paper and in proof assistants;

is complete w.r.t a large subset of classical Galois connections; and enables more

general reasoning principles, including the “calculational” style advocated by Cousot.

To design constructive Galois connection we identify a restricted mode of use of

classical ones which is both general and amenable to mechanization in dependently-

32

typed functional programming languages. Crucial to the metatheory is the addition

of monadic structure to Galois connections to control a “specification effect.” Ef-

fectful calculations may reason classically, while pure calculations have extractable

computational content. Explicitly moving between the worlds of specification and

implementation is enabled by the metatheory.

To validate the approach we provide two case studies in mechanizing existing

proofs from the literature: one uses calculational abstract interpretation to design

a static analyzer [Cousot, 1999], the other forms a semantic basis for gradual

typing [Garcia et al., 2016]. Both mechanized proofs closely follow their original

paper-and-pencil counterparts, employ reasoning principles not captured by previous

mechanization approaches [Monniaux, 1998, Pichardie, 2005], support the extraction

of verified algorithms, and are novel.

3.1.1 The Problem

The issue with the classical Galois connection framework is that some functions

cannot be defined constructively, and the consequence of this is that definitions

which use Galois connections cannot always be extracted as verified algorithms.

To illustrate the problems with mechanizing classical Galois connections, con-

sider a simple parity program analyzer designed using the following Galois connection

33

between natural numbers N and parities P (plus Galois Connection laws not shown):

P := {even,odd}

α : ℘(N)→ ℘(P)

γ : ℘(P)→ ℘(N)

α(N) :=
⋃
n∈N

{even} if even(n)

{odd} if odd(n)

γ(P) :=
⋃
p∈P

{n | even(n)} if p = even

{n | odd(n)} if p = odd

A program analyzer A : ℘(P)→ ℘(P) for a concrete semantics C : ℘(N)→ ℘(N) is

then justified by relating to the composition of C with α and γ:

α ◦ C ◦ γ v A (Soundness)

The trouble in mechanizing (Soundness) is that A is expected to be computable,

meaning its type ℘(P)→ ℘(P) represents an algorithm mapping between finite sets

of parities. However, the specification α ◦ C ◦ γ, also at type ℘(P)→ ℘(P), represents

an induced specification which cannot in general be computed.

In a constructive setting, these two powerset types have different representations.

Constructed powersets ℘(P) are modeled with a datatype like a list or binary tree,

or in the case of ℘(P) as an enumeration of its inhabitants:

℘(P) ≈ P+ := {⊥,even,odd,>}

However, specification powersets ℘(P) are modeled as predicates on P:

℘(P) ≈ P→ prop

On paper the encoding of ℘(P) doesn’t matter, but to perform verified program

extraction on A, a solution must be found for encoding proofs like sound which

transition between specification and algorithm.

34

The current state-of-the art in mechanized abstract interpretation is to only

embed γ in the proof assistant, because α is the problematic mapping w.r.t. construc-

tivity. This results in so-called γ-only definitions and proofs, for example (Soundness)

has an equivalent formulation using only γ:

C ◦ γ v γ ◦ A (Soundness [γ-only])

However, this approach doesn’t allow for the calculational approach to abstract

interpretation, where the very definition of A is derived directly from its induced

specification α ◦ C ◦ γ.

3.1.2 The Main Ideas

We develop constructive Galois connections from the insight that many classical

Galois connections used in practice are of a particular restricted form, which is

reminiscent of a direct-style verification. Constructive Galois connections are the

general abstraction theory for this setting and can be mechanized effectively.

We observe that constructive Galois connections contain monadic structure

which isolates classical specifications from constructive algorithms. Within the

effectful fragment, all of classical Galois connection reasoning can be employed, while

within the pure fragment, functions must carry computational content. Remarkably,

calculations can move between these modalities and verified programs may be

extracted from the end result of calculation.

35

Constructive Galois Connections Our constructive theory of Galois connec-

tions can be seen as a restricted mode of use of classical Galois connections. The

essence of the theory is a different adjunction η/µ instead of α/γ:

η : N→ P

µ : P→ ℘(N)

η(n) :=

even if even(n)

odd if odd(n)

µ(p) :=

{n | even(n)} if p = even

{n | odd(n)} if p = odd

along with the adjunction correspondence:

n ∈ µ(p) ⇐⇒ η(n) v p (CGC-Corr)

In this restricted theory, executable algorithms can be extracted directly

from the results of proofs in the abstract interpretation paradigm. This setting

supports all the benefits of a general abstraction framework like classical Galois

connections: synthesized specifications, soundness and completeness properties, and

even calculational derivations of program analyzers.

Classical Galois connections can be recovered from constructive Galois through

a lifting:

α : ℘(N)→ ℘(P)

γ : ℘(P)→ ℘(P)

α(N) := {η(n) | n ∈ N}

γ(P) :=
⋃
p∈P

µ(p)

as well as the classical Galois connection correspondence:

N ⊆ γ(P) ⇐⇒ α(N) ⊆ P

We also demonstrate that when a constructive Galois connection exists underneath

a classical Galois connection, all properties which could be proved in the classical

36

setting can likewise be proved in the constructive setting, which results in much

simpler proofs.

The Specification Effect We call the powerset type ℘(A) a specification effect

because it has monadic structure, supports encoding arbitrary properties over values

in A, and cannot be “escaped from” in constructive logic, similar to the IO monad

in Haskell. In classical mathematics, there is an isomorphism between singleton

powersets ℘1(A) and the set A. However, no such constructive mapping exists for

℘1(A) → A. Such a function would decide arbitrary predicates in A → prop to

compute the A inside the singleton set. This observation, that you can program

inside ℘() monadically in constructive logic, but you can’t escape the monad, is

why we call it a specification effect.

The soundness and completeness conditions generated by constructive Galois

connections come from a monadic adjunction, and are therefore recast in a monadic

setting. For example, the constructive equivalent to (Soundness) is:

pure(η)~ C ~ µ v A (Soundness η/µ)

Both sides of the equation have type P→ ℘(P), the monadic interpretation of which

is “a function from P to P which performs specification effects.” This is empowering

because it allows one to be explicit about the induced pure(η) ~ C ~ µ being a

specification, meaning it has effects, and the analysis A being an algorithm, meaning

it has no effects. One can even derive the definition of A from this specification, and

in the process eliminate the “specification effect” through program calculation, the

37

results of which can immediately be extracted and executed.

3.1.3 Evaluation

To support the utility of our theory we build a library for constructive Galois

connections in Agda [Norell, 2007] and mechanize two existing abstract interpretation

proofs from the literature. The first is drawn from Cousot’s monograph [1999],

which derives a correct-by-construction analyzer from a specification induced by a

concrete interpreter and Galois connection. The second is drawn from Garcia et al.’s

Abstracting Gradual Typing [2016], which uses abstract interpretation to derive static

and dynamic semantics for gradually typed languages from traditional static types.

Both proofs use the calculational style of abstract interpretation which is not handled

by prior mechanization approaches. The mechanized proofs closely follow the original

pencil-and-paper proofs, which use both abstraction and concretization, while still

enabling the extraction of certified algorithms. Neither of these papers have been

previously mechanized. Moreover, we know of no existing mechanized proof involving

calculational abstract interpretation.

Finally, we develop the metatheory of constructive Galois connections, prove

them sound, and make precise their relationship to classical Galois connections. The

metatheory is also itself mechanized in Agda.

38

3.2 Galois Transformers

The design and implementation of static analyzers has become increasingly systematic.

Yet although the design is systematic, implementing an analyzer and proving it

sound remains a tedious and error prone effort. The issue is that static analysis

features and their proofs of soundness do not compose well, preventing reuse in both

implementation and metatheory. Due to the lack of compositional components, small

changes to an analyzer’s design often require large changes to its implementation

and proof.

We solve the problem of constructing static analyzers and their proofs from

reusable components by introducing Galois Transformers [Darais et al., 2015]: monad

transformers that transport Galois connection properties. In concert with a monadic

interpreter, we define analysis parameters that implement building blocks for classic

analysis features like context, object, heap, path and flow (in)sensitivity. Each

component comes with modular proofs and is defined independently of a particular

programming language semantics.

Significantly, Galois transformers are proven sound once and for all, making

them truly reusable analysis components. As new analysis features and abstractions

are developed and mixed in, soundness proofs need not be reconstructed, as the

composition of a monad transformer stack is sound by virtue of its constituents. Galois

transformers provide a viable foundation for reusable and composable metatheory for

program analysis, and are amenable to mechanized verification with proof assistants.

Finally, Galois transformers shift the level of abstraction in analysis design and

39

implementation. Using Galois transformers, non-specialists are able to synthesize

sound analyzers over a number of parameters, which can then be then be tuned in

plug-and-play fashion to recovering a wide range of analyses. Tuning parameters

in our framework requires no change to the implementation or proof of correctness,

which enables rapids prototyping of the analyzer design space.

3.2.1 The Problem

The problem with current approaches to program analysis design is they are unable

to account for path and flow sensitivity as a parameter to the analysis, both in

implementation and proof.

To illustrate path and flow sensitivity, consider verifying the absence of division

by zero errors in the following program:

(1) function example(i : int)→ int

(2) var x, y : int

(3) if i 6= 0

(4) then x := 0

(5) else x := 1

(6) if i 6= 0

(7) then y := 100/i

(8) else y := 100/x

(9) return y

This program branches on the function argument i to define x such that i 6= 0⇔ x = 0

(and therefore i = 0⇔ x 6= 0) in lines 3–5. The goal of the analysis is to discover

division by zero errors, and the two divisions at lines 7 and 8 are always safe because

40

of the above correlation between x and i.

To verify the above program as free of division by zero errors, a Path Sensitive

(PS) analysis is required, which is computationally expensive. A less precise but

more performant design is a Flow Sensitive (FS) analysis, which is only able to

verify the first division at line 7. Finally, a Flow Insensitive (FI) analysis is the

least precise design choice, is unable to verify either of the divisions, but is far more

performant that a PS or FS design.

These three variations of analysis—path sensitive (PS), flow sensitive (FS) and

flow insensitive (FI)—are strictly ordered in terms of precision:

prec(PS) > prec(FS) > prec(FI)

and inversely ordered in terms of both average and worst-case performance:

perf(FI) > perf(FS) > perf(PS)

In security-critical settings, path sensitivity is often the right choice despite the

added cost. However, in performance-critical settings, path sensitivity is infeasible

because of its cost, which suggests using a flow sensitive or flow-insensitive analysis.

In order to rapidly prototype this design space to find the best fit for a particular

application, the path and flow sensitivity of the analyzer must be compartmentalized

and supplied as a parameter.

Previous approaches to program analysis require rewriting large parts of the

design to support each variant of path and flow sensitivity. The issue is magnified

in the setting of mechanized verification, where rewriting an implementation means

41

rewriting a proof, and where the proof effort of a development is much more costly

than that of a pencil-and-paper formalization.

3.2.2 The Main Ideas

Galois transformers are reusable building blocks for building analysers that supply

each choice in the path sensitivity spectrum: flow insensitive, flow sensitive and path

sensitive. A flow insensitive Galois transformers can simply be replaced by a path

sensitive Galois transformer, requiring no further change to the analyzer or its proof.

In this way, one can rapidly prototype the path and flow sensitivity design space for

a particular program analysis. Proofs of correctness for the analyzer also carry over

between different instantiations of Galois transformers.

Galois transformers support rapidly prototyping choices in path and flow

sensitivity by introducing a novel parameter to the program analyzer: the monad

used for executing the analysis. Monads are introduced in the analyzer design to

capture the interaction between analysis results (like x 6= 0) and nondeterministic

branching in the analyzer (like analyzing if x = 5 then y else z when x 6= 0).

By changing the monad, and therefore how analysis results and nondeterminism

interact, we recover each of PS, FS and FI implementations for the analyzer.

PS

Monad
 Analyzer

FS

Monad

FI

Monad

42

Designing Parameterized Analyzers To design an analyzer parameterized

by a monad, one first identifies the parts of the analysis which communicate analysis

results and the parts which branch due to nondeterminism. Rather than implement

these parts of the analysis directly, the analyzer is instead written using a monadic

effect interface consisting of state and nondeterminism effects. The state effect is used

for manipulating analysis results, and the nondeterminism effect is used for branching.

The analyzer can be executed only after instantiating its monad parameter with

some monad that implements state and nondeterminism effects. Most importantly,

a monadic analyzer can be proven correct using monad and monad effect laws,

independent from a particular monad instantiation.

Constructing Monad Parameters To help construct monads for a parame-

terized analyzer we design a library of monad transformers. Monad transformers are

compositional building blocks for constructing monads. The monad transformers

used to construct a monad, as well as their order of assembly, determine the path

and flow sensitivity properties of the analysis.

We identify three monads for use in our setting: the state monad transformer

(StateT) which implements state effects, the nondeterminism monad transformer

(NondetT) which implements nondeterminism effects, and the finite map monad

transformer (FinMapT) which implements both nondeterminism and state effects.

[Each of StateT, NodnetT and FinMapT are generally useful, even outside our

application to program analyzers. StateT is standard from the literature [Liang

et al., 1995, Moggi, 1989], and NondetT and FinMapT are novel in this work.] These

43

monad transformers can be assembled in any order, and use the identity monad (ID)

as the starting point of composition.

StateT NondetT IDFinMapT

Enumerating the combinations of monad transformers which implement both state

and nondeterminism results in PS, FS and FI monads. When plugged into a

parameterized interpreter the result is a path sensitive, flow sensitive and flow

insensitive program analyzer respectively.

PS
Monad

StateT

NondetT =
FS

Monad= FI
Monad=

ID

FinMapT

ID

StateT

NondetT

ID

Furthermore we show that these monad transformers also propagate Galois con-

nections, which is essential for achieving modularity in the soundness proofs for

a parameterized analyzer. We call these monad transformers Galois transformers

because of their Galois connection properties.

3.2.3 Evaluation

We evaluate Galois transformers by proving key metatheory properties of end-to-end

static analysis verification, and by implementing a Galois transformers library and

prototype client analysis in Haskell.

44

End-to-end Correctness The end-to-end correctness of a static analyzer in

our setting is justified using compositional components:

1. a proof that the monadic interpreter recovers the concrete semantics,

2. a proof that the monadic interpreter is monotonic, and

3. a proof of abstraction between concrete and abstract monad parameters.

The user of our framework is responsible for (1) and (2). We prove that (3) is

synthesized by the properties of Galois transformers, in addition to the implication

that (1–3) yields a sound program analysis.

3.3 Abstracting Definitional Interpreters

Two dominant schools of thought for designing program analyzers are the constraint-

based approach and small-step state-machines-based approach. In each paradigm

(respectively), the analysis is computed by the least-fixed-point of a set of constraint

equations, or through reachability of a relational small-step collecting semantics.

On the other hand, there is a large body of work on denotational semantics and

definitional interpreters, or so-called “big-step” interpreters. Definitional interpreters

are popular for describing concrete semantics because they are compositional by

nature. However, definitional interpreters have not seen adoption for describing

abstract semantics, or as the basis for defining program analyzers, particularly in

the higher order setting.

To bridge this gap we develop Abstract Definitional Interpreters [Darais et al.,

45

2017] and show that definitional interpreters written in monadic style can express not

only the usual notion of (concrete) interpretation, but also a wide variety of collecting

semantics, abstract interpretations, symbolic execution, and their intermixings.

In this work we reconstruct a definitional abstract interpreter for a higher-order

language to use monadic operations and a novel fixpoint iteration strategy. Through

a monadic definitional design, we achieve a computable abstract interpreter that

arises from the composition of simple, independent components.

Remarkably, the resulting program analyzer implements a form of pushdown

control flow analysis (PDCFA) in which calls and returns are always properly matched

in the abstract semantics. True to the definitional style of Reynolds, the evaluator

involves no explicit mechanics to achieve this property; it is simply inherited from

the defining language.

3.3.1 The Problem

The challenge when using definitional interpreters as a foundation for program

analysis is the treatment of fixpoints. For a definitional interpreter, the meaning

of fixpoints in the object language is inherited from the metalanguage. This is

problematic when metalanguage fixpoints involve nontermination, which prevents

obtaining a computable program analysis.

Another challenge with definitional interpreters is they omit description of

46

intermediate execution configurations. For example, consider this program:

function loop()→ void

var x := 42

while(true)

skip

The concrete denotation of calling loop is ⊥, which does not mention intermediate

facts about the program, like x = 42. Small-step and constraint-based approaches

support analysis of intermediate results because they are by-nature explicit about

reachable program configurations.

When tuning the precision of a program analysis, a challenging point of the

design is approximating the call-and-return structure of program execution. To

illustrate this, consider analyzing the following program:

(1) function id(x : any)→ any

(2) return x

(3) function main()→ void

(4) var y := id(1)

(5) print("Y")

(6) var z := id(2)

(7) print("Z")

The printed output of this program is "YZ". However, most control-flow

analyzers will report that the output could be any string that matches the regular

expression "Y*Z". The problem is that control flow analyzers construct a global

graph of call edges, in this case from lines 5 and 7 to the body of id, and return edges,

in this case from id back to lines 5 and 7. Without precise call-return matching,

control-flow analyzers get confused and think the program could call id at line 5 and

47

then return to line 7, or call id at line 7 and return to line 5. A “k-call-site-sensitive”

analysis can distinguish these cases, but only up to a finite call-depth.

A pushdown analysis solves the call/return matching problem up to infinite

depth. Prior descriptions of pushdown analysis are set in the context of actual

pushdown automata [Reps et al., 1995], Dyck state graphs [Earl et al., 2012] or small-

step state machines [Gilray et al., 2016b, Johnson and Van Horn, 2014, Vardoulakis

and Shivers, 2010], and each approach requires ad-hoc extensions and instrumentation

to the design of the program analyzer.

3.3.2 The Main Ideas

Our key insights are to design definitional interpreters in monadic, open-recursive

style, and to design a novel fixpoint algorithm tailored specifically to the setting of

higher-order definitional interpreters. The extensible nature of the interpreter allows

us to recover a wide-range of analyses through its instantiation, including widening

techniques, precision preserving abstractions, and symbolic execution for program

verification.

We also realize a new technique for defining abstract interpreters with pushdown

precision, meaning the analysis precisely matches function calls to returns. In the

setting of definitional interpreters, this property is inherited from the defining

metalanguage and requires no instrumentation to the analysis at all.

Unfixing Interpreters To support finding fixpoints for definitional interpreters,

we first design definitional interpreters in open-recursive style. For example, the

48

denotation of an if expression is written:

E : (exp→ val)→ exp→ val

. . .

E(E ′)(if e1 then e2 else e3) :=

if E ′(e1)
?
= True then E ′(e2) else E ′(e3)

. . .

The standard evaluator is then recovered by Y (E), and we allow abstract evaluators

to be defined through (total) approximating fixpoint finding functions.

To find fixpoints for abstract definitional interpreters, we design a novel caching

algorithm (Y]), which when applied to an unfixed interpreter yields a sound and

computable analysis. To support abstract fixpoints, we redesign the unfixed evaluator

to consume and output a cache so it can communicate with the fixpoint algorithm.

(1) Y] : ((exp× cache→ val× cache)→ exp× cache→ val× cache)

(2) → exp→ cache

(2) Y](F)(e) := lfp(λ$o.

(3) let rec E := F (λ〈e, $I〉.

(4) if e ∈ $I then 〈$I(e), $I〉 else

(5) let 〈v, $I′〉 := E(e, $I [e 7→ $O(e)])

(6) in 〈v, $I′[e 7→ v]〉)

(7) in π2(E(e)))

The algorithm computes the least-fixed-point of a cache ($o) which is computed

by calling the unfixed evaluator (F) and intercepting recursive calls (at (e, $I))

to either not repeat work if it has already been done (line 4), record the current

configuration so as to not loop in the future (line 5), and record the results of

evaluation in the cache (line 6).

49

Monadic Definitional Interpreters To support a multitude of different

analyzers from a single definitional interpreter, we write the open-recursive evaluator

in monadic style, so the above example becomes:

E : (exp→M(val))→ exp→M(val)

. . .

E(E ′)(if e1 then e2 else e3) := do

v1 ← E ′(e1)

if v1
?
= True then E ′(e2) else E ′(e3)

. . .

Different monads can then be plugged into the evaluator to recover different analyzers.

The monadic abstraction is also essential to treat the cache state-passing version of

the evaluator in a systematic way, as just another cell of monadic state.

Inheriting Pushdown Precision Small-step methods to programming language

semantics must model the context of evaluation, either through syntactic evaluation

contexts or stack frames. Perfect stack precision is lost in this approach because

stack frames are modeled explicitly, and the process of approximation is applied

naively to the model of the stack.

We observe that perfect stack precision is already present in the definitional

interpreter, and therefore yields a pushdown analysis, even when executed as an

approximating abstract interpreter. In the case of definitional interpreters, the evalu-

ation context is implicit in the call-and-return semantics of the defining programming

language, which is already perfectly precise. Because no approximation is made in

the model for evaluation contexts, the resulting abstraction for evaluation contexts

50

is perfectly precise.

3.3.3 Evaluation

We implement a general framework of abstract definitional interpreters in Racket and

recover various abstract interpreters, including various widening techniques, a mixed

concrete/abstract abstraction for arithmetic expressions, and a symbolic executor

which can perform program verification.

We prove the approach sound w.r.t. a derived big-step semantics, where the key

insight in the formalism is to model not only standard big-step evaluation relations,

but also big-step reachability relations, which we carry out through each of concrete,

collecting, and abstract semantics.

The formalism begins with a big-step semantics (ρ ` e, σ ⇓ σ′) augmented with

big-step reachability (ρ ` e, σ ⇑ ς) which describes reachable configurations ς. We

show a combination of these relations (JeKbs) forms a “complete” big-step semantics

in that it contains the same information as the small-step setting (JeKss). We then

perform systematic abstraction of the complete big-step semantics (JeKbs) and justify

computing analysis solutions as the least-fixpoint of a cache which simulates both

big-step evaluation and reachability.

51

Chapter 4: Constructive Galois Connections

4.1 Introduction

Abstract interpretation is a general theory of sound approximation widely applied in

programming language semantics, formal verification, and static analysis [Cousot

and Cousot, 1976, 1977, 1979, 1992, 2014]. In abstract interpretation, properties of

programs are related between a pair of partially ordered sets: a concrete domain,

〈C,v〉, and an abstract domain, 〈A,�〉. When concrete properties have a �-most

precise abstraction, the correspondence is a Galois connection, formed by a pair of

mappings between the domains known as abstraction α ∈ C 7→ A and concretization

γ ∈ A 7→ C such that c v γ(a) ⇐⇒ α(c) � a. Since its introduction by Cousot

and Cousot in the late 1970s, this theory has formed the basis of static analyzers,

type systems, model-checkers, obfuscators, program transformations, and many more

applications [Cousot, 2008].

Given the remarkable set of tools contributed by this theory, an obvious desire

is to incorporate its use into proof assistants to mechanically verify proofs by abstract

interpretation. When embedded in a proof assistant, verified algorithms such as

static analyzers can then be extracted from these proofs.

Monniaux first achieved mechanization for the theory of abstract interpretation

52

with Galois connections in Coq [1998]. However, he notes that the abstraction

(α) side of Galois connections is problematic since it requires the admission of

non-constructive axioms. Use of these axioms prevents the extraction of certified

programs. So while Monniaux was able to mechanically verify proofs by abstract

interpretation in its full generality, certified artifacts could not extracted in general.

Pichardie subsequently tackled the extraction problem by using a restricted

formulation of abstract interpretation that relied only on the concretization (γ) side

of Galois connections [2005]. Doing so avoids the use of axioms and enables extraction

of certified artifacts. This technique is effective and has been used to construct

several certified static analyzers [Barthe et al., 2007, Blazy et al., 2013, Cachera and

Pichardie, 2010, Pichardie, 2005], most notably the Verasco static analyzer, part of

the CompCert C compiler [Jourdan et al., 2015, Leroy, 2009]. Unfortunately, this

approach sacrifices the full generality of the theory. While in principle the technique

could achieve mechanization of existing soundness theorems, it cannot do so faithful

to existing proofs. In particular, Pichardie writes [2005, p. 55]:1

The framework we have retained nevertheless loses an important property

of the standard framework: being able to derive a correct approximation

f] from the specification α ◦ f ◦ γ. Several examples of such derivations

are given by Cousot [1999]. It seems interesting to find a framework for

this kind of symbolic manipulation, while remaining easily formalizable

in Coq.

1Translated from French by the present author.

53

This important property is the so-called “calculational” style, where an abstract

interpreter (f]) is derived in a correct-by-construction manner from a concrete

interpreter (f) composed with abstraction and concretization (α ◦ f ◦ γ). This

calculational method is detailed in Cousot’s monograph [1999], which concludes:

The emphasis in these notes has been on the correctness of the design by

calculus. The mechanized verification of this formal development using

a proof assistant can be foreseen with automatic extraction of a correct

program from its correctness proof.

In the subsequent 17 years, this vision has remained unrealized, and clearly the

paramount technical challenge in achieving it is obtaining both generality and

constructivity in a single framework.

In this chapter we contribute constructive Galois connections, a framework

for abstract interpretation with Galois connections that achieves both generality

and constructivity, thereby enabling calculational style proofs which make use of

both abstraction (α) and concretization (γ), while also maintaining the ability to

extract certified static analyzers. We develop constructive Galois connections from

the insight that many classical Galois connections used in practice are of a particular

restricted form—which is reminiscent of a direct-style verification—and that this

restricted form both supports calculation and is amenable to mechanized verification.

Constructive Galois connections are the general abstraction theory for this restricted

setting of classical Galois connections.

We observe that constructive Galois connections contain monadic structure

54

which isolates classical specifications from constructive algorithms. Within the

effectful fragment, all of classical Galois connection reasoning can be employed, while

within the pure fragment, functions must carry computational content. Remarkably,

calculations can move between these modalities and verified programs may be

extracted from the end result of calculation, which must be “effect-free.”

To support the utility of our theory we build a library for constructive Galois

connections in Agda [Norell, 2007] and mechanize two existing abstract interpretation

proofs from the literature. The first is drawn from Cousot’s monograph [1999],

which derives a correct-by-construction analyzer from a specification induced by

a concrete interpreter and Galois connection. The second is drawn from Garcia

et al.’s Abstracting Gradual Typing [2016], which uses abstract interpretation to

derive static and dynamic semantics for gradually typed languages from traditional

static types. Both proofs use the “important property of the standard framework”

identified by Pichardie, which is not handled by prior mechanization approaches.

The mechanized proofs closely follow the original pencil-and-paper proofs, which use

both abstraction and concretization mappings, while still enabling the extraction

of certified algorithms. Neither of these papers have been previously mechanized.

Moreover, we know of no existing mechanized proof involving calculational abstract

interpretation.

Next, we develop the metatheory of constructive Galois connections, prove

they are sound and complete, and make precise their relationship to classical Galois

connections. The metatheory is itself mechanized; claims are marked with “AGDAX”

whenever they are proved in Agda. (All claims are marked.)

55

Finally, we explore the relationship between classical and constructive Galois

connections in much more detail. We do this through defining constructive analogs

to classical Galois connection primitive and connectives, and through two examples

drawn from our first case study which we work out in full detail. Through these

extended examples, we compare and contrast the differences between abstraction-

directed and concretization-directed calculations, and between sound and complete

calculations, for both classical and constructive styles. The outcome of this study is

a better understanding of how constructive calculations interact with classical Galois

connections, how the mechanics of optimality changes between frameworks, and how

to calculate multivalued algorithms in the constructive setting.

Contributions This chapter contributes the following:

• A foundational theory of constructive Galois connections which is both gen-

eral and amenable to mechanization using a dependently typed functional

programming language;

• A proof library and two case studies from the literature for mechanized abstract

interpretation; and

• The first mechanization of calculational abstract interpretation; and

• A detailed discussion of the relationship between constructive and classical

Galois connections, and their interaction.

The remainder of the chapter is organized as follows. First we give a tutorial

on verifying a simple analyzer from two different perspectives: direct verification

56

(§ 4.2.1) and abstract interpretation with Galois connections (§ 4.2.2), highlighting

mechanization issues along the way. We then present constructive Galois connections

as a marriage of the two approaches (§ 4.3). We provide two case studies: the

mechanization of an abstract interpreter from Cousot’s calculational monograph

(§ 4.4), and the mechanization of Garcia, Clark and Tanter’s work on gradual typing

via abstract interpretation (§ 4.5). Next, we formalize the metatheory of constructive

Galois connections (§ 4.6), define constructive analogs of common classical Galois

connection primitives and connectives (§ 4.7), and work through two extended

examples in detail: the first to compare and contrast calculation styles (§ 4.8) and

discuss deriving optimal interpreters (§ 4.9), and the second to explore multivalued

constructive calculations (§ 4.10). Finally, we relate our work to the literature

(§ 4.11), and conclude (§ 4.12).

4.2 Verifying a Simple Static Analyzer

In this section we contrast two perspectives on verifying a static analyzer: using

a direct approach, and using the theory of abstract interpretation with Galois

connections. The direct approach is simple but lacks the benefits of a general

abstraction framework. Abstract interpretation provides these benefits, but at the

cost of added complexity and resistance to mechanized verification. In Section 4.3 we

present an alternative perspective: abstract interpretation with constructive Galois

connections—the topic of this chapter. Constructive Galois connections marry the

two worlds presented in this section, providing the simplicity of direct verification, the

57

benefits of a general abstraction framework, and support for mechanized verification.

To demonstrate both verification perspectives we design a parity analyzer in

each style. For example, a parity analysis discovers that 2 has parity even, succ(1)

has parity even, and n+ n has parity even if n has parity odd. Rather than sketch

the high-level details of a complete static analyzer, we instead zoom into the low-level

details of a tiny fragment: analyzing the successor arithmetic operation succ(n). At

this level of detail the differences, advantages and disadvantages of each approach

become apparent.

4.2.1 The Direct Approach

Using the direct approach to verification one designs the analyzer, defines what it

means for the analyzer to be sound, and then completes a proof of soundness. Each

step is done from scratch, and in the simplest way possible.

This approach should be familiar to most readers, and exemplifies how most

researchers approach formalizing soundness for static analyzers: first posit the

analyzer and soundness framework, then attempt the proof of soundness. One

limitation of this approach is that the setup—which gives lots of room for error—isn’t

known to be correct until after completing the final proof. However, a benefit of this

approach is it can easily be mechanized.

Analyzing Successor A parity analysis answers questions like: “what is the

parity of succ(n), given that n is even?” To answer these questions, imagine replacing

n with the symbol even, a stand-in for an arbitrary even number. This hypothetical

58

expression succ(even) is interpreted by defining a successor function over parities,

rather than numbers, which we call succ]. This successor operation on parities is

designed such that if p is the parity for n, succ](p) will be the parity of succ(n):

P := {even, odd}

succ] : P→ P

succ](even) := odd

succ](odd) := even

Soundness The soundness of succ] is defined using an interpretation for parities,

which we notate JpK:

J K : P→ ℘(N)
JevenK := {n | even(n)}

JoddK := {n | odd(n)}

Given this interpretation, a parity p is a valid analysis result for a number n if the

interpretation for p contains n, that is n ∈ JpK. The analyzer succ](p) is then sound

if, when p is a valid analysis result for some number n, succ](p) is a valid analysis

result for succ(n):

n ∈ JpK =⇒ succ(n) ∈ Jsucc](p)K (DA-Snd)

The proof is by case analysis on p; we show the case p = even:

n ∈ JevenK

⇔ even(n) * defn. of J K +

⇔ odd(succ(n)) * defn. of even/odd +

⇔ succ(n) ∈ JoddK * defn. of J K +

⇔ succ(n) ∈ Jsucc](even)K * defn. of succ] +

An Even Simpler Setup There is another way to define and prove soundness:

use a function which computes the parity of a number in the definition of soundness.

This approach is even simpler, and will foreshadow the constructive Galois connection

59

setup.

parity : N→ P
parity(0) := even

parity(succ(n)) := flip(parity(n))

where flip(even) := odd and flip(odd) := even. This gives an alternative and

equivalent way to relate a number and a parity, due to the following correspondence:

n ∈ JpK ⇐⇒ parity(n) = p (DA-Corr)

The soundness of the analyzer is then restated:

parity(n) = p =⇒ parity(succ(n)) = succ](p)

or by substituting parity(n) = p:

parity(succ(n)) = succ](parity(n)) (DA-Snd*)

Both this statement for soundness and its proof are simpler than before. The proof

follows directly from the definition of parity and the fact that succ] is identical to

flip.

The Main Idea Correspondences like (DA-Corr)—between an interpretation for

analysis results (JpK) and a function which computes them (parity(n))—are central

to the constructive Galois Connection framework we will describe in Section 4.3.

Using correspondences like these, we build a general theory of abstraction that

recovers this direct approach to verification, mirrors all of the benefits of abstract

interpretation with classical Galois connections, supports mechanized verification,

and in some cases simplifies the proof effort. We also observe that many classical

60

Galois connections used in practice can be ported to this simpler setting.

Mechanized Verification This direct approach to verification is amenable to

mechanization using proof assistants like Coq and Agda. These tools are founded on

constructive logic in part to support verified program extraction. In constructive

logic, functions f : A → B are computable and often defined inductively to

ensure they can be extracted and executed as programs. Analogously, powersets

X : ℘(A) are encoded constructively as undecidable predicates P : A → prop

where x ∈ X ⇔ P (x).

To mechanize the verification of succ] we first translate its definition to a

constructive setting unmodified. Next we translate JpK to a relation I(p, n) defined

inductively on n:

I(even, 0)

I(p, n)

I(flip(p), succ(n))

The mechanized proof of (DA-Snd) using I is analogous to the one we sketched, and

the mechanized proof of (DA-Snd*) follows directly by computation. The proof term

for (DA-Snd*) in both Coq and Agda is simply refl, the reflexivity judgment for

syntactic equality modulo computation in constructive logic.

Wrapping Up The two different approaches to verification we present are distin-

guished by which parts are postulated, and which parts are derived. Using the direct

approach, the analyzer (succ]), the interpretation for parities (JpK) and the definition

of soundness (DA-Snd) are postulated up-front. When the soundness setup is correct

but the analyzer is wrong, the proof at the end will not go through and the analyzer

61

must be redesigned. Even worse, when both the soundness setup and analyzer are

wrong, the proof might actually succeed, giving a false assurance in the soundness

of the analyzer. However, the direct approach is attractive because it is simple and

supports mechanized verification.

4.2.2 Classical Abstract Interpretation

To verify an analyzer using abstract interpretation with Galois connections, one

first designs abstraction and concretization mappings between sets N and P. These

mappings are used to synthesize an optimal specification for succ]. One then proves

that a postulated succ] meets this synthesized specification, or alternatively derives

the definition of succ] directly from the optimal specification.

In contrast to the direct approach, rather than design the definition of soundness,

one instead designs the definition of abstraction within a structured framework.

Soundness is therefore not designed, it is derived directly from the definition of

abstraction. Finally, there is added boilerplate in the abstract interpretation approach,

which requires lifting definitions and proofs to powersets.

Abstracting Sets Powersets are introduced in abstraction and concretization

functions to support relational mappings, like mapping the symbol even to the set

of all even numbers. The mappings are therefore between powersets ℘(N) and ℘(P).

The abstraction and concretization mappings must also satisfy correctness criteria,

detailed below, after which they are called a Galois connection.

The abstraction mapping from ℘(N) to ℘(P) is notated α, and is defined as

62

the pointwise lifting of parity(n):

α : ℘(N)→ ℘(P) α(N) := {parity(n) | n ∈ N}

The concretization mapping from ℘(P) to ℘(N) is notated γ, and is defined as the

flattened pointwise lifting of JpK:

γ : ℘(P)→ ℘(N) γ(P) := {n | p ∈ P ∧ n ∈ JpK}

The correctness criteria for α and γ is the following correspondence:

N ⊆ γ(P) ⇐⇒ α(N) ⊆ P (GC-Corr)

The correspondence means that, to relate elements of different sets—in this case

℘(N) and ℘(P)—it is equivalent to relate them through either α or γ. Mappings like

α and γ which share this correspondence are called Galois connections.

An equivalent formulation of (GC-Corr) is two laws relating compositions of α

and γ, called expansive and reductive:

N ⊆ γ(α(N)) (GC-Exp)

α(γ(P)) ⊆ P (GC-Red)

Property (GC-Red) ensures α is the best abstraction possible w.r.t. γ. For example, a

hypothetical definition α(N) := {even, odd} is expansive, but not reductive because

α(γ({even})) 6⊆ {even}.

In general, Galois connections are defined for arbitrary posets 〈A,vA〉 and

〈B,vB〉. The correspondence (GC-Corr) and its expansive/reductive variants are

63

generalized in this setting to use partial orders vA and vB instead of subset order-

ing. We are omitting monotonicity requirements for α and γ at this point in our

presentation, although these requirements are essential in the complete approach.

Powerset Lifting The original functions succ and succ] cannot be related

through α and γ because they are not functions between powersets. To remedy this

they are lifted pointwise:

↑succ : ℘(N)→ ℘(N)

↑succ] : ℘(P)→ ℘(P)

↑succ(N) := {succ(n) | n ∈ N}

↑succ](P) := {succ](p) | p ∈ P}

These lifted operations are called the concrete interpreter and abstract interpreter,

because the former operates over the concrete domain ℘(Z) and the latter over

the abstract domain ℘(P). In the framework of abstract interpretation, static

analyzers are just abstract interpreters. Lifting to powersets is necessary to use the

abstract interpretation framework, and has the negative effect of adding boilerplate

to definitions and proofs of soundness.

Soundness The definition of soundness for succ] is synthesized by relating ↑succ]

to ↑succ composed with α and γ:

α(↑succ(γ(P))) ⊆ ↑succ](P) (GC-Snd)

The left-hand side of the ordering is an optimal specification for any abstraction

of ↑succ (optimality being a consequence of (GC-Corr)), and the subset ordering

says ↑succ] is an over-approximation of this optimal specification. The reason to

over-approximate is because the specification is a mathematical description, and the

64

abstract interpreter is usually an algorithm, and therefore not always able to match

the specification precisely. The proof of (GC-Snd) is by case analysis on P . We do

not show the proof, rather we demonstrate a proof later in this section which also

synthesizes the definition of succ].

One advantage of the abstract interpretation framework is that it provides a

choice between four soundness properties, all of which are generated by α and γ,

and equivalent as a consequence of (GC-Corr):

α(↑succ(γ(P))) ⊆ ↑succ](P) (GC-Snd/αγ)

↑succ(γ(P)) ⊆ γ(↑succ](P)) (GC-Snd/γγ)

α(↑succ(N)) ⊆ ↑succ](α(N)) (GC-Snd/αα)

↑succ(N) ⊆ γ(↑succ](α(N))) (GC-Snd/γα)

Because each soundness property is equivalent, one can choose whichever variant

is easiest to prove. The soundness setup (GC-Snd) is the αγ rule, however any of

the other rules can also be used. For example, one could choose αα or γα; in these

cases the proof considers four disjoint cases for N : N is empty, N contains only

even numbers, N contains only odd numbers, and N contains both even and odd

numbers.

Completeness The mappings α and γ also synthesize an optimality statement

for ↑succ], by stating that it under -approximates the optimal specification:

α(↑succ(γ(P))) ⊇ ↑succ](P)

65

Because the left-hand-side is an optimal specification, an abstract interpreter will

never be strictly more precise. Therefore, optimality is written equivalently using an

equality:

α(↑succ(γ(P))) = ↑succ](P) (GC-Opt)

Not all analyzers are optimal, however optimality helps identify those which approxi-

mate too much. Consider the analyzer ↑succ]′:

↑succ]′ : ℘(P)→ ℘(P) ↑succ]′(P) := {even, odd}

This analyzer reports that succ(n) could have any parity regardless of the parity for

n; it’s the analyzer that always says “I don’t know.” This analyzer is perfectly sound

but non-optimal because ↑succ]′({even}) = {even, odd} 6= α(↑succ(γ({even}))).

Just like soundness, four completeness statements are generated by α and γ,

however each of these statements are not equivalent:

α(↑succ(γ(P))) = ↑succ](P) (GC-Cmp/αγ)

↑succ(γ(P)) = γ(↑succ](P)) (GC-Cmp/γγ)

α(↑succ(N)) = ↑succ](α(N)) (GC-Cmp/αα)

↑succ(N) = γ(↑succ](α(N))) (GC-Cmp/γα)

Abstract interpreters which satisfy the αγ variant are called optimal because they

lose no more information than necessary, and those which satisfy the γα variant are

called precise because they lose no information at all. The abstract interpreter succ]

is optimal, but not precise because γ(↑succ](α({1}))) 6= ↑succ({1}).

66

To overcome mechanization issues with Galois connections, the state-of-the-art

is restricted to use γγ rules only for soundness (GC-Snd/γγ) and completeness

(GC-Cmp/γγ). This is unfortunate for completeness properties because unlike

soundness, each completeness variant is not equivalent.

Calculational Derivation of Abstract Interpreters Rather than posit

↑succ] and prove it correct directly, one can instead derive its definition through

a calculational process. The process begins with the optimal specification on the

left-hand-side of (GC-Opt), and reasons equationally towards the definition of an

algorithm. In this way, ↑succ] is not postulated, rather it is derived by calculation,

and the result is both sound and optimal by construction.

The derivation is by case analysis on P which has four cases: {}, {even},

{odd} and {even, odd}; we show P = {even}:

α(↑succ(γ({even})))

= α(↑succ({n | even(n)})) * defn. of γ +

= α({succ(n) | even(n)}) * defn. of ↑succ +

= α({n | odd(n)}) * defn. of even/odd +

= {odd} * defn. of α +

, ↑succ]({even}) * defining ↑succ] +

The derivations for the other cases are analogous, and together they define the

implementation of ↑succ].

Deriving analyzers by calculus is attractive because it is systematic, and because

it prevents the issue where an analyzer is postulated and discovered to be unsound

only after failing to complete its soundness proof. However, this calculational style

67

of abstract interpretation is not amenable to mechanized verification with program

extraction because α is often non-constructive, an issue we describe later in this

section.

Added Complexity The abstract interpretation approach requires a Galois

connection up-front which necessitates the introduction of powersets ℘(N) and ℘(P).

This results in powerset-lifted definitions and adds boilerplate set-theoretic reasoning

to the proofs.

This is in contrast to the direct approach which never mentions powersets of

parities. Not using powersets results in more understandable soundness criteria,

requires no boilerplate set-theoretic reasoning, and results in fewer cases for the

proof of soundness. This boilerplate becomes magnified in a mechanized setting

where all details must be spelled out to a proof assistant. Furthermore, the simpler

proof of (DA-Snd*)—which was immediate from the definition of parity—cannot be

recovered within the general abstract interpretation framework, rather it must be

formulated as a special case. Therefore, in the current state of affairs, one is required

to abandon potentially simpler proof techniques in exchange for the benefits of the

abstract interpretation framework.

Resistance to Mechanized Verification Despite the beauty and utility of

abstract interpretation with Galois connections, advocates of the approach have

yet to reconcile their use with advances in mechanized reasoning: every mechanized

verification of an executable abstract interpreter to-date has resisted the use of Galois

68

connections, even when initially designed on paper to take advantage of the framework.

The issue in mechanizing Galois connections amounts to a conflict between

supporting both classical set-theoretic reasoning and executable static analyzers.

Supporting executable analyzers calls for constructive mathematics, which is a

problem for α functions because they are often non-constructive, an observation

first made by Monniaux [1998]. To work around this limitation, Pichardie [2005]

advocates for designing abstract interpreters which are merely inspired by Galois

connections, but ultimately avoid their use in verification, which he terms the “γ-

only” approach. Successful verification projects such as Verasco adopt this “γ-only”

technique [Jourdan et al., 2015, Leroy, 2009], despite the use of Galois connections

in designing the original Astrée analyzer [Blanchet et al., 2003].

To understand the foundational issues with Galois connections and α functions,

consider verifying the soundness of the parity analyzer using a proof assistant and

abstract interpretation. In this setting, the encoding of the Galois connection must

support elements of infinite powersets—like the set of all even numbers—as well as

executable abstract interpreters which manipulate elements of finite powersets—like

{even, odd}. To support representing infinite sets, the powerset ℘(N) is modeled

constructively as a predicate N→ prop. To support defining executable analyzers

that manipulate finite sets of parities, the powerset ℘(P) is modeled as an enumeration

of its inhabitants, which we call Pc:

Pc := {even, odd,⊥,>}

where ⊥ and > represent {} and {even, odd}. This enables a definition for ↑succ] :

69

Pc → Pc which can be extracted and executed. The consequence of this design is a

Galois connection between N→ prop and Pc; the issue is now α:

α : (N→ prop)→ Pc

This version of α cannot be defined constructively, as doing would require deciding

arbitrary predicates φ where φ : N→ prop. A hypothetical definition for α would

perform case analysis on predicates like ∃n, φ(n) ∧ even(n) to compute an element

of Pc, which is not possible for arbitrary φ. (The exercise also fails if powersets

are modeled with decidable predicates φ : N → B.) However, γ can be defined

constructively as a relation (2-ary proposition):

γ : Pc → (N→ prop)

In general, any theorem of soundness using Galois connections can be rewritten to

use only γ, making use of (GC-Corr); this is the essence of the “γ-only” approach,

embodied by the soundness variant (GC-Snd/γγ). However, this principle does not

apply to all proofs of soundness using Galois connections, many of which mention α

in practice. For example, the γ-only setup does not support calculation in the style

advocated by Cousot [1999]. Furthermore, not all completeness theorems can be

translated to γ-only style, such as (GC-Cmp/γα) which is used to show an abstract

interpreter is fully precise.

Wrapping Up Abstract interpretation differs from the direct approach in which

parts of the design are postulated and which parts are derived. The direct approach

70

requires postulating the analyzer and definition of soundness. Using abstract inter-

pretation, a Galois connection between sets is postulated instead, and definitions

for soundness and completeness are synthesized from the Galois connection. Also,

abstract interpretation support deriving the definition of a static analyzer directly

from its proof of correctness.

The downside of abstract interpretation is that it requires lifting succ and succ]

into powersets, which results in boilerplate set-theoretic reasoning in the proof of

soundness. Finally, due to foundational issues, the abstract interpretation framework

is not amenable to mechanized verification while also supporting program extraction

using constructive logic.

4.3 Constructive Galois Connections

In this section we describe abstract interpretation with constructive Galois connec-

tions: a parallel universe of Galois connections analogous to classical ones. The

framework enjoys all the benefits of abstract interpretation, but like the direct

approach avoids the pitfalls of added complexity and resistance to mechanized

verification.

We will describe the framework of constructive Galois connections between sets

A and B. When instantiated to N and P, the framework recovers exactly the direct

approach from Section 4.2.1. We will also describe constructive Galois connections in

the absence of partial orders, or more specifically, we will assume the discrete partial

order: x v y ⇔ x = y. (Partial orders didn’t appear in our demonstration of classical

71

abstract interpretation, but they are essential to the general theory.) We describe

generalizing to partial orders and recovering classical results from constructive ones

at the end of this section. The fully general theory of constructive Galois connections

is described in Section 4.6 where it is compared side-by-side to classical Galois

connections.

Abstracting Sets A constructive Galois connection between sets A and B

contains two mappings: the first is called extraction, notated η, and the second is

called interpretation, notated µ:

η : A→ B µ : B → ℘(A)

η and µ are analogous to classical Galois connection mappings α and γ. In the

parity analysis described in Section 4.2.1, the extraction function was parity and

the interpretation function was J K.

Constructive Galois connection mappings η and µ must form a correspondence

similar to (GC-Corr):

x ∈ µ(y) ⇐⇒ η(x) = y (CGC-Corr)

The intuition behind the correspondence is the same as before: to compare an element

x in A to an element y in B, it is equivalent to compare them through either η or µ.

Like classical Galois connections, the correspondence between η and µ is stated

equivalently through two composition laws. Extraction functions η which form a

constructive Galois connection are also a “best abstraction,” analogously to α in the

72

classical setup:

x ∈ µ(η(x)) (CGC-Ext)

x ∈ µ(y) =⇒ η(x) = y (CGC-Red)

Aside We use the term extraction function and symbol η from Nielson

et al. [1999] where η is used to simplify the definition of an abstraction function

α. We recover α functions from η in a similar way. However, their treatment of

η is a side-note to simplifying the definition of α and nothing more. We take this

simple idea much further to realize an entire theory of abstraction around η/µ

functions and their correspondences. In this “lowered” theory of η/µ we describe

soundness/optimality criteria and calculational derivations analogous to that of α/γ

while support mechanized verification, none of which is true of Nielson et al.’s use of

η.

Induced Specifications Four equivalent soundness criteria are generated by η

and µ just like in the classical framework. Each soundness statement uses η and µ in

a different but equivalent way (assuming (CGC-Corr)). For a concrete f : A→ A

and abstract f] : B → B, f] is sound iff any of the following properties hold:

x ∈ µ(y) ∧ y′ = η(f(x)) =⇒ y′ = f](y) (CGC-Snd/ηµ)

x ∈ µ(y) ∧ x′ = f(x) =⇒ x′ ∈ µ(f](y)) (CGC-Snd/µµ)

y = η(f(x)) =⇒ y = f](η(x)) (CGC-Snd/ηη)

x′ = f(x) =⇒ x′ ∈ µ(f](η(x))) (CGC-Snd/µη)

73

In the direct approach to verifying an example parity analysis described in Sec-

tion 4.2.1, the first soundness property (DA-Snd) is generated by the µµ variant, and

the second soundness property (DA-Snd*) which enjoyed a simpler proof is generated

by the ηη variant. We write these soundness rules in a slightly strange way so we

can write their completeness analogs simply by replacing ⇒ with ⇔. The origin of

these rules comes from an adjunction framework, which we discuss in Section 4.6.

The mappings η and µ also generate four completeness criteria which, like

classical Galois connections, are not equivalent:

x ∈ µ(y) ∧ y′ = η(f(x)) ⇐⇒ y′ = f](y) (CGC-Cmp/ηµ)

x ∈ µ(y) ∧ x′ = f(x) ⇐⇒ x′ ∈ µ(f](y)) (CGC-Cmp/µµ)

y = η(f(x)) ⇐⇒ y = f](η(x)) (CGC-Cmp/ηη)

x′ = f(x) ⇐⇒ x′ ∈ µ(f](η(x))) (CGC-Cmp/µη)

Inspired by classical Galois connections, we call abstract interpreters f] which satisfy

the ηµ variant optimal and those which satisfy the µη variant precise.

The above soundness and completeness rules are stated for concrete and

abstraction functions f : A → A and f] : B → B. However, they generalize

easily to relations R : ℘(A×A) and predicate transformers F : ℘(A)→ ℘(A) (i.e.

collecting semantics) through the adjunction framework discussed in Section 4.6.

The case studies in Sections 4.4 and 4.5 describe abstract interpreters over concrete

relations and their soundness conditions.

74

Calculational Derivation of Abstract Interpreters The constructive

Galois connection framework also supports deriving abstract interpreters through

calculation, analogously to the calculation we demonstrated in Section 4.2.2. To

support calculational reasoning, the four logical soundness criteria are rewritten into

statements about subsumption between powerset elements:

{η(f(x)) | x ∈ µ(y)} ⊆ {f](y)} (CGC-Snd/ηµ*)

{f(x) | x ∈ µ(y)} ⊆ µ(f](y)) (CGC-Snd/µµ*)

{η(f(x))} ⊆ {f](η(x))} (CGC-Snd/ηη*)

{f(x)} ⊆ µ(f](η(x))) (CGC-Snd/µη*)

The completeness analog to the four rules replaces set subsumption with equality.

Using the ηµ* completeness rule, one calculates towards a definition for f] starting

from the left-hand-side, which is the optimal specification for abstract interpreters

of f .

To demonstrate calculation using constructive Galois connections, we show

the derivation of succ] from its induced specification, the result of which is sound

and optimal (because each step is = in addition to ⊆) by construction; we show

75

p = even:

{parity(succ(n)) | n ∈ JevenK}

= {parity(succ(n)) | even(n)} * defn. of J K +

= {flip(parity(n)) | even(n)} * defn. of parity +

= {flip(even)} * Eq. DA-Corr +

= {odd} * defn. of flip +

, {succ](even)} * defining succ] +

We will show another perspective on this calculation later in this section, where the

derivation of succ] is not only sound and optimal by construction, but computable

by construction as well.

Mechanized Verification In addition to the benefits of a general abstraction

framework, constructive Galois connections are amenable to mechanization in a way

that classical Galois connections are not. In our Agda library and case studies we

mechanize constructive Galois connections in full generality, as well as proofs that

use both mapping functions, such as calculational derivations.

As we discussed in Sections 4.2.1 and 4.2.2, the constructive encoding for

infinite powersets ℘(A) is A→ prop. This results in the following types for η and µ

when encoded constructively:

η : N→ P µ : P→ N→ prop

In constructive logic, the arrow type N → P classifies computable functions, and

the arrow type P→ N→ prop classifies undecidable relations. (CGC-Corr) is then

76

mechanized without issue:

µ(p, n) ⇐⇒ η(n) = p

See the mechanization details in Section 4.2.1 for how η and µ are defined construc-

tively for the example parity analysis.

Wrapping Up Constructive Galois connections are a general abstraction frame-

work similar to classical Galois connections. At the heart of the constructive Galois

connection framework is a correspondence (CGC-Corr) analogous to its classical

counterpart. From this correspondence, soundness and completeness criteria are

synthesized for abstract interpreters. Constructive Galois connections also support

calculational derivations of abstract interpreters which and sound and optimal by

construction. In addition to these benefits of a general abstraction framework,

constructive Galois connections are amenable to mechanized verification. Both

extraction (η) and interpretation (µ) can be mechanized effectively, as well as proofs

of soundness, completeness, and calculational derivations.

4.3.1 Partial Orders and Monotonicity

The full theory of constructive Galois connections generalizes to posets 〈A,vA〉 and

〈B,vB〉 by making the following changes:

• Powersets must be downward-closed, that is for X : ℘(A):

x ∈ X ∧ x′ v x =⇒ x′ ∈ X (PowerMon)

77

Singleton sets {x} are reinterpreted to mean {x′ | x′ v x}. For mechanization,

this means ℘(A) is encoded as an antitonic function, notated with a down-right

arrow A → prop, where the partial ordering on prop is by implication.

• Functions must be monotonic, that is for f : A→ A:

x v x′ =⇒ f(x) v f(x′) (FunMon)

We notate monotonic functions f : A → A. Monotonicity is required for

mappings η and µ, and concrete and abstract interpreters f and f].

• The constructive Galois connection correspondence is generalized to partial

orders in place of equality, that is for η and µ:

x ∈ µ(y) ⇐⇒ η(x) v y (CGP-Corr)

or alternatively, by generalizing the reductive property:

x ∈ µ(y) =⇒ η(x) v y (CGP-Red)

• Soundness criteria are also generalized to partial orders:

x ∈ µ(y) ∧ y′ v η(f(x)) =⇒ y′ v f](y) (CGP-Snd/ηµ)

x ∈ µ(y) ∧ x′ v f(x) =⇒ x′ ∈ µ(f](y)) (CGP-Snd/µµ)

y v η(f(x)) =⇒ y v f](η(x)) (CGP-Snd/ηη)

x′ v f(x) =⇒ x′ ∈ µ(f](η(x))) (CGP-Snd/µη)

We were careful to write the equalities in Section 4.3 in the right order so this

78

change is just swappping = for v. Completeness criteria are identical with ⇔

in place of ⇒.

To demonstrate when partial orders and monotonicity are necessary, consider design-

ing a parity analyzer for the max operator:

max] : P× P→ P
max](even, even) := even

max](odd, odd) := odd

max](even, odd) := ?

max](odd, even) := ?

The last two cases for max] cannot be defined because the maximum of an even and

odd number could be either even or odd, and there is no representative for “any

number” in P. To remedy this, we add any to the set of parities: P+ := P∪{any};

the new element any is interpreted: JanyK := {n | n ∈ N}; the partial order on

P+ becomes: even, odd v any; and the correspondence continues to hold using

this partial order: n ∈ Jp+K ⇐⇒ parity(n) v p+. max] is then defined using the

abstraction P+ and proven sound and optimal following the abstract interpretation

paradigm.

4.3.2 Relationship to Classical Galois Connections

We clarify the relationship between constructive and classical Galois connections in

three ways:

• Any constructive Galois connection can be lifted to obtain an equivalent classical

Galois connection, and likewise for soundness and completeness proofs.

• Any classical Galois connection which can be recovered by a constructive one

contains no additional expressive power, rendering it an equivalent theory with

79

added boilerplate reasoning.

• Not all classical Galois connections can be recovered by constructive ones.

From these relationships we conclude that one benefits from using constructive Galois

connections whenever possible, classical Galois connections when no constructive

one exists, and both theories together as needed. We make these claims precise in

Section 4.6, and explore the subtleties of their relationship in detail in sections 4.8, 4.9

and 4.10.

A classical Galois connection is recovered from a constructive one through the

following lifting:

α : ℘(A)→ ℘(B)

γ : ℘(B)→ ℘(A)

α(X) := {η(x) | x ∈ X}

γ(Y) := {x | y ∈ Y ∧ x ∈ µ(y)}

When a classical Galois connection can be written in this form for some η and µ, then

one can use the simpler setting of abstract interpretation with constructive Galois

connections without any loss of generality. We also observe that many classical

Galois connections in practice can be written in this form, and therefore can be

mechanized effectively using constructive Galois connections. The case studies in

presented in Sections 4.4 and 4.5 are two such cases, although the original authors of

those works did not initially write their classical Galois connections in this explicitly

lifted form.

An example of a classical Galois connection which is not recovered by lifting is

the Independent Attributes (IA) abstraction, which abstracts relations R : ℘(A×B)

80

with their component-wise splitting 〈Rl, Rr〉 : ℘(A)× ℘(B):

α : ℘(A×B)→ ℘(A)× ℘(B)

γ : ℘(A)× ℘(B)→ ℘(A×B)

α(R) := 〈{x | ∃y.〈x, y〉 ∈ R}, {y | ∃x.〈x, y〉 ∈ R}〉

γ(Rl, Rr) := {〈x, y〉 | x ∈ Rl, y ∈ Rr}

This Galois connection is amenable to mechanized verification. In a constructive

setting, α and γ are maps between A× B → prop and (A→ prop)× (B → prop),

and can be defined directly using logical connectives ∃ and ∧:

α(R) := 〈λx.∃y.R(x, y), λy.∃x.R(x, y)〉

γ(Rl, Rr) := λ〈x, y〉.Rl(x) ∧Rr(y)

IA can be mechanized effectively because the Galois connection consists of mappings

between specifications, and the foundational issue of constructing values from speci-

fications does not appear. IA is not a constructive Galois connection because there

is no pure function µ underlying the abstraction function α.

Because constructive Galois connections can be lifted to classical ones, a

constructive Galois connection can interact directly with IA through its lifting, even

in a mechanized setting. However, once a constructive Galois connection is lifted it

loses its computational properties and cannot be extracted and executed. In practice,

IA is used to weaken (v) an induced optimal specification after which the calculated

interpreter is shown to be optimal (=) up-to-IA. IA never appears in the final

calculated interpreter, so not having a constructive Galois connection formulation

poses no issue. We explore how a constructive Galois connection derivation interacts

with IA in detail in sections 4.8 and 4.9.

81

4.3.3 The “Specification Effect”

The machinery of constructive Galois connections follow a monadic effect discipline,

where the effect type is the classical powerset ℘(); we call this a specification

effect. First we will describe the monadic structure of powersets ℘() and what

we mean by “specification effect.” Then we will recast the theory of constructive

Galois connections in this monadic style, giving insights into why the theory supports

mechanized verification, and foreshadowing key fragments of the metatheory we

develop in Section 4.6.

The monadic structure of classical powersets is standard, and is analogous to

the nondeterminism monad familiar to Haskell programmers. However, the model

℘(A) := A → prop is the uncomputable nondeterminism monad and mirrors the

use of set-comprehensions on paper to describe uncomputable sets (specifications),

rather than the use of monad comprehensions in Haskell to describe computable sets

(constructed values).

We generalize ℘() to a monotonic monad, similarly to how we generalized

powersets to posets in Section 4.3.1. This results in monotonic versions of monad

operators ret and bind:

ret : A → ℘(A)

ret(x) := {x′ | x′ v x}

bind : ℘(A)× (A → ℘(B)) → ℘(B)

bind(X, f) := {y | x ∈ X ∧ y ∈ f(x)}

We adopt Moggi’s notation [1989] for monadic extension where bind(X, f) is written

f ∗(X), or just f ∗ for λX.f ∗(X).

We call the powerset type ℘(A) a specification effect because it has monadic

82

structure, supports encoding arbitrary properties over values in A, and cannot be

“escaped from” in constructive logic, similar to the IO monad in Haskell. In classical

mathematics, there is an isomorphism between singleton powersets ℘1(A) and the set

A. However, no such constructive mapping exists for ℘1(A)→ A. Such a function

would decide arbitrary predicates in A→ prop to compute the A inside the singleton

set. This observation, that you can program inside ℘() monadically in constructive

logic, but you can’t escape the monad, is why we call it a specification effect.

Given the monadic structure for powersets, and the intuition that they encode

a specification effect in constructive logic, we can recast the theory of constructive

Galois connections using monadic operators. To do this we define a helper operator

which injects “pure” functions into the “effectful” function space:

pure : (A → B) → (A → ℘(B)) pure(f)(x) := ret(f(x))

We then rewrite (CGC-Corr) using ret and pure:

ret(x) ⊆ µ(y) ⇐⇒ pure(η)(x) ⊆ ret(y) (CGM-Corr)

and we rewrite the expansive and reductive variant of the correspondence using ret,

bind (notated f ∗) and pure:

ret(x) ⊆ µ∗(pure(η)(x)) (CGM-Exp)

pure(η)∗(µ(y)) ⊆ ret(y) (CGM-Red)

The four soundness and completeness conditions can also be written in monadic

83

style; we show the ηµ soundness property here:

pure(η)∗(pure(f)∗(µ(y))) ⊆ pure(f])(y) (CGM-Snd)

The left-hand-side of the ordering is the optimal specification for f], just like

(CGC-Snd/ηµ) but using monadic operators. The right-hand-side of the ordering

is f] lifted to the monadic function space. The constructive calculation of succ]

we showed earlier in this section is a calculation of this form. The specification on

the left has type ℘(P), and it has effects, meaning it uses classical reasoning and

can’t be executed. The abstract interpreter on the right also has type ℘(P), but it

has no effects, meaning it can be extracted and executed. The calculated abstract

interpreter is thus not only sound and optimal by construction, it is computable by

construction.

Constructive Galois connections are empowering because they treat specification

like an effect, which optimal specifications ought to have, and which computable

abstract interpreters ought not to have. Using a monadic effect discipline we support

calculations which start with a specification effect, and where the “effect” is eliminated

through the process of calculation. The monad laws are crucial in canceling uses of

ret with bind to arrive at a final pure computation. For example, the first step in a

derivation for (CGM-Snd) can immediately simplify using monad laws to:

pure(η ◦ f)∗(µ(y)) ⊆ pure(f])(y)

84

4.4 Case Study 1: Calculational AI

In this section we apply constructive Galois connections to the Calculational Design

of a Generic Abstract Interpreter from Cousot’s monograph [1999]. To our knowledge,

we achieve the first mechanically verified abstract interpreter derived by calculus.

The key challenge in mechanizing the interpreter is supporting both abstraction

(α) and concretization (γ) mappings, which are required by the calculational approach.

Classical Galois connections do not support mechanization of α without the use of

axioms, and these required axioms block computation, preventing the extraction of

verified algorithms.

To verify Cousot’s generic abstract interpreter we use constructive Galois

connections, which we describe in Section 4.3 and formalize in Section 4.6. Using

constructive Galois connections we encode extraction (η) and interpretation (µ)

mappings as constructive analogs to α and γ, calculate an abstract interpreter for an

imperative programming language which is sound and computable by construction,

and recover the original classical Galois connection results through a systematic

lifting.

First we describe the setup for the analyzer: the abstract syntax, the concrete

semantics, and the constructive Galois connections involved. Following the abstract

interpretation paradigm with constructive Galois connections we design abstract

interpreters for denotation functions and semantics relations. We show a fragment

of our Agda mechanization which closely mirrors the pencil-and-paper proof, as well

as Cousot’s original derivation.

85

i ∈ Z := {. . . ,−1, 0, 1, . . .} integers

b ∈ B := {true, false} booleans

x ∈ var ::= . . . variables

⊕ ∈ aop ::= + | − | × | / arithmetic op.

< ∈ cmp ::= < | = comparison op.

< ∈ bop ::= ∨ | ∧ boolean op.

ae ∈ aexp ::= i | x | rand | ae⊕ ae arithmetic exp.

be ∈ bexp ::= b | ae< ae | be < be boolean exp.

ce ∈ cexp ::= skip | ce ; ce skip & sequence exp.

| x := ae assignment exp.

| if be then ce else ce conditional exp.

| while be do ce while loop exp.

Figure 4.1: Case Study 1: WHILE Abstract Syntax

4.4.1 Concrete Semantics

The WHILE language is an imperative programming language with arithmetic expres-

sions, variable assignment and while-loops. We show the syntax for this language

in Figure 4.1. WHILE syntactically distinguished arithmetic, boolean and command

expressions. rand is an arithmetic expression which can evaluate to any integer.

Syntactic categories ⊕, < and < range over arithmetic, comparison and boolean

operators, and are introduced to simplify the presentation. The WHILE language is

taken from Cousot’s monograph [Cousot, 1999].

The concrete semantics of WHILE is sketched without full definition in Figure 4.2.

86

Denotation functions J Ka, J Kc and J Kb give semantics to arithmetic, conditional

and boolean operators. The semantics of compound syntactic expressions are given

operationally with relations ⇓a, ⇓b and 7→c. Relational semantics are given for

arithmetic and boolean expressions due to the nondeterminism of rand and, for

command expressions due to the nontermination of while. These semantics serve as

the starting point for designing an abstract interpreter.

4.4.2 Abstract Semantics with Constructive GCs

Using abstract interpretation with constructive Galois connections, we design an

abstract semantics for WHILE in the following steps:

1. An abstraction for each set Z, B and env.

2. An abstraction for each denotation function J Ka, J Kc and J Kb.

3. An abstraction for each semantics relation ⇓a, ⇓b and 7→c.

Each abstract set forms a constructive Galois connection with its concrete counter-

part. Soundness criteria is synthesized for abstract functions and relations using

constructive Galois connection mappings. Finally, we verify and calculate abstract

interpreters from these specifications which are sound and computable by construc-

tion. We describe the details of this process only for integers and environments (the

sets Z and env), arithmetic operators (the denotation function J Ka), and arithmetic

expressions (the semantics relation ⇓a). See the Agda development accompanying

this chapter for the full mechanization of WHILE, and sections 4.8, 4.9, and 4.10

87

ρ ∈ env := var⇀ Z

J Ka : aop→ Z× Z⇀ Z

J Kc : cmp→ Z× Z→ B

J Kb : bop→ B× B→ B

ς ∈ Σ := env× cexp

` ⇓a : ℘(env× aexp× Z)

` ⇓b : ℘(env× bexp× B)

7→c : ℘(Σ× Σ)

ρ ` rand ⇓a i
ARand

ρ ` ae1 ⇓a i1 ρ ` ae2 ⇓a i2

ρ ` ae1 ⊕ ae2 ⇓a J⊕Ka(i1, i2)
AOp

ρ ` ae ⇓a i

〈ρ, x := ae〉 7→c 〈ρ[x← i], skip〉
CAssign

ρ ` be ⇓b true

〈ρ, if be then ce1 else ce2〉 7→c 〈ρ, ce1〉
CIf-T

ρ ` be ⇓b false

〈ρ, if be then ce1 else ce2〉 7→c 〈ρ, ce2〉
CIf-F

ρ ` be ⇓b true

〈ρ, while be do ce〉 7→c 〈ρ, ce ; while be do ce〉
CWhile-T

ρ ` be ⇓b false

〈ρ, while be do ce〉 7→c 〈ρ, skip〉
CWhile-F

Figure 4.2: Case Study 1: WHILE Concrete Semantics

88

for a detailed account of binary arithmetic operators and conditional command

expressions.

Abstracting Integers We design a simple sign abstraction for integers, although

more powerful abstractions are certainly possible [Cousot, 1999, Miné, 2006]. The

final abstract interpreter for WHILE is parameterized by any abstraction for integers,

meaning another abstraction can be plugged in without added proof effort.

The sign abstraction begins with three representative elements: neg, zer and

pos, representing negative integers, the integer 0, and positive integers. To support

representing integers which could be negative or 0, negative or positive, or 0 or

positive, etc. we design a set which is complete w.r.t these logical disjunctions:

i] ∈ Z] := {none, neg, zer, pos, negz, nzer, posz, any}

Z] is given meaning through an interpretation function µz, the analog of a γ from

the classical Galois connection framework:

µz : Z] → ℘(Z)

µz(none) := {}

µz(neg) := {i | i < 0}

µz(zer) := {0}

µz(pos) := {i | i > 0}

µz(negz) := {i | i ≤ 0}

µz(nzer) := {i | i 6= 0}

µz(posz) := {i | i ≥ 0}

µz(any) := {i | i ∈ Z}

The partial ordering on abstract integers coincides with subset ordering under µz,

that is, i]1 vz i
]
2 ⇐⇒ µz(i]1) ⊆ µz(i]2):

none vz i] vz any
neg vz negz, nzer

zer vz negz, posz

pos vz nzer, posz

89

To be a constructive Galois connection, µz forms a correspondence with a best

abstraction function ηz:

ηz : Z→ Z] ηz(n) :=


neg if i < 0

zer if i = 0

pos if i > 0

and we prove the constructive Galois connection correspondence:

i ∈ µz(i]) ⇐⇒ ηz(i) vz i]

The Classical Design To contrast with Cousot’s original design using

classical abstract interpretation, the key difference is the abstraction function. The

abstraction function using classical Galois connections is recovered through a lifting

of our ηz:

αz : ℘(Z) → Z] αz(I) :=
⊔
i∈I

ηz(i)

Abstraction functions of this form—℘(B) → A, for some concrete set A and abstract

set B—are representative of most Galois connections used in the literature for static

analyzers. However, these abstraction functions are precisely the part of classical

Galois connections which inhibit mechanized verification. The extraction function

ηz does not manipulate powersets, does not inhibit mechanized verification, and

recovers the original non-constructive αz through this standard lifting.

90

Abstracting Environments An abstract environment maps variables to ab-

stract integers rather than concrete integers.

ρ] ∈ env] := var→ Z]

env] is given meaning through an interpretation function µr:

µr : env] → ℘(env) µr(ρ]) := {ρ | ∀x.ρ(x) ∈ µz(ρ](x))}

An abstract environment represents concrete environments that agree pointwise with

some represented integer in the codomain.

The order on abstract environments is the standard pointwise ordering and

coincides with subset ordering under µr, that is, ρ]1 vr ρ
]
2 ⇐⇒ µr(ρ]1) ⊆ µr(ρ]2):

ρ]1 vr ρ2 := ∀x.ρ]1(x) vz ρ]2(x)

To form a constructive Galois connection, µr forms a correspondence with a best

abstraction function ηr:

ηr : env→ env] ηr(ρ) := λx.ηz(ρ(x))

and we prove the constructive Galois connection correspondence:

ρ ∈ µr(ρ]) ⇐⇒ ηr(ρ) vr ρ]

The Classical Design To contrast with Cousot’s original design using

classical abstract interpretation, the key difference is again the abstraction function.

91

The abstraction function using classical Galois connections is:

αr : ℘(env) → env] αr(R) := λx.αz({ρ(x) | ρ ∈ R})

which is also not amenable to mechanized verification.

Abstracting Functions After designing constructive Galois connections for Z

and env we define what it means for J Ka], some abstract denotation for arithmetic

operators, to be a sound abstraction of J Ka, its concrete counterpart. This is

done through a specification induced by mappings η and µ, analogously to how

specifications are induced using classical Galois connections.

The specification which encodes soundness and optimality for J Ka] is generated

using the constructive Galois connection for Z:

〈i1, i2〉 ∈ µz×z(i]1, i
]
2) ∧ 〈i]′1 , i

]′
2 〉 v ηz(JaeKa(i1, i2))⇔ 〈i]′1 , i

]′
2 〉 v JaeKa](i]1, i

]
2)

(See (CGC-Cmp/ηµ) in Section 4.3 for the origin of this equation.) For J Ka], we

postulate its definition and verify its correctness post-facto using the above property,

although we omit the proof details here. The definition of J Ka] is standard, and

returns none in the case of division by zero. We show only the definition of + here:

J Ka] : aexp→ Z] × Z] → Z]

J+Ka](i]1, i
]
2) :=

⊔


pos if pos vz i]1 ∨ pos vz i
]
2

neg if neg vz i]1 ∨ neg vz i
]
2

zer if zer vz i]1 ∧ zer vz i
]
2

zer if pos vz i]1 ∧ neg vz i
]
2

zer if neg vz i]1 ∧ pos vz i
]
2

92

The Classical Design To contrast with Cousot’s original design using

classical abstract interpretation, the key difference is that we avoid powerset liftings

all-together. Using classical Galois connections, the concrete denotation function

must be lifted to powersets:

J Ka℘ : aexp→ ℘(Z× Z)→ ℘(Z) JaeKa℘(II) := {JaeKa(i1, i2) | 〈i1, i2〉 ∈ II}

and then J Ka] is proven correct w.r.t. this lifting using αz and γz:

αz(JaeKa℘(γz(i]1, i
]
2))) = JaeKa](i]1, i

]
2)

This property cannot be mechanized without axioms because αz is non-constructive.

Furthermore, the proof involves additional powerset boilerplate reasoning, which is

not present in our mechanization of correctness for J Ka] using constructive Galois

connections. The state-of-the art approach of “γ-only” verification would instead

mechanize the γγ variant of correctness:

JaeKa℘(γz(i]1, i
]
2)) = γz(JaeKa](i]1, i

]
2))

which is similar to our µµ rule:

〈i1, i2〉 ∈ µz×z(i]1, i
]
2) ∧ 〈i′1, i′2〉 = JaeKa(i1, i2)⇔ 〈i′1, i′2〉 ∈ µz×z(JaeKa](i

]
1, i

]
2))

The benefit of our approach is that soundness and completeness properties which also

mention extraction (η) can also be mechanized, like calculating abstract interpreters

from their specification.

93

Abstracting Relations The verification of an abstract interpreter for relations

is similar to the design for functions: induce a specification using the constructive

Galois connection, and prove correctness w.r.t. the induced spec. The relations

we abstract are ⇓a, ⇓b and 7→c, and we call their abstract interpreters A], B] and

C]. Rather than postulate the definitions of the abstract interpreters, we calculate

them from their specifications, the results of which are sound and computable by

construction. The arithmetic and boolean abstract interpreters are functions from

abstract environments to abstract integers, and the abstract interpreter for commands

computes the next abstract transition states of execution. (We only present select

calculations for A]; see our accompanying Agda development for each calculation in

mechanized form, and sections 4.8, 4.9 and 4.10 for detailed calculations of binary

arithmetic operators and conditional command expressions.) A] has type:

A][] : aexp→ env] → Z]

To induce a spec for A], we first revisit the concrete semantics relation as a powerset-

valued function, which we call A:

A[] : aexp→ env→ ℘(Z) A[ae](ρ) := {i | ρ ` ae ⇓a i}

The induced spec for A] is generated with the monadic bind operator, which we

notate using Moggi’s star notation ∗:

pure(ηz)∗(A[ae]∗(µr(ρ]))) ⊆ pure(A][ae])(ρ])

94

which unfolds to:

{ηz(i) | ρ ∈ µr(ρ]) ∧ ρ ` ae ⇓a i} ⊆ {A][ae](ρ])}

To calculate A] we reason equationally from the spec on the left towards the singleton

set on the right, and declare the result the definition of A]. We do this by case

analysis on ae; we show the cases for ae = rand and ae = x in Figure 4.3. Each

calculation can also be written in monadic form, which is the style we mechanize; we

repeat the variable case in monadic form in the figure.

Mechanized Calculation Our Agda calculation of A] strongly resembles the

on-paper monadic one. We show the Agda proof code for abstract variable references

in Figure 4.4. The first line is the top level definition site for the derivation of A]

for the Var case. The proof-mode term is part of our “proof-mode” library which

gives support for calculational reasoning in the form of Agda proof combinators with

mixfix syntax. Statements surrounded by double square brackets [[e]] restate the

current proof state, which Agda will check is correct. Reasoning steps are employed

through * e + terms, which transform the proof state from the previous form to

the next. The term [focus-right [·] of e] focuses the goal to the right of the

outermost application, scoped between begin and end.

Using constructive Galois connections, our mechanized calculation closely

follows Cousot’s classical one, uses both η and µ mappings, and results in a verified,

executable static analyzer. Such a result is not possible using classical Galois

connections, due to the inability to encode α functions constructively.

95

Case ae = rand:

{ηz(i) | ρ ∈ µr(ρ]) ∧ ρ ` rand ⇓a i}

= {ηz(i) | ρ ∈ µr(ρ]) ∧ i ∈ Z} * defn. of ρ ` rand ⇓a i +

⊆ {ηz(i) | i ∈ Z} * ∅ when µr(ρ]) = ∅ +

⊆ {any} * {any} mon. w.r.t. vz +

, {A][rand](ρ])} * defining A][rand] +

Case ae = x:

{ηz(i) | ρ ∈ µr(ρ]) ∧ ρ ` x ⇓a i}

= {ηz(ρ(x)) | ρ ∈ µr(ρ])} * defn. of ρ ` x ⇓a i +

= {ηz(i) | i ∈ µz(ρ](x))} * defn. of µr(ρ]) +

⊆ {ρ](x)} * Eq. CGC-Red +

, {A][x](ρ])} * defining A][x] +

Case ae = x (Monadic):

pure(ηz)∗(A[x]∗(µr(ρ])))

= pure(λρ.ηz(ρ(x)))∗(µr(ρ])) * defn. of A[x] +

= pure(ηz)∗(µz∗(ρ](x))) * defn. of µr(ρ]) +

⊆ ret(ρ](x)) * Eq. CGC-Red +

, pure(A][x])(ρ]) * defining A][x] +

Figure 4.3: Case Study 1: Select Constructive Galois Connection Calculations

96

-- Agda Calculation of Case ae = x:

α[A] (Var x) ρ] = [proof-mode]

do [[(pure · ηz) ∗ · (A[Var x] ∗ · (µr · ρ]))]]

� [focus-right [·] of (pure · ηz) ∗] begin

do [[A[Var x] ∗ · (µr · ρ])]]

� * A[Var]/≡ +

� [[(pure · lookup[x]) ∗ · (µr · ρ])]]

� * lookup/µr/≡ +

� [[µz ∗ · (pure · lookup][x] · ρ])]]

end

� [[(pure · ηz) ∗ · (µz ∗ · (pure · lookup][x] · ρ]))]]

� * reductive[ηµ] +

� [[ret · (lookup][x] · ρ])]]

� [[pure · A][Num n] · ρ]]] �

Figure 4.4: Case Study 1: Constructive Galois Connection Calculations in Agda

97

We complete the full calculation of Cousot’s generic abstract interpreter for

WHILE in Agda as supplemental material to this chapter, where the resulting in-

terpreter is both sound and computable by construction. We also provide our

“proof-mode” library which supports general calculational reasoning with posets.

The Classical Design Classically, one first designs a powerset lifting of

the concrete semantics, called a collecting semantics :

A℘[] : aexp→ ℘(env) → ℘(Z) A℘[ae](R) := {i | ρ ∈ R ∧ ρ ` ae ⇓a}

The classical soundness specification for A][ae](ρ]) is then:

αz(A℘[ae](γr(ρ]))) v A][ae](ρ])

However, as usual, the abstraction αz cannot be mechanized effectively, preventing a

mechanized derivation of A] by calculus.

4.5 Case Study 2: Gradual Type Systems

Recent work in metatheory for gradual type systems [Garcia et al., 2016] shows

how a Galois connection discipline can guide the design of gradual typing systems.

Starting with a Galois connection between precise and gradual types, both the static

and dynamic semantics of the gradual language are derived systematically. This

technique is called Abstracting Gradual Typing (AGT).

The design presented by Garcia et al is to begin with a precise type system,

like the simply typed lambda calculus, and add a new type (?) which functions as

98

the top element (>) in the lattice of type precision. The precise typing rules are

presented with meta-operators for subtyping (<:) and for the join operator in the

subtyping lattice (
..
∨). The gradual type system is then written using abstract variants

of subtyping and join (<:] and
..
∨]) which are proven correct w.r.t. specifications

induced by the Galois connection.

The Precise Type System The AGT paper describes two designs for gradual

type systems in increasing complexity. We chose to mechanize a hybrid of the two

which is simple, like the first design, yet still exercises key challenges addressed

by the second. We also made slight modifications to the design at parts to make

mechanization easier, but without changing the nature of the system.

The precise type system we mechanized is the simply typed lambda calculus

with booleans, and top and bottom elements for a subtyping lattice, which we call

any and none:

τ ∈ type ::= none | B | τ → τ | any

The first design in the AGT paper does not involve subtyping, and their second

design incorporates record types with width and depth subtyping. By just focusing

on none and any, we exercise the subtyping machinery of their approach without

the blowup in complexity from formalizing record types.

The typing rules in AGT are written in strictly syntax-directed form, with

explicit use of subtyping in rule hypotheses. We show three precise typing rules for

if-statements, application and coercion in Figure 4.5. The subtyping lattice in the

99

Γ ` e1 : τ1 τ1 <: B

Γ ` e2 : τ2

Γ ` e3 : τ3

Γ ` if e1 then e2 else e3 : τ1

..
∨ τ2

If

Γ ` e1 : τ1 τ1 <: τ11 → τ21

Γ ` e2 : τ2 τ2 <: τ11

Γ ` e1(e2) : τ21

App
Γ ` e : τ1 τ1 <: τ2

Γ ` e :: τ2 : τ2

Coe

Figure 4.5: Case Study 2: Syntax Directed Precise Type System

precise system is the “safe for substitution” lattice, and well typed programs enjoy

progress and preservation.

Gradual Types The essence of AGT is to design a gradual type system by

abstract interpretation of the precise type system. To do this, a new top element

is added to the precise type system, although rather than representing the top of

the subtyping lattice like any, it represents the top of the precision lattice, and is

notated ?:

τ] ∈ type] ::= none | B | τ] → τ] | any | ?

The partial ordering has ? at the top (τ] v ?) and is otherwise discrete, and arrow

types are monotonic (covariant) in both the domain and codomain:

τ]11 v τ]12 ∧ τ
]
21 v τ]22 =⇒ τ]11 → τ]21 v τ]12 → τ]22

100

Just as in our other designs by abstract interpretation, type] is given meaning by an

interpretation function µ, which is the constructive analog of a classical concretization

(γ) function:

µ : type] → ℘(type)

µ(τ]) := τ when τ] = τ ∈ {none,B, any}

µ(τ]1 → τ]2) := {τ1 → τ2 | τ1 ∈ µ(τ]1) ∧ τ2 ∈ µ(τ]2)}

µ(?) := {τ | τ ∈ type}

The extraction function η is, remarkably, the identity function:

η : type→ type] η(τ) = τ

and the constructive Galois correspondence holds:

τ ∈ µ(τ]) ⇐⇒ η(τ) v τ]

Gradual Operators Given the constructive Galois connection between gradual

and precise types, we synthesize specifications for abstract analogs of subtyping (<:)

and the subtyping join operator (
..
∨), and relate them to their abstractions (<:] and

..
∨]):

τ1 ∈ µ(τ]1) ∧ τ2 ∈ µ(τ]2) ∧ τ1 <: τ2 ⇐⇒ τ]1 <:] τ]2

τ1 ∈ µ(τ]1) ∧ τ2 ∈ µ(τ]2) ∧ τ]3 v η(τ1

..
∨ τ2) ⇐⇒ τ]3 v τ]1

..
∨] τ]2

Key properties of gradual subtyping and the gradual join operator is how they

operate over the unknown type ?:

? <:] τ] τ] <:] ? ?
..
∨] τ] = τ]

..
∨] ? = ?

101

Γ] `] e]1 : τ]1 τ]1 <:] B

Γ] `] e]2 : τ]2

Γ] `] e]3 : τ]3

Γ] `] if e1 then e2 else e3 : τ]2
..
∨] τ]3

G-If

Γ] `] e]1 : τ]1 τ]1 <:] τ]11 → τ]21

Γ] `] e]2 : τ]2 τ]2 <:] τ]11

Γ] ` e]1(e]2) : τ]21

G-App
Γ] `] e] : τ]1 τ]1 <:] τ]2

Γ] `] e] :: τ]2 : τ]2

G-Coe

Figure 4.6: Case Study 2: Systematically Constructed Gradual Type System

Gradual Metatheory Using AGT, the gradual type system is a syntactic analog

to the precise one but with gradual types and operators, which we show in Figure 4.6.

Using this system, and constructive Galois connections, we mechanize in Agda the

key AGT metatheory results from the paper: equivalence for fully-annotated terms

(FAT), embedding of dynamic language terms (EDL), and the gradual guarantee

(GG):

` e : τ ⇐⇒ `] e : τ (FAT)

closed(un) =⇒ `] dune : ? (EDL)

`] e]1 : τ]1 ∧ e
]
1 v e]2 =⇒ `] e]2 : τ]2 ∧ τ

]
1 v τ]2 (GG)

102

Adjunction classical GCs Kleisli GCs

Category posets posets

Adjoints
monotonic

functions

monotonic

℘-monadic functions

Left Adjoint α : A → B κα : A → ℘(B)

Right Adjoint γ : B → A κγ : B → ℘(A)

Correspondence

id(x) v γ(y)

⇐⇒

α(x) v id(y)

ret(x) ⊆ κγ(y)

⇐⇒

κα(x) ⊆ ret(y)

Extensive id v γ ◦ α ret v κγ ~ κα

Reductive α ◦ γ v id κα~ κγ v ret

Soundness α ◦ f ◦ γ v f] κα~ f ~ κγ v f]

Optimality α ◦ f ◦ γ = f] κα~ f ~ κγ = f]

Figure 4.7: Comparison of Constructive and Classical Galois Connection Adjunctions

4.6 Constructive Galois Connection Metatheory

In this section we develop the full metatheory of constructive Galois connection and

prove precise claims about their relationship to classical Galois connections. We

develop the metatheory of constructive Galois connections as an adjunction between

posets with powerset-Kleisli adjoint functors. This is in contrast to classical Galois

connections which come from an identical setup, but with the monotonic function

space as adjoint functors, as shown in Figure 4.7.

We connect constructive to classical Galois connections through an isomorphism

between a subset of classical to the entire space of constructive. To form this

isomorphism we introduce an intermediate structure, Kleisli Galois connections,

103

which we show are isomorphic to the classical subset, and isomorphic to constructive

ones. This second isomorphism uses the constructive theorem of choice, as depicted

in Figure 4.8.

Classical Galois Connections We review classical Galois connections in

Figure 4.7. A Galois connection between posets A and B contains two adjoint

functors α and γ which share a correspondence. An equivalent formulation of

the correspondence is two unit equations called extensive and reductive. Abstract

interpreters are sound by over-approximating a specification induced by α and γ.

Powerset Monad See Sections 4.3.1 and 4.3.3 for the downward-closure mono-

tonicity property, and monad definitions and notation for the monotonic powerset

monad. The monad operators obey standard monad laws. We introduce one new

operator for monadic function composition: (g ~ f)(x) := g∗(f(x)).

Kleisli Galois Connections We summarize Kleisli Galois connections in Fig-

ure 4.7. Kleisli Galois connections are analogous to classical ones, but with monadic

analogs to α and γ, and monadic identity and composition operators ret and ~ in

place of the function space identity and composition operators id and ◦.

Kleisli to Classical and Back All Kleisli Galois connections 〈κα, κγ〉 between

A and B can be lifted to recover a classical Galois connection 〈α, γ〉 between ℘(A)

and ℘(B) through a monadic lifting operator on Kleisli Galois connections 〈κα, κγ〉∗:

〈α, γ〉 , 〈κα, κγ〉∗ := 〈κα∗, κγ∗〉

104

This lifting is sound, meaning Kleisli soundness and optimality results can be

translated to classical ones.

Theorem 1 (KGC-SoundAGDAX). For any Kleisli relationship of soundness between

f and f], that is κα ~ f ~ κγ v f], its lifting to classical is also sound, that is

α ◦ f ∗ ◦ γ v f]∗ where 〈α, γ〉 = 〈κα, κγ〉∗, and likewise for optimality relationships

α~ f ~ κy = f].

This lifting is also complete, meaning classical Galois connection soundness

and optimality results can always be translated to Kleisli ones, when α and γ are of

lifted form.

Theorem 2 (KGC-CompleteAGDAX). For any classical relationship of soundness

between f ∗ and f]∗, that is α ◦ f ∗ ◦ γ v f]∗, its lowering to Kleisli is also sound when

〈α, γ〉 = 〈κα, κγ〉∗, that is κα~f ~κγ v f], and likewise for optimality relationships

α ◦ f ∗ ◦ γ = f]∗.

Due to soundness and completeness, one can work with the simpler setup of

Kleisli Galois connections without any loss of generality. The setup is simpler because

Kleisli Galois connection theorems only quantify over individual elements rather

than elements of powersets. For example, the soundness criteria κα~ f ~ κγ v f] is

proved by showing κα∗(f ∗(κγ(x))) ⊆ f](x) for an arbitrary element x : A, whereas

in the classical proof one must show κα∗(f ∗(κγ∗(X))) ⊆ f]∗(X) for arbitrary sets

X : ℘(A).

105

Constructive Galois Connections Constructive Galois connections are a

restriction of Kleisli Galois connections where the abstraction mapping is a pure rather

than monadic function. We call the left adjoint extraction, notated η, and the right

adjoint interpretation, notated µ. The constructive Galois connection correspondence,

alternative expansive and reductive formulation of the correspondence, and soundness

and optimality criteria are identical to Kleisli Galois connections where 〈κα, κγ〉 =

〈pure(η), µ〉.

Constructive to Kleisli and Back Our main theorem which justifies the

soundness and completeness of constructive Galois connections is an isomorphism

between constructive and Kleisli Galois connections. The easy direction is soundness,

where a Kleisli Galois connection is formed by defining 〈κα, κγ〉 := 〈pure(η), µ〉.

Soundness and optimality theorems are then lifted from constructive to Kleisli

without modification.

Theorem 3 (CGC-SoundAGDAX). For any constructive relationship of soundness

between f and f], that is pure(η)~ f ~ µ v f], its lifting to Kleisli is sound, that

is κα ~ f ~ κγ v f] where 〈κα, κγ〉 = 〈pure(η), µ〉, and likewise for optimality

relationships pure(η)~ f ~ µ = f].

The other direction, completeness, is much more surprising. First we establish

a lowering for Kleisli Galois connections.

Lemma 1 (CGC-InduceAGDAX). For every Kleisli Galois connection 〈κα, κγ〉, there

exists a constructive Galois connection 〈η, µ〉 where 〈pure(η), µ〉 = 〈κα, κγ〉.

106

Classical

Computational Kleisli Constructive

Set inclusion

Theorem of choice

Figure 4.8: Relationship Between Classical, Kleisli and Constructive GCs

Proof. Because the mapping from Kleisli to constructive is interesting we provide

a proof, which to our knowledge is novel. The proof builds a constructive Galois

connection 〈η, µ〉 from a Kleisli 〈κα, κγ〉 by exploiting the Kleisli correspondence

and making use of the constructive theorem of choice.

To turn an arbitrary Kleisli Galois connection into a constructive one, we show

that the effect on κα : A → ℘(B) is benign, or in other words, that there exists

some η such that κα = pure(η). We prove this using two ingredients: a constructive

interpretation of the Kleisli extensive law, and the constructive theorem of choice.

We first expand the Kleisli expansive property, unfolding definitions of ~ and

ret, to get an equivalent logical statement:

∀x.∃y.y ∈ κα(x) ∧ x ∈ κγ(y) (KGC-Exp)

Statements of this form can be used in conjunction with an axiom of choice in

classical mathematics, which is:

(∀x.∃y.R(x, y)) =⇒ ∃f.∀x.R(x, f(x)) (AxChoice)

This theorem is admitted as an axiom in classical mathematics, but in constructive

107

logic—the setting used for extracting verified algorithms–(AxChoice) is definable as

a theorem, due to the computational interpretation of logical connectives ∀ and ∃.

We define (AxChoice) as a theorem in Agda without trouble:

choice : ∀ {A B} {R : A → B → Set}

→ (∀ x → ∃ y st R x y)

→ (∃ f st ∀ x → R x (f x))

choice P = 〈∃ (λ x → π1 (P x)) , (λ x → π2 (P x)) 〉

Applying (AxChoice) to (KGC-Exp) then gives:

∃η.∀x.η(x) ∈ κα(x) ∧ x ∈ κγ(η(x)) (ExpChioce)

which proves the existence of a pure function η : A → B.

In order to form a constructive Galois connection η and µ must satisfy the

correspondence, which we prove in split form:

x ∈ µ(η(x)) (CGC-Exp)

x ∈ µ(y) =⇒ η(x) v y (CGC-Red)

The expansive property is immediate from the second conjunct in (ExpChioce). The

reductive property follows from the Kleisli reductive property:

x ∈ κγ(y) ∧ y′ ∈ κα(x) =⇒ y′ v y (KGC-Red)

The constructive variant of reductive is proved by satisfying the first two premises

of (KGC-Red), where x ∈ κγ(y) is by assumption and y′ ∈ κα(x) is by the first

conjunct in (ExpChioce).

So far we have shown that for a Kleisli Galois connection 〈κα, κγ〉, there exists

108

a constructive Galois connection 〈η, µ〉 where µ = κγ. However, we have yet to show

pure(η) = κα. To show this, we prove an analog of a standard result for classical

Galois connections: that α and γ uniquely determine each other.

Lemma 2 (Unique AbstractionAGDAX). For any two Kleisli Galois connections

〈κα1, κγ1〉 and 〈κα2, κγ2〉, κα1 = κα2 iff κγ1 = κγ2

We then conclude pure(η) = κα as a consequence of the above lemma and the

fact that µ = κγ.

Given the above mapping from Kleisli Galois connections to constructive ones,

we prove the completeness of this mapping.

Theorem 4 (CGC-CompleteAGDAX). For any Kleisli relationship of soundness between

f and f], that is κα~ f ~ κγ v f], its lowering to constructive is also sound, that is

pure(η)~f~µ v f] where 〈η, µ〉 is induced, and likewise for optimality relationships

κα~ f ~ κγ = f].

Mechanization We mechanize the metatheory for constructive Galois connections

and both case studies from Sections 4.4 and 4.5 in Agda, as well as a general purpose

proof library for posets and calculational reasoning with the monotonic powerset

monad. The development is available at: github.com/plum-umd/cgc.

Wrapping Up In this section we showed that constructive Galois connections

are sound w.r.t. classical Galois connections, and complete w.r.t. the subset of

109

classical Galois connections recovered by lifting constructive ones. We showed this

by introducing an intermediate space of Galois connections called Kleisli Galois

connections, and by establishing two sets of isomorphisms between a subset of

classical and Kleisli, and between Kleisli and constructive. The proof of isomorphism

between constructive and Kleisli yielded an interesting proof which applies the

constructive theorem of choice to one of the Kleisli Galois connection correspondence

laws.

4.7 Constructing Constructive Galois Connections

The classical Galois connection framework comes with a library of connectives which

are used to build larger Galois connections out of smaller, primitive ones [Cousot

and Cousot, 1994]. For example, it is common to create a Galois connection for

Cartesian products (A×B) as the product abstraction of two Galois connections,

one for each side (A and B).

In this section, we define the constructive analog of many classical Galois

connection connectives and primitives. In later sections we will highlight similarities

and differences between constructive and classical calculations (§ 4.8), how derivations

of optimal abstract interpreters varies between the two settings (§ 4.9), and how

multivalued computations are supported in the constructive setting (§ 4.10). Each

section will make use of the connectives and primitives defined in this section without

explicit introduction. Some readers may choose to skip this section, and refer back

to the definitions as each connective appears in later sections.

110

By convention, we notate classical Galois connections A −−→←−−α
γ

B, that is with

α and γ symbols below and above the arrows, and constructive Galois connections

A −−→←−−η
µ

B, that is with η and µ symbols below and above the arrows. Note that in

the case of classical Galois connections, the domain and codomain of abstraction (α)

and concretization (γ) are immediate from the notation, that is, α : A → B and

γ : B → A. However for constructive Galois connections, the domain and codomain

is only immediate from the notation for abstraction (η), but not concretization (µ)

which maps to a powerset in the codomain, that is η : A → B but µ : B → ℘(A).

We notate pure(x) compactly as bxc, and assume all powersets are downward closed.

4.7.1 Strictly Classical Galois Connections

Independent Attributes Abstraction The independent attributes abstrac-

tion is defined for relations (℘(A×B)), and constructs the classical Galois connection:

℘(A×B) −−−→←−−−
IA
α

IA
γ

℘(A)× ℘(B)

IA
α : ℘(A×B) → ℘(A)× ℘(B)
IA
γ : ℘(A)× ℘(B) → ℘(A×B)

IA
α (XY) := 〈{x | ∃y.〈x, y〉 ∈ XY }, {y | ∃x.〈x, y〉 ∈ XY }〉

IA
γ (X, Y) := 〈{〈x, y〉 | x ∈ X ∧ y ∈ Y }〉

4.7.2 Strictly Constructive Galois Connections

Singleton Abstraction The singleton abstraction is defined for powersets of

partially ordered sets (℘(A)), and constructs the constructive Galois connection:

A −−→←−−
1
η

1
µ

℘(A)

1
η : A → ℘(A)
1
µ : ℘(A) → ℘(A)

1
η(x) := {x}

1
µ(X) := X

111

4.7.3 Primitive Galois Connections—Classical and Constructive

Least-upper-bound Abstraction The least-upper-bound abstraction is defined

for powersets of partially ordered sets (℘(A)), and constructs the classical Galois

connection:

℘(A) −−→←−−
t
α

t
γ

A

t
α : ℘(A) → A
t
γ : A → ℘(A)

t
α(X) :=

⊔
x∈X

x

t
γ(x) := {x}

The constructive analog is defined for powersets of partially ordered sets (℘(A)), and

constructs the classical Galois connection:

℘(A) −−−→←−−−
t℘
α

t℘
γ

℘1(A)

t℘
α : ℘(A) → ℘1(A)
t℘
γ : ℘1(A) → ℘(A)

t℘
α (X) := {x | x v

⊔
x∈X

x}
t℘
γ (X) := {x | x ∈ X}

We notate singleton (downward closed) powersets ℘1(), which classically are iso-

morphic to the carrier set (℘1(A) −−→←−− A), but not constructively.

Elementwise Abstraction The elementwise abstraction is defined given a

function f : A→ B, and constructs the classical Galois connection:

℘(A) −−−→←−−−
[f]
α

[f]
γ

℘(B)

[f]
α : ℘(A) → ℘(B)
[f]
γ : ℘(B) → ℘(A)

[f]
α(X) := {f(x) | x ∈ X}
[f]
γ (Y) := {x | f(x) ∈ Y }

The constructive analog is defined given a monotonic function f : A → B and

constructs a constructive Galois connection A −−→←−−η
µ

B where:

[f]
η : A → B
[f]
µ : B → ℘(A)

[f]
η (x) := f(x)
[f]
µ(y) := {x | f(x) v y}

Fact 1 (Elementwise Abstraction Correspondence). The classical elementwise ab-

straction is equal to the classical lifting of the constructive elementwise abstraction,

112

that is: α = bηc∗ and γ = µ∗.

4.7.4 Composing Galois Connections—Classical and Constructive

Abstraction Composition The composition of two abstractions is defined

given abstractions B −−−→←−−−α1

γ1

C and A −−−→←−−−α2

γ2

B, and constructs the classical Galois

connection:

A −−−→←−−−
1◦2
α

1◦2
γ

C

1◦2
α : A → C

1◦2
γ : C → A

1◦2
α (x) := α1(α2(x))
1◦2
γ (z) := γ2(γ1(z))

The constructive analog is defined given abstractions B −−−→←−−−η1

µ1

C and A −−−→←−−−η2

µ2

B,

and constructs the constructive Galois connection:

A −−−→←−−−
1◦2
η

1◦2
µ

C

1◦2
η : A → C

1◦2
µ : C → ℘(A)

1◦2
η (x) := η1(η2(x))

1◦2
µ (z) := µ∗2(µ1(z))

Product Abstraction The product abstraction is defined given abstractions

℘(A) −−−→←−−−
αA

γA

A] and ℘(B) −−−→←−−−
αB

γB

B], and constructs the classical Galois connection:

℘(A)× ℘(B) −−−−→←−−−−
A×B
α

A×B
γ

A] ×B]

A×B
α : ℘(A)× ℘(B) → A] ×B]

A×B
γ : A] ×B] → ℘(A)× ℘(B)

A×B
α (X, Y) := 〈αA(X), αB(Y)〉

A×B
γ (x], y]) := 〈γA(x]), γB(y])〉

113

The constructive analog is defined given abstractions A −−−→←−−−
ηA

µA

A] and B −−−→←−−−
ηB

µB

B],

and constructs the constructive Galois connection:

A×B −−−−→←−−−−
A×B
η

A×B
µ

A] ×B]

A×B
η : A×B → A] ×B]

A×B
µ : A] ×B] → ℘(A×B)

A×B
η (x, y) := 〈ηA(x), ηB(y)〉

A×B
µ (x], y]) := {〈x, y〉 | x ∈ µA(x]) ∧ y ∈ µB(y)}

Functional Abstraction The functional abstraction is defined given abstrac-

tions ℘(A) −−−→←−−−
αA

γA

A] and ℘(B) −−−→←−−−
αB

γB

B], and constructs the classical Galois

connection:

℘(A) → ℘(B) −−−−→←−−−−
A7→B
α

A7→B
γ

A] → B]

A 7→B
α : (℘(A) → ℘(B)) → A] → B]

A7→B
γ : (A] → B]) → ℘(A) → ℘(A)

A 7→B
α (f)(x]) := αB(f(γA(x])))

A 7→B
γ (f])(X) := γB(f](αA(X)))

The constructive analog is defined given constructive abstractions A −−−→←−−−
ηA

µA

A] and

B −−−→←−−−
ηB

µB

B], and constructs the classical Galois connection:

A → ℘(B) −−−−→←−−−−
A

℘
7→B
α

A
℘
7→B
γ

A] → ℘(B])

A
℘7→B
α : (A → ℘(B)) → A] → ℘(B])

A
℘7→B
γ : (A] → ℘(B])) → A → ℘(B)

A
℘7→B
α (f)(x]) := bηBc∗(f ∗(γA(x])))

A
℘7→B
γ (f])(x) := µB∗(f](ηA(x)))

Fact 2 (Functional Abstraction Correspondence). The classical functional abstraction

is equal to the classical lifting of the constructive elementwise abstraction composed

with the least-upper-bound abstraction, that is, for (f : A → ℘(B)), (f] : A] → B]),

114

(X : ℘(A)) and (x] : A]):

A 7→B
α (f ∗)(x]) =

⊔
y]∈A

℘
7→B
α (f)(x])

y] and
A 7→B
γ (f])(X) =

A
℘7→B
γ (bf]c)∗(X)

4.8 Comparing Classical and Constructive Approaches

In this section we aim to further clarify to what extent classical Galois connection

calculations, which have been used successfully for decades, are related and/or inter-

derivable with constructive Galois connection calculations. We will demonstrate this

relationship between classical and constructive calculations through an extended

example drawn from our first case study.

In Section 4.4 we showed calculations for the random number expression (rand)

and variable reference (x). The inductive case for binary operators (ae ⊕ ae) was

omitted for brevity, however its calculation is particularly interesting because it

involves interacting with a classical Galois connection during the calculation (in

both constructive and classical settings). In this section we will work through

this calculation in detail to demonstrate the differences and similarities between

classical and constructive approaches, as well as to demonstrate the effectiveness of

constructive Galois connections used in conjunction with classical ones.

Setup To set the stage, we review in Figure 4.9 the types for the arithmetic operator

denotation (J Ka), its abstraction (J Ka]), the arithmetic expression relational

semantics (` ⇓a), its functional variant (A[]) and collecting semantics (A℘[]),

its abstraction (A][]), as well as classical and constructive Galois connections

115

J Ka : Z× Z⇀ Z

J Ka] : Z] × Z] → Z]

` ⇓a : ℘(env× aexp× Z)

A[] : aexp→ env→ ℘(Z)

A℘[] : aexp→ ℘(env) → ℘(Z)

A][] : aexp→ env] → Z]

ηz : Z→ Z]

αz : ℘(Z) → Z]

ηr : env→ env]

αr : ℘(env) → env]

µz : Z] → ℘(Z)

γz : Z] → ℘(Z)

µr : env] → ℘(env)

γr : env] → ℘(env)

Figure 4.9: Review: Calculational Derivation for Binary Arithmetic Expressions

for integers (Z −−−→←−−−
ηz

µz

Z] and Z −−−→←−−−
αz

γz

Z]) and environments (env −−−→←−−−
ηr

µr

env] and

env −−−→←−−−
αr

γr

env]).

First we will show the original classical calculation for binary arithmetic

operator expressions which does not make explicit use of the independent attributes

abstraction (§ 4.8.1). We will then make independent attributes explicit in the

classical calculation (§ 4.8.2), and then show the constructive analog with explicit

use of independent attributes (§ 4.8.3).

4.8.1 Review: Cousot’s Original Classical Calculation

In the classical Galois connection framework, the abstraction (A][]) for the arith-

metic relational semantics (` ⇓a) is calculated by first defining the collecting

116

semantics (A℘[] : aexp → ℘(env) → ℘(Z)), and then relating the collecting

semantics to the abstract semantics through a functional abstraction, that is:

r 7→z
α (A℘[ae])(ρ]) , αz(A℘[ae](γr(ρ]))) v . . . , A][ae](ρ])

Cousot’s original calculation proceeds by case analysis on the syntax for arithmetic

expressions, so for arithmetic operator expressions, the calculation is:

αz(A℘[ae1 ⊕ ae2](γr(ρ]))) v . . . , A][ae1 ⊕ ae2](ρ])

The calculation is shown in Figure 4.10. Steps 1–3 unfold semantic function and

relation definitions; at Step 4 the specification is weakened explicitly to break

the equality relationship between the environment used to evaluate ae1 and ae2;

Step 5 rewrites the goal in terms of collecting semantics operations; Step 6 applies

the inductive hypothesis; Step 7 applies a correct abstract interpreter for binary

operators (a parameter to the calculation); Step 8 collapses neighboring abstraction

and concretization functions; and Step 9 declares the final state of the calculation to

be the definition of the algorithm.

Although there was no mention of the independent attributes abstraction in

this calculation, its effects are there implicitly. In particular, Step 4, which breaks

the equality relationship between environments, is implicitly performing the function

of the independent attributes abstraction: to break relationships between elements

of concrete sets of pairs. Step 4 is also the only step in the derivation which loses

precision (uses v instead of =) unnecessarily, whereas the other losses of precision are

unavoidable (inductive hypothesis, abstraction for binary operators, and collapsing

117

αz(A℘[ae1 ⊕ ae2](γr(ρ])))

(1) = * defn. of A℘[ae1 ⊕ ae2] +

αz(
⋃

ρ∈γr(ρ])

A[ae1 ⊕ ae2](ρ))

(2) = * defn. of A[ae1 ⊕ ae2] +

αz(
⋃

ρ∈γr(ρ])

{J⊕Ka(i1, i2) | ρ ` ae1 ⇓a i1 ∧ ρ ` ae2 ⇓a i2})

(3) = * defn. of A[ae1] and A[ae2] +

αz(
⋃

ρ∈γr(ρ])

{J⊕Ka(i1, i2) | i1 ∈ A[ae1](ρ) ∧ i2 ∈ A[ae2](ρ)})

(4) v * monotonicity of αz +

αz(
⋃

ρ1∈γr(ρ])

⋃
ρ2∈γr(ρ])

{J⊕Ka(i1, i2) | i1 ∈ A[ae1](ρ1) ∧ i2 ∈ A[ae2](ρ2)})

(5) = * set equality +

αz({J⊕Ka(i1, i2) | i1 ∈ A℘[ae1](γr(ρ])) ∧ i2 ∈ A℘[ae2](γr(ρ]))})

(6) v * inductive hypothesis (A℘[ae] ◦ γr v γz ◦ A][ae]) +

αz({J⊕Ka(i1, i2) | i1 ∈ γz(A][ae1](ρ])) ∧ i2 ∈ γz(A][ae2](ρ]))})

(7) v * J⊕Ka] correct (J⊕Ka℘ ◦
z×z
γ v γz ◦ J⊕Ka]) +

αz(γz(J⊕Ka](A][ae1](ρ]),A][ae2](ρ]))))

(8) v * αz ◦ γz reductive (αz ◦ γz v id) +

J⊕Ka](A][ae1](ρ]),A][ae2](ρ]))

(9) , * by A][ae1 ⊕ ae2](ρ]) := J⊕Ka](A][ae1](ρ]),A][ae2](ρ])) +

A][ae1 ⊕ ae2](ρ]) �

Figure 4.10: Classical Calculation for Binary Arithmetic Expressions

118

abstraction and concretization function). In the next subsection, we will make explicit

use of the independent attributes abstraction, rather than through the ad-hoc line of

reasoning contained in Step 4.

4.8.2 Using Independent Attributes Explicitly

In this section we recreate the calculation for binary arithmetic operator expressions

from last section, but in a way that makes explicit use of the independent attributes

abstraction.

The calculation is shown in Figure 4.11. The beginning of the derivation is as

before (steps 1–3); Step 4.1 rewrites the calculation into a form that mentions inde-

pendent attributes concretization; Step 4.2 pulls the collecting semantics for binary

operators out of the union operation; Step 5.1 introduces the explicit independent

attributes abstraction; Step 5.2 collapses the union operation between independent

attributes abstraction and concretization based on a key observation (see below);

Step 5.3 unfolds the definition of independent attributes concretization; and the rest

of the derivation is as before (steps 6–9).

The key observation in this derivation is the fact that the independent attributes

abstraction is transparent w.r.t. element-wise relationships, that is pairing (
IA
γ) and

splitting (
IA
α) two functions over related elements (f(x1) and g(x2) for x1 = x2 ∈ X),

is equivalent to pairing each functions applied to unrelated elements (f ∗(X) and

g∗(X)):

119

. . . initial calculation as before (steps 1–3)

αz(
⋃

ρ∈γr(ρ])

{J⊕Ka(i1, i2) | i1 ∈ A[ae1](ρ) ∧ i2 ∈ A[ae2](ρ)})

(4.1) = * defn. of
IA
γ and J⊕Ka℘ +

αz(
⋃

ρ∈γr(ρ])

J⊕Ka℘(
IA
γ (A[ae1](ρ),A[ae2](ρ))))

(4.2) = * set equality +

αz(J⊕Ka℘(
⋃

ρ∈γr(ρ])

IA
γ (A[ae1](ρ),A[ae2](ρ))))

(5.1) v *
IA
γ ◦ IAα extensive (id v IA

γ ◦ IAα) +

αz(J⊕Ka℘(
IA
γ (

IA
α (

⋃
ρ∈γr(ρ])

IA
γ (A[ae1](ρ),A[ae2](ρ))))))

(5.2) = * set equality (see (IA-Split) below) +

αz(J⊕Ka℘(
IA
γ (A℘[ae1](γr(ρ])),A℘[ae2](γr(ρ])))))

(5.3) v * defn. of
IA
γ and J⊕Ka℘ +

αz({J⊕Ka(i1, i2) | i1 ∈ A℘[ae1](γr(ρ])) ∧ i2 ∈ A℘[ae2](γr(ρ]))})

. . . final calculation as before (steps 6–9)

Figure 4.11: Classical Calculation for Binary Arithmetic Expressions Using Indepen-
dent Attributes

120

Fact 3 (Independent Attributes Split Equality).

IA
α (

⋃
x∈X

IA
γ (f(x), g(x))) = 〈f ∗(X), g∗(X)〉 (IA-Split)

This observation captures locally the fact that if relational information is

eventually going to be explicitly removed, then nothing is lost by splitting the

equality relationship between arguments to each function.

One of the benefits of the calculational approach to abstract interpretation is

that any loss of precision w.r.t. the induced specification is made explicit. In this

derivation, the only non-essential loss in precision came from an explicit introduction

of the independent attributes abstraction, which in turn makes explicit the fact that

the resulting analysis is non-relational. If a relational analyzer was desired, one could

point exactly where in the calculation this information was lost via the independent

attributes abstraction, and correct it locally.

4.8.3 Calculating with Constructive Galois Connections

In the constructive framework, the abstract interpretation of binary arithmetic

operator expressions (A][ae1 ⊕ ae2]) is derived in a similar way, and also has the

option of explicitly using the classical independent attributes abstraction along the

way. The constructive calculation proceeds from the induced specification:

r
℘7→z
α (A[ae])(ρ]) , bηzc∗(A[ae]∗(µr(ρ]))) v . . . , bA][ae]c(ρ])

Two notable difference in the constructive calculation setup are:

1. The codomain type for both sides is ℘(Z]), not Z]. This powerset modality

121

makes explicit the transition from “specification“ to “algorithm.”

2. The specification on the left-hand-side is stronger than the classical one,

because it does not collapse the set of abstract integers I] : ℘(Z]) into a single

least-upper-bound abstract integer i] =
⊔

i]′∈I]
i]′.

The original classical equation is recovered (in a constructive setting) by composing

with the constructive least-upper-bound-abstraction (
t℘
α : ℘(Z]) → ℘1(Z])):

t℘
α (bηzc∗(A[ae]∗(µr(ρ])))) v . . . , bA][ae]c(ρ])

However, we will continue our demonstration with the original induced equation,

where the constructive least-upper-bound-abstraction is not present.

The constructive calculation for the binary expression case proceeds in a

similar fashion to Cousot’s classical derivation. To mimic the classical derivation,

the independent attributes abstraction is introduced to weaken the specification to

discard the equality relationship between evaluation environments used to evaluate

ae1 and ae2.

The calculation is shown in Figure 4.12. Steps 1–4 unfold semantic function

and relation definitions; Step 5 explicitly weakens the specification using independent

attributes; Step 6 applies the key independent attributes observation; Step 7 applies

the inductive hypothesis; Step 8 combines concretization for independent attributes

and the abstraction for integers; Step 9 applies a correct abstract interpreter for

binary arithmetic operators (a parameter to the calculation); Step 10 collapses

neighboring abstraction and concretization functions; and Step 11 declares the final

122

state of the calculation to be the definition of the algorithm.

What this calculation shows is that constructive Galois connections are able to

work in tandem with classical Galois connections, as this constructive calculation

made use of the classical independent attributes abstraction.

4.9 Optimal Calculations—Constructive and Classical

All of the derivations shown in the previous section follow a γ-directed approach to

calculation. In this style, the next step of the calculation pushes concretization (γ)

through the concrete semantics, from right to left, until it meets abstraction (α) on

the far left-hand-side, at which point they collapse. In this section we explore the

alternative approach of going the other direction: push abstraction from left-to-right

until it meets concretization.

In the classical Galois connection framework, both γ-directed and α-directed

approaches are similar, and the choice to use one or the other is mostly cosmetic.

However, in the constructive framework, abstraction (η) is of a different nature than

concretization (µ): it is a pure function with algorithmic content, rather than a

relation. This means abstraction is easier to push through the concrete semantics,

and therefore η-directed derivations can be simpler than η-directed ones.

Because constructive and classical Galois connections are so tightly connected,

we show how this insight of η-directed calculations can be translated back to the

world of classical Galois connections. To do this, we first make an observation about

two restrictions often placed on collecting semantics and classical Galois connections

123

bηzc∗(A[ae1 ⊕ ae2]∗(µr(ρ])))

(1) = * defn. of A[ae1 ⊕ ae2] +

bηzc∗(
⋃

ρ∈µr(ρ])

{J⊕Ka(i1, i2) | ρ ` ae1 ⇓a i1 ∧ ρ ` ae2 ⇓a i2})

(2) = * defn. of A[ae1] and A[ae2] +

bηzc∗(
⋃

ρ∈µr(ρ])

{J⊕Ka(i1, i2) | i1 ∈ A[ae1](ρ) ∧ i2 ∈ A[ae2](ρ)})

(3) = * defn. of
IA
γ +

bηzc∗(
⋃

ρ∈µr(ρ])

bJ⊕Kac∗(IAγ (A[ae1](ρ),A[ae2](ρ))))

(4) = * set equality +

bηzc∗(bJ⊕Kac∗(
⋃

ρ∈µr(ρ])

IA
γ (A[ae1](ρ),A[ae2](ρ))))

(5) v *
IA
γ ◦ IAα extensive (id v IA

γ ◦ IAα) +

bηzc∗(bJ⊕Kac∗(IAγ (
IA
α (

⋃
ρ∈µr(ρ])

IA
γ (A[ae1](ρ),A[ae2](ρ))))))

(6) = * set equality (see (IA-Split) above) +

bηzc∗(bJ⊕Kac∗(IAγ (A[ae1]∗(µr(ρ])),A[ae2]∗(µr(ρ])))))

(7) v * inductive hypothesis (A[ae]~ µr v µz ~ bA][ae]c) +

bηzc∗(bJ⊕Kac∗(IAγ (µz(A][ae1](ρ])), µz(A][ae2](ρ])))))

(8) = * defn. of
IA
γ and

z×z
µ +

bηzc∗(bJ⊕Kac∗(z×zµ (A][ae1](ρ]),A][ae2](ρ]))))

(9) v * J⊕Ka] correct (bJ⊕Kac~ z×z
µ v µz ~ bJ⊕Ka]c) +

bηzc∗(µz(J⊕Ka](A][ae1](ρ]),A][ae2](ρ]))))

(10) v * bηzc~ µz reductive (bηzc~ µz v ret) +

{J⊕Ka](A][ae1](ρ]),A][ae2](ρ]))}

(11) , * by A][ae1 ⊕ ae2](ρ]) := J⊕Ka](A][ae1](ρ]),A][ae2](ρ])) +

bA][ae1 ⊕ ae2]c(ρ]) �

Figure 4.12: Constructive Calculation for Binary Arithmetic Expressions

124

in practice:

1. Restricting a predicate transformer (t : ℘(A)→ ℘(B)) to be a complete union

morphisms, that is:

f(
⋃
i∈I

Xi) =
⋃
i∈I

(f(Xi))

for some indexed family of sets X : I → ℘(A); and/or

2. Restricting an abstraction function (α : ℘(A) → A]) is required to be a

complete join morphism, that is:

α(
⋃
i∈I

Xi) =
⋃
i∈I

(α(Xi))

for some indexed family of sets X : I → A]

The main insight of this section is that the first property is equivalent to the existence

of a monadic semantics relation, or f : A→ ℘(B), where:

t(X) =
⋃
x∈X

f(x) and f(x) = t({x})

and the second property is equivalent to the existence of a constructive Galois

connection, or η : A → A], where:

α(X) =
⊔
x∈X

η(x) and η(x) = α({x})

It follows that, in any setting where classical Galois connections are used where

the collecting semantics t : ℘(A) → ℘(B) is a complete union morphism, and the

abstraction functions αA : ℘(A) → A] and αB : ℘(B) → B] are complete join

morphisms, it suffices to work purely with constructive Galois connections without

125

any loss of generality.

As a consequence of this, our observation above about η-directed calculations

being easier to “push through” the calculation for constructive Galois connections

also holds for α-directed classical calculations when the collecting semantics and

abstraction function are both complete join/union morphisms.

The η-directed calculation of an abstract interpreter for binary arithmetic

operator expressions is shown in Figure 4.13. The beginning of the calculation is

as before (steps 1–2); Step 3 pushes the abstraction function through the union

operation; Step 4 applies a correct abstract interpretation for binary operators (a

parameter to the calculation); Step 5 pushes the abstraction function through the set

comprehension; Step 6 applies the inductive hypothesis; Step 7 applies the fact that

the abstract denotation for binary operators is monotonic, and that powerset are

downward closed; Step 8 pushes abstraction again through the set comprehension;

Step 9 collapses the neighboring abstraction and concretization functions; and Step

10 declares the final state of the calculation to be the definition of the algorithm.

This abstraction-directed calculation is not only simpler due to how easily the

abstraction function distributes through powerset operations, but it is also optimal.

Unlike the classical calculation (and the constructive µ-directed calculation), no loss

in precision is explicitly introduced, and no use of independent attributes is made,

explicitly or implicitly. Next, we show how to port this optimal calculation back to

the classical Galois connection framework.

126

. . . initial calculation as before (steps 1–2)

bηzc∗(
⋃

ρ∈µr(ρ])

{J⊕Ka(i1, i2) | i1 ∈ A[ae1](ρ) ∧ i2 ∈ A[ae2](ρ)})

(3) = * set equality +⋃
ρ∈µr(ρ])

{ηz(J⊕Ka(i1, i2)) | i1 ∈ A[ae1](ρ) ∧ i2 ∈ A[ae2](ρ)}

(4) v * J⊕Ka] correct (ηz ◦ J⊕Ka v J⊕Ka] ◦ z×zη) +⋃
ρ∈µr(ρ])

{J⊕Ka](ηz(i1), ηz(i2)) | i1 ∈ A[ae1](ρ) ∧ i2 ∈ A[ae2](ρ)}

(5) = * set equality +⋃
ρ∈µr(ρ])

{J⊕Ka](i]1, i
]
2) | i]1 ∈ bηzc∗(A[ae1](ρ)) ∧ i]2 ∈ bηzc∗(A[ae2](ρ))}

(6) v * inductive hypothesis (bηzc~A[ae] v bA][ae]c~ bηrc) +⋃
ρ∈µr(ρ])

{J⊕Ka](i]1, i
]
2) | i]1 v A][ae1](ηr(ρ)) ∧ i]2 v A][ae1](ηr(ρ))}

(7) = * powerset downward-closed +⋃
ρ∈µr(ρ])

{J⊕Ka](A][ae1](ηr(ρ)),A][ae2](ηr(ρ)))}

(8) = * powerset equality +⋃
ρ]′∈bηrc∗(µr(ρ]))

{J⊕Ka](A][ae1](ρ]′),A][ae2](ρ]′))}

(9) v * bηrc~ µr reductive (bηrc~ µr v ret) +

{J⊕Ka](A][ae1](ρ]),A][ae2](ρ]))}

(10) , * by A][ae1 ⊕ ae2](ρ]) := J⊕Ka](A][ae1](ρ]),A][ae2](ρ])) +

bA][ae1 ⊕ ae2]c(ρ]) �

Figure 4.13: Constructive Calculation for Binary Arithmetic Expressions—Optimal
and η-directed

127

Porting the Optimal Derivation Back to Classical In this η-directed

constructive calculation, no steps lose precision unnecessarily. However, the classical

calculation required an explicit loss of precision through the independent attributes

abstraction. How can this be? To shed light on this question, we show that

the constructive abstraction-directed calculation can be back-ported to a classical

calculation, leveraging the fact that the abstraction side of Galois connections are

complete join morphisms, that is:

αz(
⋃
i∈I

Xi) =
⊔
i∈I

(αz(Xi))

With this observation, a classical derivation is possible which doesn’t need to interact

with independent attributes to induce a final algorithm.

The classical calculation of binary arithmetic operator expressions is shown in

Figure 4.14. The beginning of the calculation is as before (steps 1–3); Step 4 pushes

abstraction through the union operation, due to being a complete join morphism;

Step 5 applies a correct abstraction for binary operators; Step 6 applies the inductive

hypothesis; Step 7 pulls abstraction out of the set comprehension; Step 8 pushes

abstraction through the set comprehension, due to being a complete join morphism;

Step 9 collapses adjacent abstraction and concretization functions; and Step 10

declares the final state of the calculation to be the definition of the algorithm.

128

. . . initial calculation as before (steps 1–3)

αz(
⋃

ρ∈γr(ρ])

{J⊕Ka(i1, i2) | i1 ∈ A[ae1](ρ) ∧ i2 ∈ A[ae2](ρ)})

(4) * αz complete join morphism +⊔
ρ∈γr(ρ])

αz({J⊕Ka(i1, i2) | i1 ∈ A[ae1](ρ) ∧ i2 ∈ A[ae2](ρ)})

(5) v * J⊕Ka] correct (αz ◦ J⊕Ka℘
v
J⊕Ka] ◦ z×zα) +⊔

ρ∈γr(ρ])

J⊕Ka](αz(A[ae1](ρ)), αz(A[ae2](ρ)))

(6) v * inductive hypothesis (αz ◦ A℘[ae] = A℘[ae] ◦ αr) +⊔
ρ∈γr(ρ])

J⊕Ka](A][ae1](αr({ρ})),A][ae2](αr({ρ})))

(7) = * set equality +⊔
ρ]′∈{αr({ρ}) | ρ∈γr(ρ])}

J⊕Ka](A][ae1](ρ]′),A][ae2](ρ]′))

(8) = * αr complete join morphism +⊔
ρ]′∈{αr(γr(ρ]))}

J⊕Ka](A][ae1](ρ]′),A][ae2](ρ]′))

(9) v * αr ◦ γr reductive (αr ◦ γr v id) +

J⊕Ka](A][ae1](ρ]),A][ae2](ρ]))

(10) , * by A][ae1 ⊕ ae2](ρ]) := J⊕Ka](A][ae1](ρ]),A][ae2](ρ])) +

A][ae1 ⊕ ae2](ρ]) �

Figure 4.14: Classical Calculation for Binary Arithmetic Expressions—Optimal and
α-directed

129

4.10 Multivalued Constructive Galois Connections

In this section we argue that constructive Galois connections support multivalued

Galois connections, concrete semantics, and abstract interpreters, while maintaining

their ability to be mechanized effectively.

To explore multivalued constructive Galois connections, we again work through

an extended example based on the first case study, but this time deriving an ab-

stract interpreter for conditional expressions (if be then ce else ce) in the command

language (cexp) rather than arithmetic expressions (aexp).

Setup To set the stage, we review in Figure 4.15 the types for the command

expression relational semantics (7→c), its functional variant (C[]) and collecting

semantics (C℘[]), its abstraction (C][]), as well as classical and constructive

Galois connections for integers (Z −−−→←−−−
ηz

µz

Z] and Z −−−→←−−−
αz

γz

Z]) and environments

(env −−−→←−−−
ηr

µr

env] and env −−−→←−−−
αr

γr

env]).

4.10.1 Review: Cousot’s Original Classical Calculation

In the classical Galois connection framework, the abstraction (C][]) for the com-

mand small-step relational semantics (7→c) is calculated first by constructing

the collecting semantics (C℘[]), and then relating the collecting semantics to the

abstract semantics through a functional abstraction, that is:

Σ7→Σ
α (C℘[ce])(Σ]) , αΣ(C℘[ce](γΣ(Σ]))) v . . . , C][ce](Σ])

130

ς ∈ Σ := env× cexp

ς] ∈ Σ] := env] × ℘(cexp)

7→c : ℘(Σ× Σ)

C[] : cexp→ Σ → ℘(Σ)

C℘[] : cexp→ ℘(Σ) → ℘(Σ)

C][] : cexp→ Σ] → Σ]

ηz : Z→ Z]

αz : ℘(Z) → Z]

ηr : env→ env]

αr : ℘(env) → env]

µz : Z] → ℘(Z)

γz : Z] → ℘(Z)

µr : env] → ℘(env)

γr : env] → ℘(env)

Figure 4.15: Review: calculating abstraction for conditional expressions

where configurations (ς ∈ Σ) are abstracted through a composition of independent

attributes and a product abstraction over environments:

℘(Σ) −−−→←−−−
IA
α

IA
γ

℘(env)× ℘(cexp) −−−−→←−−−−
r×id
α

r×id
γ

Σ]
αΣ : ℘(Σ) → Σ]

γΣ : Σ] → ℘(Σ)

αΣ :=
r×id
α ◦ IAα

γΣ :=
IA
γ ◦ r×idγ

In Cousot’s original derivation, the abstract interpreter is derived for the reflexive

transitive closure of the small step relation directly. We will instead present the

abstract interpreter for the just the small step relation, factored out from the reflexive

transitive closure.

The classical calculation begins by case analysis on the syntax for command

expressions, so for conditional expressions the calculation is:

αΣ(C℘[if be then ce1 else ce2](γr(ρ]))) v . . . , C][if be then ce1 else ce2](ρ])

131

The calculation is shown in Figure 4.16. Steps 1–4 unfold semantic function

and relation definitions; Step 5 weakens the specification through an (implicit)

independent attributes abstraction; Step 6 applies a correct abstract interpreter for

boolean expressions (a parameter to the calculation); Step 7 weakens the case when

neither branch is valid, which would result in the returned abstract environment

being bottom (⊥), or the empty map (∅); Step 8 collapses adjacent abstraction and

concretization functions; and Step 9 declares the final state of the calculation as the

definition of the algorithm.

4.10.2 The Constructive Calculation

The goal is now to recreate this calculation using constructive Galois connections.

Up until this point, the use of powersets has been entirely restricted to describing

classical specifications. However, in this classical derivation, finite powersets appear

in the resulting algorithm. Thus, powersets served double-duty: both for classical

specification and for multivalued algorithmic results. When porting to constructive

Galois connections, this distinction must be made explicit in order to support

extraction of a verified algorithm.

Constructive Finite Sets To distinguish between classical powersets and

algorithmic finite sets, we will continue to notate classical powersets as ℘(A), which

are modeled as downward-closed A → prop. We will notate constructive finite sets

as p(A), which are representable in an algorithm using a data structure such as

a sorted list, binary tree, or hashed dictionary. To distinguish classical powersets

132

αΣ(C℘[if be then ce1 else ce2](γr(ρ])))

(1) = * defn. of C℘[if be then ce1 else ce2] +

αΣ(
⋃

ρ∈γr(ρ])

{〈ρ′, ce〉 | 〈ρ, if be then ce1 else ce2〉 7→c 〈ρ′, ce〉})

(2) = * defn. of 〈ρ, if be then ce1 else ce2〉 7→c 〈ρ′, ce′〉 +

αΣ(
⋃

ρ∈γr(ρ])

{〈ρ, ce1〉 | ρ ` be ⇓b true} ∪ {〈ρ, ce2〉 | ρ ` be ⇓b false})

(3) = * defn. of ρ ` be ⇓b b +

αΣ(
⋃

ρ∈γr(ρ])

{〈ρ, ce1〉 | true = B[be](ρ)} ∪ {〈ρ, ce2〉 | false = B[be](ρ)})

(4) = * set equality (union commutativity) +

αΣ

⋃


⋃
ρ∈γr(ρ])

{〈ρ, ce1〉 | true = B[be](ρ)}⋃
ρ∈γr(ρ])

{〈ρ, ce2〉 | false = B[be](ρ)}


(5) v * monotonicity (independent attributes) +

αΣ

⋃{〈ρ, ce1〉 | ρ ∈ γr(ρ]) ∧ ∃ρ′.true = B[be](ρ′)}

{〈ρ, ce2〉 | ρ ∈ γr(ρ]) ∧ ∃ρ′.false = B[be](ρ′)}


(6) v * B][be] correct (B℘[be] ◦ γr v γb ◦ B][be]) +

αΣ

⋃{〈ρ, ce1〉 | ρ ∈ γr(ρ])} if true v B][be](ρ])

{〈ρ, ce2〉 | ρ ∈ γr(ρ])} if false v B][be](ρ])


(7) v * ignore case ¬(true v B][be](ρ]) ∨ false v B][be](ρ])) +〈

αr(γr(ρ])),
⋃{ce1} if true v B][be](ρ])

{ce2} if false v B][be](ρ])

〉
(8) v * αr ◦ γr reductive (αr ◦ γr v id) +〈

ρ],
⋃{ce1} if true v B][be](ρ])

{ce2} if false v B][be](ρ])

〉
(9) , * by C][if be then ce1 else ce2](ρ]) :=

〈
ρ],

⋃{ce1} if true v B][be](ρ])

{ce2} if false v B][be](ρ])

〉
+

C][if be then ce1 else ce2](ρ]) �

Figure 4.16: Classical Calculation for Conditional Command Expressions

133

from constructive finite sets notationally, we will continue to notate elements of

powersets of posets X : ℘(A) as {x | P (x)}, which is valid for any downward-

closed proposition P : A → prop, and notate elements of constructive finite

sets (X : p(A)) as {{x | P (x)}}, which is valid for any decidable downward-closed

proposition P : A → B.

We relate classical powersets (℘(A)) to constructive finite sets (p(A)) using a

constructive Galois connection:

p(A) −−→←−−
p
η

p
µ

℘(A)

p
η : p(A) → ℘(A)
p
µ : ℘(A) → ℘(p(A))

p
η(X) := {x | x ∈ X}
p
µ(X) := {X | ∀x.x ∈ X ⇔ x ∈ X}

and define a singleton abstraction for constructive finite sets:

A −−−→←−−−
1p
η

1p
µ

p(A)

1p
η : A → p(A)
1p
µ : p(A) → ℘(A)

1p
η (x) := {{x}}

1p
µ(X) := {x | x ∈ X}

Finally, we redefine abstract configurations (ς] ∈ Σ]) to use constructive finite sets:

ς] ∈ Σ] := env] × p(cexp)

In this new setting for abstract configurations, the constructive Galois connection

for concrete configurations (ς ∈ Σ) is:

Σ −−−−→←−−−−
r×1p
η

r×1
µ

Σ]

r×1p
η : Σ→ Σ]

r×1p
µ : Σ] → ℘(Σ)

r×1p
η (ρ, ce) := 〈ηr(ρ), {{ce}}〉

r×1p
µ (ρ], CE) := {〈ρ, ce〉 | ρ ∈ µr(ρ]) ∧ cd ∈ CE}

Using constructive finite sets and this new definition for abstract configurations, we

will perform the same calculation as before, but entirely within the constructive

134

Galois connection framework, and in abstraction-directed form.

The Calculation We show the calculation for the abstract interpretation of

conditional expressions using constructive Galois connections in figures 4.17 and 4.18.

Steps 1–3 unfold semantic function and relation definitions; Step 4 applies commuta-

tivity of set union; Step 5 pushes abstraction through the set comprehension; Step

6 introduces adjacent concretization and abstraction functions, justified by Galois

connection extensiveness (an explicit loss in precision); Step 7 applies the constructive

Galois connection correspondence; Step 8 applies a correct abstract interpreter for

boolean expressions; Step 9 pulls abstraction out of the set comprehension; Step 10

collapses adjacent abstraction and concretization functions; and Step 11 declares the

final state of the calculation as the definition of the algorithm.

What this calculation shows is that constructive Galois connections support

manipulating multivalued abstractions and algorithms, via an explicit finite set

construction, which carries algorithmic content in a constructive logic setting. What

classically was just a powerset with finite elements becomes an explicit finite set,

and what classically was an undecidable specification of potentially infinite elements

remains a powerset. Supporting relational abstraction can be done in this way as

well, for example a relational abstraction for environments would have the shape of:

rel

ηr : p(env) → env]
rel

µr : env] → ℘(p(env))

135

bηΣc∗(C[if be then ce1 else ce2]∗(µr(ρ])))

(1) = * defn. of C[if be then ce1 else ce2] +

bηΣc∗(
⋃

ρ∈µr(ρ])

{〈ρ′, ce〉 | 〈ρ, if be then ce1 else ce2〉 7→c 〈ρ′, ce〉})

(2) = * defn. of 〈ρ, if be then ce1 else ce2〉 7→c 〈ρ′, ce′〉 +

bηΣc∗(
⋃

ρ∈µr(ρ])

{〈ρ, ce1〉 | ρ ` be ⇓b true} ∪ {〈ρ, ce2〉 | ρ ` be ⇓b false})

(3) = * defn. of ρ ` be ⇓b b +

bηΣc∗(
⋃

ρ∈µr(ρ])

{〈ρ, ce1〉 | true = B[be](ρ)} ∪ {〈ρ, ce2〉 | false = B[be](ρ)})

(4) = * set equality (union commutativity) +

bηΣc∗

⋃


⋃
ρ∈µr(ρ])

{〈ρ, ce1〉 | true = B[be](ρ)}⋃
ρ∈µr(ρ])

{〈ρ, ce2〉 | false = B[be](ρ)}


(5) = * set equality +

⋃


⋃
ρ∈µr(ρ])

{〈ηr(ρ), {{ce1}}〉 | true = B[be](ρ)}⋃
ρ∈µr(ρ])

{〈ηr(ρ), {{ce2}}〉 | false = B[be](ρ)}

(6) v * µb ~ bηbc extensive (ret v µb ~ bηbc) +

⋃


⋃
ρ∈µr(ρ])

{〈ηr(ρ), {{ce1}}〉 | true ∈ µb(ηb(B[be](ρ)))}⋃
ρ∈µr(ρ])

{〈ηr(ρ), {{ce2}}〉 | false ∈ µb(ηb(B[be](ρ)))}

. . .

Figure 4.17: Conditional Expressions Constructive Calculation

136

. . .

(7) = * constructive GC correspondence (b ∈ µb(b])⇔ ηb(b) v b]) +

⋃


⋃
ρ∈µr(ρ])

{〈ηr(ρ), {{ce1}}〉 | true v ηb(B[be](ρ))}⋃
ρ∈µr(ρ])

{〈ηr(ρ), {{ce2}}〉 | false v ηb(B[be](ρ))}

(8) v * B][] correct (ηb ◦ B[be] v B][be] ◦ ηr) +

⋃


⋃
ρ∈µr(ρ])

{〈ηr(ρ), {{ce1}}〉 | true v B][be](ηr(ρ))}⋃
ρ∈µr(ρ])

{〈ηr(ρ), {{ce2}}〉 | false v B][be](ηr(ρ))}

(9) = * set equality +

⋃


⋃
ρ]′∈bηrc∗µr(ρ])

{〈ρ]′, {{ce1}}〉 | true v B][be](ρ]′)}⋃
ρ]′∈bηrc∗µr(ρ])

{〈ρ]′, {{ce2}}〉 | false v B][be](ρ]′)}

(10) v * bηrc~ µr reductive (bηrc~ µb v ret) +
〈
ρ],

⋃{{ce1}} if true v B][be](ρ])

{{ce2}} if false v B][be](ρ])

〉
(11) , * by C][if be then ce1 else ce2](ρ]) :=

〈
ρ],

⋃{{ce1}} if true v B][be](ρ])

{{ce2}} if false v B][be](ρ])

〉
+

bC][if be then ce1 else ce2]c(ρ])

Figure 4.18: Conditional Expressions Constructive Calculation (Cont.)

137

4.11 Related Work

This work connects two long strands of research: abstract interpretation via Galois

connections and mechanized verification via dependently typed functional program-

ming. The former is founded on the pioneering work of Cousot and Cousot [1977,

1979]; the latter on that of Martin-Löf [1984], embodied in Norell’s Agda [Norell,

2007]. Our key technical insight is to use a monadic structure for Galois connections,

following the example of Moggi [1989] for the λ-calculus.

Calculational Abstract Interpretation Cousot describes calculational

abstract interpretation by example in his lecture notes [2005] and monograph [1999],

and Cousot and Cousot recently introduced a unifying calculus for Galois connec-

tions [2014]. Our work mechanizes Cousot’s calculations and provides a foundation for

mechanizing other instances of calculational abstract interpretation (e.g., [Midtgaard

and Jensen, 2008, Sergey et al., 2012]). We expect our work to have applications to

the mechanization of calculational program design [Bird and de Moor, 1996, Bird,

1990] by employing only Galois retractions, i.e. α ◦ γ is an identity [Cousot and

Cousot, 2014]. There is prior work on mechanized program calculation [Tesson et al.,

2011], but it is not based on abstract interpretation.

Verified Static Analyzers Verified abstract interpretation has shown many

promising results [Barthe et al., 2007, Blazy et al., 2013, Cachera and Pichardie,

2010, Pichardie, 2005], scaling up to large-scale real-world static analyzers [Jourdan

et al., 2015]. However, mechanized abstract interpretation has yet to benefit from

138

the Galois connection framework. Until now, approaches use classical axioms or

“γ-only” encodings of soundness and (sometimes) completeness. Our techniques for

mechanizing Galois connections should complement these approaches.

Galculator The Galculator [Silva and Oliveira, 2008] is a proof assistant founded

on an algebra of Galois connections. This tool is similar to ours in that it mechanically

verifies Galois connection calculations. Our approach is more general, supporting

arbitrary set-theoretic reasoning and embedded within a general purpose proof

assistant, however their approach is fully automated for the small set of derivations

which reside within their supported theory.

Deductive Synthesis Fiat [Delaware et al., 2015] is a library for the Coq proof

assistant which supports semi-automated synthesis of programs as refinements of

their specifications. Fiat uses the same powerset type and monad as we do, and their

“deductive synthesis” process similarly derives correct-by-construction programs by

calculus. Fiat derivations start with a user-defined specification and calculate towards

an under -approximation (w), whereas calculational abstract interpretation starts

with an optimal specification and calculates towards an over -approximation (v).

It should be possible to generalize their framework to use partial orders to recover

aspects of our work, or to invert the lattice used in our abstract interpretation

framework to recover aspects of theirs. A notable difference in approach is that Fiat

makes heavy use of Coq’s tactic programming language to automate rewrites inside

respectful contexts, whereas our system provides no interactive proof automation

139

and each calculational step must be notated explicitly.

Monadic Abstract Interpretation Monads in abstract interpretation have

recently been applied to good effect for modularity [Darais et al., 2015, Sergey et al.,

2013]. However, that work uses monads to structure the semantics, not the Galois

connections and proofs.

Future Directions Now that we have established a foundation for constructive

Galois connection calculation, we see value in verifying larger derivations (e.g., [Midt-

gaard and Jensen, 2008, Sergey et al., 2012]). Furthermore we would like to explore

whether or not our techniques have any benefit in the space of general-purpose

program calculations à la Bird.

Currently our framework requires the user to justify every detail of the program

calculation, including monotonicity proofs and proof scoping for rewrites inside

monotonic contexts. We imagine much of this can be automated, requiring the user

to only provide the interesting parts of the proof, à la Fiat [Delaware et al., 2015].

Our experience has been that even Coq’s tactic system slows down considerably

when automating all of these details, and we foresee using proof by reflection in

either Coq (e.g., Rtac [Malecha and Bengtson, 2016]) or Agda to automate these

proofs in a way that maintains proof-checker performance.

There have been recent developments on compositional abstract interpretation

frameworks [Darais et al., 2015] where abstract interpreters and their proofs of

soundness are systematically derived side-by-side. That framework relies on correct-

140

ness properties transported by Galois transformers, which we posit would benefit

from mechanization since they hold both computational and specification content.

4.12 Conclusions

This chapter realizes the vision of mechanized and constructive Galois connections

foreshadowed by Cousot [1999, p. 85], giving the first mechanically verified proof by

calculational abstract interpretation; once for his generic static analyzer and once for

the semantics of gradual typing. Our proofs by calculus closely follow the originals.

The primary discrepancy is the use of monads to isolate specification effects. By

maintaining this discipline, we are able to verify calculations by Galois connections

and extract computational content from pure results. The resulting artifacts are

correct-by-verified-construction, thereby avoiding known bugs in the original.2

2http://www.di.ens.fr/~cousot/aisoftware/Marktoberdorf98/Bug_History

141

http://www.di.ens.fr/~cousot/aisoftware/Marktoberdorf98/Bug_History

Chapter 5: Galois Transformers

5.1 Introduction

Traditional practice in program analysis via abstract interpretation is to fix a language

(as a concrete semantics) and an abstraction (as an abstraction map, concretization

map or Galois connection) before constructing a static analyzer that is sound with

respect to both the abstraction and the concrete semantics. Thus, each pairing of

abstraction and semantics requires a one-off manual derivation of the static analyzer

and construction of its proof of soundness.

Work has focused on endowing abstractions with knobs, levers, and dials to

tune precision and compute efficiently. These parameters come with overloaded

meanings such as object, context, path and heap sensitivities, or some combination

thereof. These efforts develop families of analyses for a specific language and prove

the framework sound.

But this framework approach suffers from many of the same drawbacks as the

one-off analyzers. They are language-specific, preventing reuse of concepts across

languages, and require similar re-implementations and soundness proofs. This process

is still manual, tedious, difficult and error-prone. And, changes to the structure of

the parameter-space require a completely new proof of soundness. And, it prevents

142

fruitful insights and results developed in one paradigm from being applied to others,

e.g., functional to object-oriented and vice versa.

We propose an automated alternative to structuring and implementing pro-

gram analysis. Inspired by Liang et al.’s Monad Transformers and Modular Inter-

preters [1995], we propose to start with concrete interpreters written in a specific

monadic style. Changing the monad will transform the concrete interpreter into an

abstract interpreter. As we show, classical program abstractions can be embodied

as language-independent monads. Moreover, these abstractions can be written as

monad transformers, thereby allowing their composition to achieve new forms of

analysis. We show that these monad transformers obey the properties of Galois con-

nections [Cousot and Cousot, 1979] and introduce the concept of a Galois transformer,

a monad transformer which transports Galois connection properties.

Most significantly, Galois transformers are proven sound once and for all.

Abstract interpreters, which take the form of monad transformer stacks coupled with

a monadic interpreter, inherit the soundness properties of each element in the stack.

This approach enables reuse of abstractions across languages and lays the foundation

for a modular metatheory of program analysis.

Setup We describe a simple programming language and a garbage-collecting

allocating semantics as the starting point of analysis design (§ 5.2). We then briefly

discuss three types of path and flow sensitivity and their corresponding variations in

analysis precision (§ 5.3).

143

Monadic Abstract Interpreters We develop an abstract interpreter for our

example language as a monadic function with parameters (§ 5.2 and 5.5), one of which

is a monadic effect interface combining state and nondeterminism effects (§ 5.4.1).

These monadic effects—state and nondeterminism—encode arbitrary relational small-

step state-machine semantics and correspond to state-machine components and

relational nondeterminism, respectively.

Interpreters written in this style are reasoned about using various laws, including

monadic effect laws, and are verified correct independent of any particular choice of

parameters. Likewise, choices for these parameters are proven correct in isolation

from their instantiation. When instantiated, our generic interpreter recovers the

concrete semantics and a family of abstract interpreters with variations in abstract

domain, abstract garbage collection, call-site sensitivity, object sensitivity, and path

and flow sensitivity (§ 5.6). Furthermore, each derived abstract interpreter is proven

correct by construction through a reusable, semantics independent proof framework

(§ 5.8).

Isolating Path and Flow Sensitivity We give specific monads for instan-

tiating the interpreter from Section 5.5 to path-sensitive, flow-sensitive and flow-

insensitive analyses (§ 5.7). This leads to an isolated understanding of path and

flow sensitivity as mere variations in the monad used for execution. Furthermore,

these monads are language independent, allowing one to reuse the same path and

flow sensitivity machinery for any language of interest, and compose seamlessly with

other analysis parameters.

144

Galois Transformers To ease the construction of monads for building abstract

interpreters and their proofs of correctness, we develop a framework of Galois trans-

formers (§ 5.8). Galois transformers are an extension of monad transformers which

transport Galois connection properties (§ 5.8.4). The Galois transformer framework

allows us to both execute and justify the correctness of an abstract interpreter

piecewise for each transformer. Galois transformers are language independent and

they are proven correct once and for all in isolation from a particular semantics.

Implementation We implement our technique as a Haskell library and example

client analysis (§ 5.9). Developers are able to reuse our language-independent

framework for prototyping the design space of analysis features for their language

of choice. Our implementation is publicly available on Hackage1, Haskell’s package

manager.

Contributions We make the following contributions:

• A methodology for constructing monadic abstract interpreters based on monadic

effects.

• A compositional, language-independent framework for constructing monads

with varying analysis properties based on monad transformers.

• A compositional, language-independent proof framework for constructing Galois

connections and end-to-end correctness proofs based on Galois transformers, an

extension of monad transformers which transports Galois connection properties.

1http://hackage.haskell.org/package/maam

145

http://hackage.haskell.org/package/maam

• Two new general purpose monad transformers for nondeterminism which

are not present in any previous work on monad transformers (even outside

static analysis literature). Although applicable to settings other than static

analysis, these two transformers give rise naturally to variations in path and

flow sensitivity when applied to abstract interpreters.

• An isolated understanding of path and flow sensitivity in analysis as properties

of the interpreter monad, which we develop independently of other analysis

features.

Collectively, these contributions make progress toward a reusable metatheory for

program analysis.

5.2 Semantics

To demonstrate our framework we design an abstract interpreter for λIF, a simple

applied lambda calculus shown in Figure 5.1. λIF extends traditional lambda calculus

with integers, addition, subtraction and conditionals. We write @ as explicit abstract

syntax for function application. The state-space Σ for λIF makes allocation explicit

using two separate stores for values (Store) and for the stack (KStore).

Guided by the syntax and semantics of λIF we develop interpretation param-

eters in Section 5.4, a monadic interpreter in Section 5.5, and both concrete and

abstract instantiations for the interpretation parameters in Section 5.6. The varia-

tions in path and flow sensitivity developed in sections 5.7 and 5.8 are independent

of this (or any other) semantics.

146

i ∈ Z

x ∈ Var

a ∈ Atom ::= i | x | λx.e

⊕ ∈ IOp ::= + | −

� ∈ Op ::= ⊕ | @

e ∈ Exp ::= a | e� e | if0(e){e}{e}

τ ∈ Time := Z

l ∈ Addr := Var× Time

ρ ∈ Env := Var ⇀ Addr

σ ∈ Store := Addr ⇀ Val

c ∈ Clo ::= 〈λx.e, ρ〉

v ∈ Val ::= i | c

κl ∈ KAddr := Time

κσ ∈ KStore := KAddr ⇀ Frame×KAddr

fr ∈ Frame ::= 〈�� e, ρ〉 | 〈v ��〉 | 〈if0(�){e}{e}, ρ〉

ς ∈ Σ ::= 〈e, ρ, σ, κl, κσ, τ〉

Figure 5.1: λIF Syntax and Concrete State Space

147

We define semantics for atomic expressions and primitive operators denota-

tionally with AJ K and δJ K, and to compound expressions relationally with ,

shown in Figure 5.2.

Our abstract interpreter supports abstract garbage collection [Might and

Shivers, 2006a], the concrete analogue of which is just standard garbage collection.

We include abstract garbage collection for two reasons. First, it is one of the few

techniques that results in both performance and precision improvements for abstract

interpreters. Second, we will systematically recover concrete and abstract garbage

collectors with varying path and flow sensitivities through a single monadic garbage

collector, an axis of generality novel in this work.

We show the garbage collected semantics in Figure 5.3, as well as a final

collecting semantics collect, which will serve as the starting point for abstraction.

The concrete, garbage-collected collecting semantics collect and a sound static

analyzer will both be recovered from instantiations of a generic monadic interpreter

in Section 5.6.

The garbage collected semantics gc is defined with reachability functions

KR and R which define transitively reachable addresses. We write µX.f(X) as the

least-fixed-point of the function f . R is defined in terms of R-Frm and R-Val, which

define the immediately reachable locations from a frame and value respectively. We

omit the definition of FV, which is the standard recursive definition for computing

free variables of an expression.

148

AJ K : Atom→ Env× Store ⇀ Val

AJiK(ρ, σ) := i

AJxK(ρ, σ) := σ(ρ(x))

AJλx.eK(ρ, σ) := 〈λx.e, ρ〉

δJ K : IOp→ Z× Z→ Z

δJ+K(i1, i2) := i1 + i2

δJ−K(i1, i2) := i1 − i2

 : ℘(Σ× Σ)

〈e1 � e2, ρ, σ, κl, κσ, τ〉 〈e1, ρ, σ, τ, κσ
′, τ + 1〉 where

κσ′ := κσ[τ 7→ 〈〈�� e2, ρ〉, κl〉]

〈if0(e1){e2}{e3}, ρ, σ, κl, κσ, τ〉 〈e1, ρ, σ, τ, κσ
′, τ + 1〉 where

κσ′ := κσ[τ 7→ 〈〈if0(�){e2}{e3}, ρ〉, κl〉]

〈a, ρ, σ, κl, κσ, τ〉 〈e, ρ′, σ, τ, κσ′, τ + 1〉 where

〈〈�� e, ρ′〉, κl′〉 := κσ(κl)

κσ′ := κσ[τ 7→ 〈〈AJaK(ρ, σ)��〉, κl′〉]

〈a, ρ, σ, κl, κσ, τ〉 〈e, ρ′′, σ′, κl′, κσ, τ + 1〉 where

〈〈〈λx.e, ρ′〉@�〉, κl′〉 := κσ(κl)

ρ′′ := ρ′[x 7→ 〈x, τ〉]

σ′ := σ[〈x, τ〉 7→ AJaK(ρ, σ)]

〈i2, ρ, σ, κl, κσ, τ〉 〈i, ρ, σ, κl′, κσ, τ + 1〉 where

〈〈i1 ⊕�〉, κl′〉 := κσ(κl)

i := δJ⊕K(i1, i2)

〈i, ρ, σ, κl, κσ, τ〉 〈e, ρ′, σ, κl′, κσ, τ + 1〉 where

〈〈if0(�){e1}{e2}, ρ′〉, κl′〉 := κσ(κl)

e := e1 when i = 0 ; e2 when i 6= 0

Figure 5.2: Concrete Semantics

149

 gc : ℘(Σ× Σ)

ς gc ς ′ where ς ς ′

〈e, ρ, σ, κl, κσ, τ〉 gc 〈e, ρ, σ′, κl, κσ′, τ〉 where

κσ′ := {κl 7→ κσ(κl) | κl ∈ KR(κl, κσ)}

σ′ := {l 7→ σ(l) | l ∈ R(e, ρ, σ, κl, κσ)}

KR : KAddr×KStore→ ℘(KAddr)

KR(κl, κσ) := µX.

X ∪ {κl} ∪ {π2(κσ(κl)) | κl ∈ X}

R : Exp× Env× Store×KAddr×KStore→ ℘(Addr)

R(e, ρ, σ, κl, κσ) := µX.

X ∪ {ρ(x) | x ∈ FV(e)}

∪ {l | l ∈ R-Frm(π1(κσ(κl))) ; κl ∈ KR(κl, κσ)}

∪ {l′ | l′ ∈ R-Val(σ(l)) ; l ∈ X}

R-Frm : Frame→ ℘(Addr)

R-Frm(〈�� e, ρ〉) := {ρ(x) | x ∈ FV(e)}

R-Frm(〈v ��〉) := R-Val(v)

R-Frm(〈if0(�){e2}{e3}, ρ〉) := {ρ(x) | x ∈ FV(e1) ∪ FV(e2)}

R-Val ∈ Val→ ℘(Addr)

R-Val(i) := {}

R-Val(〈λx.e, ρ〉) := {ρ(y) | y ∈ FV(λx.e)}

collect : ℘(Σ)

collect := µX.X ∪ {ς0} ∪ {ς ′ | ς gc ς ′ ; ς ∈ X} where

ς0 := 〈e0,⊥,⊥, 0,⊥, 1〉

Figure 5.3: Garbage Collected Collecting Semantics

150

5.3 Path and Flow Sensitivity in Analysis

We identify three specific variants of path and flow sensitivity in analysis: path-

sensitive, flow-sensitive and flow-insensitive. Our framework exposes the essence

of path and flow sensitivity through a monadic effect interface in Section 5.4, and

we recover each of these variations through specific monad instances in sections 5.7

and 5.8.

Consider a combination of if-statements in our example language λIF (extended

with let-bindings) where an analysis cannot determine the value of N :

(1) let x :=

(2) if0(N){

(3) if0(N){1}{2} }{

(4) if0(N){3}{4} } in

(5) let y := if0(N){5}{6} in

(6) exit(x, y)

Path-Sensitive A path-sensitive analysis tracks both data and control flow

precisely. At lines 3 and 4 the analysis considers separate worlds:

3 : {N = 0} 4 : {N 6= 0}

At Line 5 the analysis continues in two separate, precise worlds:

5 : {N = 0, x = 1} {N 6= 0, x = 4}

151

At Line 6 the analysis correctly correlates x and y:

6 : {N = 0, x = 1, y = 5} {N 6= 0, x = 4, y = 6}

Flow-Sensitive A flow-sensitive analysis collects a single set of facts for each

variable at each program point. At lines 3 and 4, the analysis considers separate

worlds:

3 : {N = 0} 4 : {N 6= 0}

Each nested if-statement then evaluates only one side of the branch, resulting in

values 1 and 4. At Line 5 the analysis is only allowed one set of facts, so it must

merge the possible values that x and N could take:

5 : {N ∈ Z, x ∈ {1, 4}}

The analysis then explores both branches at Line 5 resulting in no correlation between

values for x and y at Line 6:

6 : {N ∈ Z, x ∈ {1, 4}, y ∈ {5, 6}}

Flow-Insensitive A flow-insensitive analysis collects a single set of facts about

each variable which must hold true for the entire program. Because the value of N is

unknown at some point in the program, the value of x must consider both branches

of the nested if-statement. This results in the global set of facts giving four values

152

to x:

1–6 : {N ∈ Z, x ∈ {1, 2, 3, 4}, y ∈ {5, 6}}

5.4 Analysis Parameters

Before constructing the abstract interpreter we first design its parameters. The

interpreter, which we develop in Section 5.5, will be designed such that variations in

these parameters will recover both concrete and a family of abstract interpreters,

which we show in Section 5.6. To do this we extend the ideas developed in Van Horn

and Might [2010] with a new parameter for path and flow sensitivity: the interpreter

monad.

There will be three parameters to our abstract interpreter:

1. The monad, novel in this work, which captures control effects and gives rise to

path and flow sensitivity.

2. The abstract domain, which captures the abstraction of values like integers or

datatypes.

3. The abstraction for time, which captures call-site and object sensitivities.

We place each of these parameters behind an abstract interface and leave their

implementations opaque when defining the monadic interpreter in Section 5.5. Each

parameter comes with laws which can be used to reason about the generic interpreter

independent of a particular instantiation. Likewise, an instantiation of the interpreter

153

need only justify that each parameter meets its local interface, which we justify in

isolation from the generic interpreter.

5.4.1 The Analysis Monad

The monad for the interpreter captures the effects of interpretation. There are two

effects in the interpreter: state and nondeterminism. The state effect will mediate

how the interpreter interacts with state cells in the state space: Env, Store, KAddr,

KStore and Time. The nondeterminism effect will mediate branching in the execution

of the interpreter. Path and flow sensitivity will be recovered by altering how these

effects interact in a particular choice of monad.

We use monadic state and nondeterminism effects to abstract over arbitrary

relational small-step state-machine semantics. State effects correspond to the com-

ponents of the state-machine and nondeterminism effects correspond to potential

nondeterminism in the relation’s definition.

We briefly review monad, state and nondeterminism operators and their laws.

For a more details see Gibbons and Hinze [2011], Liang et al. [1995], Moggi [1989].

Monad Operators A type operator m is a monad if it supports bind, a sequencing

operator, and its unit return:

m : Type→ Type

return : ∀A.A→ m(A)

bind : ∀AB.m(A)→ (A→ m(B))→ m(B)

and obeys left unit, right unit and associativity laws.

154

We use semicolon notation for bind (e.g., x← X ; k(x) is sugar for bind(X)(k))

and we replace semicolons with line breaks headed by do for multiline monadic

definitions.

State Effect A type operator m supports the monadic state effect for a type s

if it supports get and put operations over s:

s : Type

m : Type→ Type

get : m(s)

put : s→ m(unit)

and obeys get-get, get-put, put-get and put-put laws [Gibbons and Hinze, 2011].

Nondeterminism Effect A type operator m supports the monadic nondeter-

minism effect if it supports an alternation operator � and its unit mzero:

m : Type→ Type

� : ∀A.m(A)×m(A)→ m(A)

mzero : ∀A.m(A)

The type m(A) must have a join-semilattice structure, mzero must be a zero for

bind, and bind must distribute through �.

The interpreter in Section 5.5 will be defined generic to a monad which supports

monad operators, state effects and nondeterminism effects. As a consequence, we do

not reference an explicit configuration ς or collections of results; instead we interact

with an interface of state and nondeterminism effects. This level of indirection will be

exploited in Section 5.7, where different monads will meet the same effect interface

but yield different analysis properties.

155

5.4.2 The Abstract Domain

To expose the abstract domain we parameterize over Val, introduction and elimination

forms for Val, and the denotation for primitive operators δJ K.

Val must be a join-semilattice with t and its unit ⊥:

⊥ : Val t : Val× Val→ Val

and respect the usual join-semilattice laws. Val must be a join-semilattice so it can

be merged in updates to Store to preserve soundness.

Val must also support introduction and elimination between finite sets of

concrete values Z and Clo:

int-I : Z→ Val

clo-I : Clo→ Val

if0-E : Val→ ℘(Bool)

clo-E : Val→ ℘(Clo)

Introduction functions inject concrete values into abstract values. Elimination

functions project abstract values into a finite set of concrete observations. For

example, we do not require that abstract values support elimination to integers, only

to finite observation of comparison with zero. The laws for the introduction and

elimination functions induce a Galois connection between ℘(Z) and Val :

{true} ⊆ if0-E(int-I(i)) if i = 0

{false} ⊆ if0-E(int-I(i)) if i 6= 0⊔
b∈if0-E(v)
i∈θ(b)

int-I(i) v v

where θ(true) := {0}

θ(false) := {i | i ∈ Z ; i 6= 0}

156

Closures must follow similar laws, inducing a Galois connection between ℘(Clo) and

Val :

{c} ⊆ clo-E(cloI(c))⊔
c∈clo-E(v)

clo-I(c) v v

Finally, δJ K must be sound w.r.t. the Galois connection between concrete values

and Val :

int-I(i1 + i2) v δJ+K(int-I(i1), int-I(i2))

int-I(i1 − i2) v δJ−K(int-I(i1), int-I(i2))

Supporting additional primitive types like booleans, lists, or arbitrary inductive

datatypes is analogous. Introduction functions inject the type into Val and elimina-

tion functions project a finite set of discrete observations. Introduction, elimination

and δ operators must all be sound and complete following a Galois connection

discipline.

5.4.3 Abstract Time

The interface we use for abstract time is familiar from Van Horn and Might [2010],

which introduces abstract time as a single parameter to control various forms of

context sensitivity, and Smaragdakis et al. [2011], which instantiates the parameter to

achieve various forms of object sensitivity. We only demonstrate call-site sensitivity

in this presentation; our semantics-independent Haskell library supports object

sensitivity following the same methodology.

157

Abstract time need only support a single operation: tick :

Time : Type tick : Exp×KAddr× Time→ Time

Remarkably, we need not state laws for tick. The interpreter will merge values

which reside at the same address to preserve soundness. Therefore, any supplied

implementations of tick is valid from a soundness perspective. However, different

choices in tick will yield different trade-offs in precision and performance of the

abstract interpreter.

5.5 The Interpreter

We now present a monadic interpreter for λIF parameterized over m, Val and Time

from Section 5.4. We instantiate these parameters to obtain an analysis in Section 5.6.

We translate AJ K, a partial denotation function, to AmJ K, a total monadic

denotation function, shown in Figure 5.4.

Next we implement stepm, a monadic small-step function for compound ex-

pressions, also shown in Figure 5.4. stepm is a translation of from a relation

to a monadic function with state and nondeterminism effects.

stepm uses push and pop for manipulating stack frames, ↑p for lifting values

from ℘ into m, refine for value refinement after branching, and a monadic version

of tick called tickm, each shown in Figure 5.5. Frames are pushed when the control

expression e is compound and popped when e is atomic. The interpreter looks

deterministic, however the nondeterminism is hidden behind ↑p and monadic bind

158

AmJ K : Atom→ m(Val)

AmJiK := return(int-I(i))

AmJxK := do

ρ← get-Env ; σ ← get-Store

if x ∈ ρ then return(σ(ρ(x))) else return(⊥)

AmJλx.eK := ρ← get-Env ; return(clo-I(〈λx.e, ρ〉))

stepm : Exp→ m(Exp)

stepm(e) := do

tickm(e) ; ρ← get-Env

e′ ← case e of

e1 � e2 → push(〈�� e2, ρ〉) ; return(e1)

if0(e1){e2}{e3} → push(〈if0(�){e2}{e3}, ρ〉) ; return(e1)

a→ do

v ← AmJaK ; fr ← pop

case fr of

〈�� e, ρ′〉 → put-Env(ρ′) ; push(〈v ��〉) ; return(e)

〈v′@�〉 → do

τ ← get-Time ; σ ← get-Store

〈λx.e, ρ′〉 ← ↑p(clo-E(v′))

put-Env(ρ′[x 7→ 〈x, τ〉]) ; put-Store(σ t [〈x, τ〉 7→ v]) ; return(e)

〈v′ ⊕�〉 → return(δJ⊕K(v′, v))

〈if0(�){e1}{e2}, ρ′〉 → do

put-Env(ρ′) ; b← ↑p(if0-E(v)) ; refine(a, b)

if(b) then return(e1) else return(e2)

gc(e′) ; return(e′)

Figure 5.4: Monadic Semantics

159

operations x← e1 ; e2. The use of refine enforces a limited form of path-condition,

and will yield each variation of path and flow sensitivity given the appropriate monad.

We implement abstract garbage collection gc in a general way using the monadic

effect interface, also shown in Figure 5.5. R and KR are as defined in Section 5.2.

Remarkably, this single implementation supports instantiation to analyses with

varying path and flow sensitivities.

Preserving Soundness In the monadic interpreter, updates to both the data-

store and stack-store must merge rather than overwrite values. To support t for the

stack store we redefine the domain to map to a powerset of frames:

κσ ∈ KStore : KAddr→ ℘(Frame×KAddr)

Execution In the concrete semantics, execution takes the form of a least-fixed-

point computation over the collecting semantics collect. This in general requires a

join-semilattice structure for some Σ and a transition system Σ→ Σ. However, we no

longer have a transition system Σ→ Σ; we have a monadic function Exp→ m(Exp)

which cannot be iterated to least-fixed-point to execute the analysis.

To solve this we require the existence of a Galois connection between monadic

actions and some transition system: Σ→ Σ −−−−−→←−−−−−
αΣ↔m

γΣ↔m

Exp→ m(Exp). This Galois

connection allows us to implement the analysis by transporting our interpreter to

the transition system Σ → Σ through γΣ↔m, and then iterating to fixed-point in

Σ. Furthermore, it serves to transport other Galois connections as part of our

correctness framework. This will allow us to construct Galois connections between

160

push : Frame→ m(unit)

push(fr) := do

κl← get-KAddr ; κσ ← get-KStore ; κl′ ← get-Time

put-KStore(κσ t [κl′ 7→ {fr :: κl}]) ; put-KAddr(κl′)

pop : m(Frame)

pop := do

κl← get-KAddr ; κσ ← get-KStore ; fr :: κl′ ← ↑p(κσ(κl))

put-KAddr(κl′) ; return(fr)

↑p : ∀A.℘(A)→ m(A)

↑p({a1, . . . , an}) := return(a1)� · · ·� return(an)

refine : Atom× Bool→ m(unit)

refine(i, b) := return(unit)

refine(x, b) := do

ρ← get-Env ; σ ← get-Store

put-Store(σ[ρ(x) 7→ b])

tickm : Exp→ m(unit)

tickm(e) := do

τ ← get-Time ; κl← get-KAddr

put-Time(tick(e, κl, τ))

gc : Exp→ m(unit)

gc(e) := do

ρ← get-Env ; σ ← get-Store

κl← get-KAddr ; κσ ← get-KStore

put-KStore({κl 7→ κσ(κl) | κl ∈ KR(κl, κσ)})

put-Store({l 7→ σ(l) | l ∈ R(e, ρ, σ, κl, κσ)})

Figure 5.5: Monadic helper functions

161

monads m1 −−−−→←−−−−
αm

γm

m2 and derive Galois connections between transition systems

Σ1 −−−→←−−−
αΣ

γΣ

Σ2.

An execution of our interpreter is then the least-fixed-point iteration of stepm

transported through γΣ↔m:

analysis := µX.X t ς0 t γΣ↔m(stepm)(X)

where ς0 is the injection of the initial program e0 into Σ and γΣ↔m has type (Exp→

m(Exp))→ Σ→ Σ.

5.6 Recovering Analyses

In Section 5.5, we defined a monadic interpreter with the uninstantiated parameters

from Section 5.4: m, Val and Time. To recover a concrete interpreter, we instantiate

these parameters to concrete components M \, Val\ and Time\, and to recover an

abstract interpreter we instantiate them to abstract components M], Val] and Time].

Furthermore, the concrete transition system Σ\ induced by M \ will recover the

collecting semantics, which is our final target of abstraction, and the resulting

analysis will take the form of an abstract transition system Σ] induced by M].

5.6.1 Recovering a Concrete Interpreter

To recover a concrete interpreter, we instantiate the generic monadic interpreter from

Section 5.5 with concrete parameters Val\, δ\, Time\ and M \, shown in figures 5.6

and 5.7.

162

v ∈ Val\ := ℘(Clo\ ∪ Z)

τ ∈ Time\ := (Exp×KAddr\)∗

int-I\ : Z→ Val\

int-I\(i) := {i}

if0-E\ : Val\ → ℘(Bool)

if0-E\(v) := {true | 0 ∈ v} ∪ {false | ∃i ∈ v ; i 6= 0}

Clo-I\ : Clo\ → Val\

Clo-I\(c) := {c}

Clo-E\ : Val\ → ℘(Clo\)

Clo-E\(v) := {c | c ∈ v}

δ\ : Val\ × Val\ → Val\

δ\J+K(v1, v2) := {i1 + i2 | i1 ∈ v1 ; i2 ∈ v2}

δ\J−K(v1, v2) := {i1 − i2 | i1 ∈ v1 ; i2 ∈ v2}

tick\ : Exp× Time\ → Time\

tick\(e, κl, τ) := 〈e, κl〉 :: τ

Figure 5.6: Concrete Interpreter Values and Time

163

ψ ∈ Ψ\ := Env\ ×KAddr\ ×KStore\ × Time\

X ∈M \(A) := Ψ\ × Store\ → ℘(A×Ψ\ × Store\)

ς ∈ Σ\ := ℘(Exp×Ψ\ × Store\)

return\ : ∀A.A→M \(A)

return\(x)(ψ, s) := {〈x, ψ, s〉}

bind\ : ∀AB.M \(A)→ (A→M \(B))→M \(B)

bind\(X)(f)(ψ, σ) :=
⋃

〈x,ψ′,σ′〉∈X(ψ,σ)

f(x)(ψ′, σ′)

get-env\ : M \(Env\)

get-env\(〈ρ, κl, κσ, τ〉, σ) := {〈ρ, 〈ρ, κl, κσ, τ〉, σ〉}

put-Env\ : Env\ →M \(unit)

put-Env\(ρ′)(〈ρ, κl, κσ, τ〉, σ) := {〈•, 〈ρ′, σ, κ, τ〉, σ〉}

mzero\ : ∀A.M \(A)

mzero\(ψ, σ) := {}

�\ : ∀A.M \(A)×M \(A)→M \(A)

(X1 �\ X2)(ψ, σ) := X1(ψ, σ) ∪X2(ψ, σ)

αΣ\↔M\
: (Σ\ → Σ\)→ Exp→M \(Exp)

αΣ\↔M\
(f)(e)(ψ, σ) := f({〈e, ψ, σ〉})

γΣ\↔M\
: (Exp→M \(Exp))→ Σ\ → Σ\

γΣ\↔M\
(f)(eψσ∗) :=

⋃
〈e,ψ,σ〉∈eψσ∗

f(e)(ψ, σ)

Figure 5.7: Concrete Interpreter Monad

164

The Concrete Domain We instantiate Val to Val\, a powerset of concrete

values. Val\ has precise introduction and elimination functions int-I\, if0-E\, Clo-I\

and Clo-E\, and primitive operator denotation δ\.

Concrete Time We instantiate Time to Time\, which captures the execution

context as a sequence of previously visited expressions. tick\ is then a cons operation.

The Concrete Monad We instantiate m to M \, a powerset of concrete state

space components. Monadic operators bind\ and return\ encapsulate both state-

passing and set-flattening. State effects return singleton sets and nondeterminism

effects are implemented with set union.

Concrete Execution To execute the interpreter we establish the Galois con-

nection Σ\ → Σ\ −−−−−−−→←−−−−−−−
αΣ\↔M\

γΣ\↔M\

Exp→M \(Exp) and transport the monadic interpreter

through γΣ\↔M\
. The injection for a program e0 into Σ\ is ς0 := {〈e0,⊥,⊥, ,⊥, 〉}.

5.6.2 Recovering an Abstract Interpreter

To recover an abstract interpreter we instantiate the generic monadic interpreter from

Section 5.5 with abstract parameters Val], δ], Time] and M], shown in Figure 5.8.

The abstract monad operators, effects and transition system are not shown for M];

they are identical to M \ but with abstract components.

The Abstract Domain We pick a simple abstraction for integers, {−, 0,+},

although our technique scales to other abstract domains. Abstract values Val]

165

v ∈ Val] := ℘(Clo] ∪ {−, 0,+})

τ ∈ Time] := (Exp×KAddr])∗k

ψ ∈ Ψ] := Env] ×KAddr] ×KStore] × Time]

X ∈M](A) := Ψ] × Store] → ℘(A×Ψ] × Store])

ς ∈ Σ] := ℘(Exp×Ψ] × Store])

int-I] : Z→ Val]

if0-E] : Val] → ℘(Bool)

Clo-I] : Clo] → Val]

Clo-E] : Val] → ℘(Clo)

int-I](i) :=


{−} if i < 0

{0} if i = 0

{+} if i > 0

if0-E](v) :=
⋃{true} when 0 ∈ v

{false} when − ∈ v ∨+ ∈ v

Clo-I](c) := {c}

Clo-E](v) := {c | c ∈ v}

δ] : Val] × Val] → Val]

δ]J+K(v1, v2) :=
⋃



{i | i ∈ v2} when 0 ∈ v1

{i | i ∈ v1} when 0 ∈ v2

{+} when + ∈ v1 ∧+ ∈ v2

{−} when − ∈ v1 ∧ 0 ∈ v2

{−, 0,+} when + ∈ v1 ∧ − ∈ v2

{−, 0,+} when − ∈ v1 ∧+ ∈ v2

δ]J−K(v1, v2) := . . . analogous . . .

tick] : Exp× Time] → Time]

tick](e, κl, τ) := b〈e, κl〉 :: τck

Figure 5.8: Abstract Interpreter Parameters

166

is defined as a powerset of abstract values. Val] has introduction and elimination

functions int-I], if0-E], clo-I] and clo-E], and primitive operator denotation δ]. if0-E]

and δ] must be conservative, returning an upper bound of the precise results returned

by their concrete counterparts.

Abstract Time Abstract time Time] captures an approximation of the execution

context as a finite sequence of previously visited expressions. tick] is a cons operation

followed by k-truncation, yielding a kCFA analysis [Van Horn and Might, 2010].

The Abstract Monad and Execution The abstract monad M] is identical

to M \ up to the definition of Ψ]. The induced state space Σ] is finite, and its

least-fixed-point iteration will give a sound and computable analysis.

5.6.3 End-to-end Correctness

The end-to-end correctness of the abstract instantiation of the interpreter is factored

into three steps: (1) proving the parameterized monadic interpreter correct for any

instantiation of m, Val and Time; (2) constructing Galois connections M \ −−−−→←−−−−
αm

γm

M], Val\ −−−→←−−−
αv

γv

Val] and Time\ −−−→←−−−
αt

γt

Time] piecewise; and (3) transporting the

combination of (1) and (2) from the monadic function space A → m(B) to its

induced transition system Σ→ Σ. The benefit of our approach is that the first step

is proved once and for all (for a particular semantics) against any instantiation of m,

Val and Time using the reasoning principles established in Section 5.4. Furthermore

the second step can be proved in isolation of the first, and the construction of the

167

third step is fully systematic.

We do not give proofs for (1) or the abstractions for Val and Time for (2)

in this chapter, although the details can be found in prior work [Cousot, 1999,

Van Horn and Might, 2010]. Rather, we give definitions and proofs for the monad

abstractions for (2) and their systematic mappings to transition systems for (3)

through a compositional framework in Section 5.8.

The final correctness of the abstract interpreter is established as a partial

order relationship between an abstraction of γΣ\↔M\
(stepm[M \]), which recovers the

collecting semantics, and γΣ]↔M]
(stepm[M]]), the induced abstract semantics:

Proposition 1.

αΣ\

(γΣ\↔M\

(stepm[M \])) v γΣ]↔M]

(stepm[M]])

The left-hand-side of the relationship is the induced “best specification” of the

collecting semantics via Galois connection, and should be familiar from the literature

on abstract interpretation [Cousot, 1999, Cousot and Cousot, 1979, Nielson et al.,

1999]. This end-to-end correctness statement will be justified in a compositional

setting in Section 5.8.

5.7 Varying Path and Flow Sensitivity

Sections 5.5 and 5.6 describe the construction of a path-sensitive analysis using our

framework. In this section, we show an alternate definition for M] which yields a

flow-insensitive analysis. Section 5.8 will generalize the definitions from this section

168

into compositional components (monad transformers) in addition to introducing

another definition for M] which yields a flow-sensitive analysis.

Before going into the details of the flow-insensitive monad, we wish to build

intuition regarding what one would expect from such a development. Recall the

path-sensitive monad M] and its state space Σ] from Section 5.6:

M](Exp) := Ψ] × Store] → ℘(Exp×Ψ] × Store])

Σ](Exp) := ℘(Exp×Ψ] × Store])

where Ψ := Env] × KAddr] × KStore] × Time]. This is path-sensitive because

Σ](Exp) can represent arbitrary relations between (Exp×Ψ) and Store].

As discussed in Section 5.3, a flow-sensitive analysis will give a single set of

facts per program point. This results in the following monad M]fs and state space

Σ]fs which encode finite maps to Store] rather than relations:

M]fs(Exp) := Ψ] × Store] → [Exp×Ψ] 7→ Store]]

Σ]fs(Exp) := [Exp×Ψ] 7→ Store]]

Finally, a flow-insensitive analysis must contain a global set of facts for each variable,

which we achieve by pulling Store] out of the powerset:

M]fi(Exp) := Ψ] × Store] → ℘(Exp×Ψ])× Store]

Σ]fi(Exp) := ℘(Exp×Ψ])× Store]

These three resulting structures, Σ], Σ]fs and Σ]fi, capture the essence of path-

sensitive, flow-sensitive and flow-insensitive transition systems, and arise naturally

from M], M]fs and M]fi, which each have monadic structure. We only describe

M]fi directly in this section; in Section 5.8 we describe a more compositional set of

building blocks, from which M], M]fs and M]fi are recovered.

169

5.7.1 Flow Insensitive Monad

We show the definitions for monad operators, state effects, nondeterminism effects,

and mapping to transition system for the flow-insensitive monad M]fi in Figure 5.9.

The bind]fi operation performs the global store merging required to capture a

flow-insensitive analysis. The unit for bind]fi returns one nondeterminism branch

and a single global store. State effects get-Env]fi and put-Env]fi return a single

branch of nondeterminism. Nondeterminism operations union the powerset and join

the store pairwise. Finally, the Galois connection relating M]fi to the state space

Σ]fi also computes powerset unions and store joins pairwise.

Instantiating the generic monadic interpreter with M \, M] and M]fi yields a

concrete interpreter, path-sensitive abstract interpreter, and flow-insensitive abstract

interpreter respectively, purely by changing the underlying monad. Furthermore, the

proofs of abstraction between interpreters and their induced transition systems is

isolated to a proof of abstraction between monads.

5.8 A Compositional Monadic Framework

In our development thus far, any modification to the interpreter requires redesigning

the monad M] and constructing new proofs relating M] to M \. We want to avoid

reconstructing complicated monads for interpreters, especially as languages and

analyses grow and change. Even more, we want to avoid reconstructing complicated

proofs that such changes require. Toward this goal, we introduce a compositional

framework for constructing monads which are correct-by-construction by extending

170

M]fi(A) := Ψ] × Store] → ℘(A×Ψ])× Store]

ς ∈ Σ]fi := ℘(Exp×Ψ])× Store]

return]fi : ∀A.A→M]fi(A)

return]fi(x)(ψ, σ) := ({x, ψ}, σ)

bind]fi : ∀AB.M]fi(A)→ (A→M]fi(B))→M]fi(B)

bind]fi(X)(f)(ψ, σ) :=

({yψ11, . . . , yψ1m1 , . . . , yψn1, . . . , yψnmn}, σ1 t · · · t σn) where

({〈x1, ψ1〉, . . . , 〈xn, ψn〉}, σ′) := X(ψ, σ)

({yψi1, . . . , yψimi
}, σi) := f(xi)(ψi, σ

′)

get-Env]fi : M]fi(Env])

get-Env]fi(〈ρ, κ, τ〉, σ) := ({(ρ, 〈ρ, κ, τ〉)}, σ)

put-Env]fi : Env] →M]fi(unit)

put-Env]fi(ρ′)(〈ρ, κ, τ〉, σ) := ({〈•, 〈ρ′, κ, τ〉〉}, σ)

mzero]fi : ∀A.M]fi(A)

mzero]fi(ψ, σ) := 〈{},⊥〉

�]fi : ∀A.M]fi(A)×M]fi(A)→M]fiA

(X1 �]fi X2)(ψ, σ) := (xψ∗1 ∪ xψ∗2, σ1 t σ2) where

(xψ∗i , σi) := Xi(ψ, σ)

αΣ]↔M]fi
: (Σ]fi → Σ]fi)→ Exp→M]fi(Exp)

αΣ]↔M]fi
(f)(e)(ψ, σ) := f({〈e, ψ〉}, σ)

γΣ]↔M]fi
: (Exp→M]fi(Exp))→ Σ]fi → Σ]fi

γΣ]↔M]fi
(f)(eψ∗, σ) :=

({eψ11, . . . , eψn1, . . . , eψnmn}, σ1 t · · · t σn) where

{〈e1, ψ1〉, . . . , 〈en, ψn〉} := eψ∗

({eψi1, . . . , eψimi
}, σi) := f(ei)(ψi, σ)

Figure 5.9: Flow Insensitive Monad Parameter

171

the well-known structure of monad transformer to that of Galois transformer.

Galois transformers are monad transformers which transport Galois connections

and mappings to an executable transition system. We make this definition precise

and prove our Galois transformers correct in Section 5.8.4. For now we present

monad transformer operations augmented with the computational part of Galois

transformers: the mapping to a transition system, which we called αΣ\↔M\
, γΣ\↔M\

,

αΣ]↔M]fi
and γΣ]↔M]fi

in sections 5.6 and 5.7.

There are two monadic effects used in our monadic interpreter: state and

nondeterminism. For state, we review the state monad transformer St[s], which is

standard [Liang et al., 1995, Moggi, 1989], however we also show how St[s] maps to a

transition system and obeys Galois transformer properties. For nondeterminism we

develop two new monad transformers: ℘t and F t[s]. These monad transformers are

fully general purpose, even outside the context of program analysis, and are novel in

this work. Finally we show that ℘t and F t[s] map to transition systems and obey

Galois transformer properties.

To create a monad with various state and nondeterminism effects, one need only

construct some composition of these three monad transformers. Implementations and

proofs for monadic sequencing, state effects, nondeterminism effects, and mappings

to an executable transition system will come entirely for free. This means that for a

language which has a different state space than the example in this chapter, no added

effort is required to construct a monad stack for that language; it will merely require

a different selection and permutation of the same monad transformer components.

Path and flow sensitivity properties arise from the order of composition of

172

state and nondeterminism monad transformers. Placing state after nondeterminism

(St[s] ◦ ℘t or St[s] ◦ F t[s′]) will result in s being path-sensitive. Placing state before

nondeterminism (℘t ◦ St[s] or F t[s′] ◦ St[s]) will result in s being flow-insensitive.

Finally, when F t[s] is used in place of St[s] ◦ ℘t or ℘t ◦ St[s], s will be flow-sensitive.

The combination of all three sensitivities is M := St[s1]◦F t[s2]◦St[s3] which induces

the transition system Σ(Exp) := [Exp× s1 7→ s2]× s3, where s1 is path-sensitive, s2

is flow-sensitive, and s3 is flow-insensitive. Using St[s], ℘t and F t[s], one can easily

choose which components of the state space should be path-sensitive, flow-sensitive

or flow-insensitive, purely by the order of monad composition.

In the following definitions we must refer to bind, return and other operations

from the underlying monad, which we notate bindm, returnm, ←m, etc.

5.8.1 State Galois Transformer

The state Galois transformer is shown in Figure 5.10. returnS
t
, bindS

t

, getS
t

and

putS
t

require that m be a monad. mzeroS
t

and �S
t

require that m be a monad

with nondeterminism effects. And finally, αS
t

and γS
t

require that m maps to Σm

via Galois connection Σ(A)→ Σ(B) −−−−→←−−−−
αm

γm

A→ m(B).

5.8.2 Nondeterminism Galois Transformer

The nondeterminism Galois transformer is shown in Figure 5.11. Crucially, return℘
t

and bind℘
t

require that m be both a monad and a join-semilattice functor. We

attribute this requirement (and the difficulty of expressing it in Haskell) as a possible

173

St[s] : (Type→ Type)→ Type→ Type

St[s](m)(A) := s→ m(A× s)

ΠSt
[s] : (Type→ Type)→ Type→ Type

ΠSt
[s](Σ)(A) := Σ(A× s)

returnS
t

: ∀A.A→ St[s](m)(A)

returnS
t
(x)(s) := returnm(x, s)

bindS
t

: ∀AB.St[s](m)(A)→ (A→ St[s](m)(B))→ St[s](m)(B)

bindS
t

(X)(f)(s) := 〈x, s′〉 ←m X(s) ; f(x)(s′)

getS
t

: St[s](m)(s)

getS
t
(s) := returnm(s, s)

putS
t

: s→ St[s](m)(unit)

putS
t
(s′)(s) := returnm(•, s′)

mzeroS
t

: ∀A.St[s](m)(A)

mzeroS
t
(s) := mzerom

�S
t

: ∀A.St[s](m)(A)× St[s](m)(A)→ St[s](m)(A)

(X1 �S
t
X2)(s) := X1(s)�m X2(s)

αS
t

: ∀AB.(ΠSt
[s](Σm)(A)→ ΠSt

[s](Σm)(B))→ A→ St[s](m)(B)

αS
t
(f)(x)(s) := αm(f)(x, s)

γS
t

: ∀AB.(A→ St[s](m)(B))→ ΠSt
[s](Σm)(A)→ ΠSt

[s](Σm)(B)

γS
t
(f) := γm(λ〈x, s〉.f(x)(s))

Figure 5.10: State Galois Transformer

174

reason why it has not been discovered thus far. This functorality of m is instantiated

with ℘() using the usual join-semilattice on powersets: {} for ⊥ and ∪ for t.

get℘
t

and put℘
t

require that m be a monad with state effects. Like the state Galois

transformer, α℘
t

and γ℘
t

require that m maps to Σm via Galois connection.

Lemma 3. [℘t laws] bind℘
t

and return℘
t

satisfy monad laws, get℘
t

and put℘
t

satisfy

state monad laws, and mzero℘
t

and �℘
t

satisfy nondeterminism monad laws.

See our proofs in Section A, where the key lemma in proving monad laws is

the join-semilattice functorality of m, namely that:

returnm(x t y) = returnm(x) tm returnm(y)

bindm(X t Y)(f) = bindm(X)(f) tm bindm(Y)(f)

5.8.3 Flow Sensitivity Galois Transformer

The flow sensitivity monad transformer, shown in Figure 5.12, is a unique monad

transformer that combines state and nondeterminism effects, and does not arise

naturally from composing vanilla nondeterminism and state transformers. The finite

map in the definition of F t[s] is what yields flow sensitivity when instantiated to a

monadic interpreter. After instantiation, F t[s](m)(A) will be Store] → [Exp×Ψ] →

Store]], which maps each possible expression and context to a unique abstract store.

Like nondeterminism, returnF
t

and bindF
t

require that m be both a monad

and a join-semilattice functor. This functorality of m is instantiated with [7→ s]

using the usual join-semilattice on finite maps: {} for ⊥ and:

Y t Z := {x 7→ y t z | {x 7→ y} ∈ X ∧ {x 7→ z} ∈ Y }

175

℘t : (Type→ Type)→ Type→ Type

℘t(m)(A) := m(℘(A))

Π℘t
: (Type→ Type)→ Type→ Type

Π℘t
(Σ)(A) := Σ(℘(A))

return℘
t

: ∀A.A→ ℘t(m)(A)

return℘
t
(x) := returnm({x})

bind℘
t

: ∀AB.℘t(m)(A)→ (A→ ℘t(m)(B))→ ℘t(m)(B)

bind℘
t

(X)(f) := do

{x1, . . . , xn} ←m X

f(x1) tm · · · tm f(xn)

get℘
t

: ℘t(m)(s)

get℘
t

:= s←m getm ; returnm({s})

put℘
t

: s→ ℘t(m)(unit)

put℘
t
(s) := u←m putm(x) ; returnm({u})

mzero℘
t

: ∀A.℘t(m)(A)

mzero℘
t

:= ⊥m

�℘
t

: ∀A.℘t(m)(A)x℘t(m)(A)→ ℘t(m)(A)

X1 �℘
t
X2 := X1 tm X2

α℘
t

: ∀AB.(Π℘t
(Σm)(A)→ Π℘t

(Σm)(B))→ A→ ℘t(m)(B)

α℘
t
(f)(x) := αm(f)({x})

γ℘
t

: ∀AB.(A→ ℘t(m)(B))→ Π℘t
(Σm)(A)→ Π℘t

(Σm)(B)

γ℘
t
(f) := γm(λ{x1, . . . , xn}.f(x1) tm · · · tm f(xn))

Figure 5.11: Nondeterminism Galois Transformer

176

F t[s] : (Type→ Type)→ Type→ Type

F t[s](m)(A) := s→ m([A 7→ s])

ΠF t
[s] : (Type→ Type)→ Type→ Type

ΠF t
[s](Σ)(A) := Σ([A 7→ s])

returnF
t

: ∀A.A→ F t[s](m)(A)

returnF
t
(x)(s) := returnm({x 7→ s})

bindF
t

: ∀AB.F t[s](m)(A)→ (A→ F t[s](m)(B))→ F t[s](m)(B)

bindF
t

(X)(f)(s) := do

{x1 7→ s1, . . . , xn 7→ sn} ←m X(s)

f(x1)(s1) tm · · · tm f(xn)(sn)

getF
t

: F t[s](m)(s)

getF
t
(s) := returnm({s 7→ s})

putF
t

: s→ F t[s](m)(unit)

putF
t
(s′)(s) := returnm({• 7→ s′})

mzeroF
t

: ∀A.F t[s](m)(A)

mzeroF
t
(s) := ⊥m

�F
t

: ∀A.F t[s](m)(A)xF t[s](m)(A)→ F t[s](m)(A)

(X1 �F
t
X2)(s) := X1(s) tm X2(s)

αF
t

: ∀AB.(ΠF t
[s](Σm)(A)→ ΠF t

[s](Σm)(B))→ A→ F t[s](m)(B)

αF
t
(f)(x)(s) := αm(f)({x 7→ s})

γF
t

: ∀AB.(A→ F t[s](m)(B))→ ΠF t
[s](Σm)(A)→ ΠF t

[s](Σm)(B)

γF
t
(f) := γm(λ{x1 7→ s1, . . . , xn 7→ sn}.f(x1)(s1) tm · · · tm f(xn)(sn))

Figure 5.12: Flow Sensitivity Galois Transformer

177

get℘
t

and put℘
t

require that m be a monad. Like the nondeterminism Galois trans-

former, α℘
t

and γ℘
t

require that m maps to Σm via Galois connection.

Lemma 4. [F t laws] bindF
t

and returnF
t

satisfy monad laws, getF
t

and putF
t

satisfy

state monad laws, and mzeroF
t

and �F
t

satisfy nondeterminism monad laws.

See our proofs in A. Monad and nondeterminism laws are are analogous to

those for nondeterminism, and also rely on the join-semilattice functorailty of m.

State monad laws are proved by calculation.

5.8.4 Galois Transformers

The capstone of our framework is the fact that monad transformers St[s], ℘t and

F t[s] are also Galois transformers.

Definition 1. A monad transformer T is a Galois transformer with transition system

Π if:

1. T transports a Galois connection between monads m1 and m2 into a Galois

connection between T (m1) and T (m2):

A→ m2(B) A→ T (m2)(B)

A→ m1(B) A→ T (m1)(B)

γm

T [m2]

αm

T [m1]

T [γm]T [αm]

T [m] must be monotonic, and T must commute with Galois connections, that

is for all f : A→ m1(B):

T [m2](αm(f)) = T [αm](T [m1](f))

178

2. Π transports Galois connections between induced transition systems Σ1 and Σ2

into Galois connections between Π(Σ1) and Π(Σ2):

Σ2(A)→ Σ2(B) Π(Σ2)(A)→ Π(Σ2)(B)

Σ1(A)→ Σ1(B) Π(Σ1)(A)→ Π(Σ1)(B)

γΣ

Π[Σ2]

αΣ

Π[Σ1]

Π[γΣ]Π[αΣ]

Π[Σ] must be monotonic, and Π must commute with Galois connections, that

is for all f : Σ1(A)→ Σ1(B):

Π[Σ2](αΣ(f)) = Π[αΣ](Π[Σ1](f))

3. T and Π transport transition system mappings between m and Σ into transition

system mappings between T (m) and Π(Σ):

A→ m(B) A→ T (m)(B)

Σ(A)→ Σ(B) Π(Σ)(A)→ Π(Σ)(B)

γΣ↔m

T [m]

αΣ↔m

Π[Σ]

T [γΣ↔m]T [αΣ↔m]

T [γΣ↔m] must commute asymmetrically (in the partial order) with T and Π,

that is for all functions f : A→ m(B):

Π[Σ](γΣ↔m(f)) v T [γΣ↔m](T [m](f))

Lemma 5 (Galois Transformer Properties). St[s], ℘t and F t[s] are Galois trans-

formers.

179

A→ m2(B) A→ T (m2)(B)

A→ m1(B) A→ T (m1)(B)

Σ2(A)→ Σ2(B) Π(Σ2)(A)→ Π(Σ2)(B)

Σ1(A)→ Σ1(B) Π(Σ1)(A)→ Π(Σ1)(B)

T [m2]

T [m1]

Π[Σ2]

Π[Σ1]

Figure 5.13: Galois Transformer Commuting Cube of Abstractions

Definitions for αΣ↔γ and γΣ↔γ from property (3) are shown in figures 5.10, 5.11

and 5.12. Definitions of other Galois connections and commutativity proofs are given

in the appendix.

These three properties of Galois transformers snap together to form a three-

dimensional diagram, shown in Figure 5.13 which relates abstractions between

monads m1 and m2 and their transition systems Σ1 and Σ2 to their actions under

T and Π. The left-hand side of the cube is a commuting square of abstractions

between m1, m2, Σ1 and Σ2. The right-hand side of the cube is constructed from the

composition of properties (1) through (3) as the front, top, back, and bottom faces of

the cube, and is a commuting square of abstractions between T (m1), T (m2), Π(Σ1)

and Π(Σ2). The whole cube commutes, by combining the commuting properties of

the left face and the commuting properties of (1) through (3).

Theorem 5. If T is a Galois transformer with transition system Π, given a commut-

ing square of abstractions between monads m1 and m2 and their transition systems

Σ1 and Σ2, T and Π construct a commuting square of abstractions between monads

180

T (m1) and T (m2) and their transition systems Π(Σ1) and Π(Σ2).

The proof is the composition of Galois transformer properties, as shown in the

Figure 5.13.

The consequence of this theorem is that any two compositions of Galois

transformers T1 ◦ · · · ◦ Tn and U1 ◦ · · · ◦ Un where Ui is an abstraction of Ti will

yield a commuting square of abstractions between monads (T1 ◦ · · · ◦ Tn)(ID) and

(U1 ◦ · · · ◦ Un)(ID) and their induced transition systems (ΠT1 ◦ · · · ◦ ΠTn)(ID) and

(ΠU1 ◦· · ·◦ΠUn)(ID). This is the first step in proving the resulting abstract interpreter

correct; we need to establish a commuting square of abstractions between a concrete

monad, an abstract monad, and their induced concrete and abstract transition

systems.

5.8.5 End-to-End Correctness with Galois Transformers

In the setting of abstract interpretation, we instantiate the Galois transformer

framework described above with two compositions of monad transformers yielding

a commuting square of abstractions between the concrete monad M \, the abstract

monad M], and concrete and abstract transition systems Σ\ and Σ]:

Exp→M \(Exp) Exp→M](Exp)

Σ\(Exp)→ Σ\(Exp) Σ](Exp)→ Σ](Exp)

αM\

γM
\

αΣ\

γΣ\

γΣ\↔M\

αΣ\↔M\
γΣ]↔M]

αΣ]↔M]

This diagram shows how to relate monadic interpreters to transition systems (the

181

vertical axis of the diagram), and concrete semantics to abstract semantics (the

horizontal axis of the diagram). The top half is where we write the monadic

interpreter, and the bottom half is where we execute the analysis as the least-fixed

point of a transition system.

We use this commuting square to systematically relate a recovered collecting

semantics with the induced abstract transition system in the following theorem:

Theorem 6. Given a commuting square of abstraction between M \, M], Σ\ and Σ],

and a generic monadic interpreter stepm, if collect = γΣ\↔M\
(stepm[M \]) recovers

the collecting semantics, then analysis = γΣ]↔M]
(stepm[M]]) is a sound abstraction

of the collecting semantics.

Proof. Given that stepm is monotonic in the monad parameter m, instantiating it

with M \ and M] will result in:

αM
\

(stepm[M \]) v stepm[M]]

Transporting through γΣ]↔M]
, which is monotonic by virtue of forming a Galois

connection with αΣ]↔M]
, we have:

(1) γΣ]↔M]

(αM
\

(stepm[M \])) v γΣ]↔M]

(stepm[M]]) = analysis

Next, we abstract the recovered collecting semantics to form its best specification

for abstraction:

(2) αΣ]

(collect) = αΣ]

(γΣ\↔M\

(stepm[M \]))

Finally, we exploit the commutativity of the square of abstractions between M \, M],

182

Σ\ and Σ] to relate the recovered collecting semantics with the abstract monadic

semantics:

(3) αΣ]

(γΣ\↔M\

(stepm[M \])) v γΣ]↔M]

(αM
\

(stepm[M \]))

The transitive combination of (1), (2) and (3) establishes the soundness of the derived

abstract execution system w.r.t. the recovered collecting semantics: αΣ]
(collect) v

analysis.

This theorem proves Proposition 1 in Section 5.6.3 after instantiating the

example to the Galois transformer framework.

5.8.6 Applying the Framework to Our Semantics

Our setting is the ground-truth semantics gc from Section 5.2 and the generic

interpreter stepm from Section 5.5.

To recover the concrete collecting semantics, we instantiate stepm to the concrete

parameters for the domain and time from Section 5.6.1, and synthesize the monad

as a combination of state and nondeterminism Galois transformers:

M \ := (St[Ψ\] ◦ St[Store\] ◦ ℘t)(ID)

To recover a path-sensitive abstract interpreter we instantiate stepm to the

abstract parameters for the domain and time from Section 5.6.2, and synthesize the

monad as a combination of state and nondeterminism Galois transformers:

M] := (St[Ψ]] ◦ St[Store]] ◦ ℘t)(ID)

183

which abstract M \ piecewise. Both the implementation and correctness of the induced

abstract transition system are constructed for free by theorems 5 and 6.

To recover a flow-sensitive abstract interpreter we synthesize the monad as a

combination of state and flow-sensitive Galois transformers:

M]fs := (St[Ψ]] ◦ F t[Store]])(ID)

which abstracts M] piecewise.

Finally, to recover a flow-insensitive abstract interpreter we synthesize the

monad as a permuted combination of state and nondeterminism Galois transformers:

M]ps := (St[Ψ]] ◦ ℘t ◦ St[Store]])(ID)

which abstracts M]ps piecewise.

5.8.7 Applying the Framework to Another Semantics

Our Galois transformers framework is semantics independent, and the proofs in

Section 5.8.4 need not be reproved for another semantic setting. To use our framework

and establish an end-to-end correctness theorem, the user must:

• Design a generic monadic interpreter for their semantics using an interface of

monadic effects

• Prove their interpreter monotonic w.r.t. parameters

• Prove that the induced concrete transition system recovers the concrete col-

lecting semantics of interest.

184

The user then enjoys the following for free:

• A combination of state, nondeterminism and flow-sensitive Galois transformers

which supports the monadic effect interface unique to the semantics.

• The ability to rearrange monad transformers to recover variations in path and

flow sensitivities.

• An induced, executable abstract interpreter for each stack of monad transform-

ers.

• A proof that each induced abstract interpreter is a sound abstraction of the

collecting semantics, as a result of theorems 5 and 6.

5.9 Implementation

We have implemented our framework in Haskell and applied it to compute analyses

for λIF. Our implementation provides path sensitivity, flow sensitivity, and flow

insensitivity as a semantics-independent monad library. The code shares a striking

resemblance with the math.

Our implementation is suitable for prototyping and exploring the design space of

static analyzers. Our analyzer supports exponentially more compositions of analysis

features than any current analyzer. For example, our implementation is the first

which can combine arbitrary choices in call-site, object, path and flow sensitivities.

Furthermore, the user can choose different path and flow sensitivities independently

for each component of the state space.

185

Our implementation maam supports command-line flags for garbage collection,

mCFA, call-site sensitivity, object sensitivity, and path and flow sensitivity.

./maam prog.lam --gc --mcfa --kcfa=1 --ocfa=2 \

--data-store=flow-sen --stack-store=path-sen

Each flag is implemented independently of each other applied to a single parameterized

monadic interpreter. Furthermore, using Galois transformers allows us to prove each

combination correct in one fell swoop.

A developer wishing to use our library to develop analyzers for their language

of choice inherits as much of the analysis infrastructure as possible. We provide

call-site, object, path and flow sensitivities as language-independent libraries. To

support analysis for a new language a developer need only implement:

• A monadic semantics for their language, using state and nondeterminism

effects.

• The abstract value domain, and optionally the concrete value domain if they

wish to recover concrete execution.

• Intentional optimizations for their semantics like garbage collection and mcfa.

The developer then receives the following for free through our analysis library:

• A family of monads which implement their effect interface and give different

path and flow sensitivities.

• Mechanisms for call-site and object sensitivities.

• An execution engine for each monad to drive the analysis.

186

Not only is a developer able to reuse our implementation of call-site, object,

path and flow sensitivities, they need not understand the execution machinery or

soundness proofs for them either. They need only verify that their monadic semantics

is monotonic w.r.t. the analysis parameters, and that their abstract value domain

forms a Galois connection. The execution and correctness of the final analyzer is

constructed automatically given these two properties.

Our implementation is publicly available and can be installed as a cabal package:

cabal install maam.

5.10 Related Work

Overview Program analysis comes in many forms such as points-to [Andersen,

1994], flow [Jones, 1981], or shape analysis [Chase et al., 1990], and the literature

is vast. (See Hind [2001], Midtgaard [2012] for surveys.) Much of the research has

focused on developing families or frameworks of analyses that endow the abstraction

with a number of knobs, levers, and dials to tune precision and compute efficiently

(some examples include Milanova et al. [2005], Nielson and Nielson [1997], Shivers

[1991], Van Horn and Might [2010]; there are many more). These parameters come

in various forms with overloaded meanings such as object [Milanova et al., 2005,

Smaragdakis et al., 2011], context [Sharir and Pnueli, 1981, Shivers, 1991], path [Das

et al., 2002], and heap [Van Horn and Might, 2010] sensitivities, or some combination

thereof [Kastrinis and Smaragdakis, 2013].

These various forms can all be cast in the theory of abstraction interpretation

187

of Cousot and Cousot [1977, 1979] and understood as computable approximations of

an underlying concrete interpreter. Our work demonstrates that if this underlying

concrete interpreter is written in monadic style, monad transformers are a useful way

to organize and compose these various kinds of program abstractions in a modular

and language-independent way.

This work is inspired by the trifecta combination of Cousot, Cousot and

Cousot, Cousot and Cousot’s theory of abstract interpretation based on Galois

connections [1999, 1977, 1979], Moggi’s original monad transformers [1989] which

were later popularized in Liang et al.’s Monad Transformers and Modular Inter-

preters [1995], and Sergey et al.’s Monadic Abstract Interpreters [Sergey et al.,

2013].

Liang et al. [1995] first demonstrated how monad transformers could be used

to define building blocks for constructing (concrete) interpreters. Their interpreter

monad InterpM bears a strong resemblance to ours. We show this “building blocks”

approach to interpreter construction also extends to abstract interpreter construction

using Galois transformers. Moreover, we show that these monad transformers can

be proved sound via a Galois connection to their concrete counterparts, ensuring the

soundness of any stack built from sound blocks of Galois transformers. Soundness

proofs of various forms of analysis are notoriously brittle with respect to language

and analysis features. A reusable framework of Galois transformers offers a potential

way forward for a modular metatheory of program analysis.

Cousot [1999] develops a “calculational approach” to analysis design whereby

analyses are not designed and then verified post facto, but rather derived by positing

188

an abstraction and calculating it from the concrete interpreter using Galois con-

nections. These calculations are done by hand. Our approach offers the ability to

automate the calculation process for a limited set of abstractions for small-step state

machines, where the abstractions are correct-by-construction through the composition

of monad transformers.

We build directly on the work of Abstracting Abstract Machines (AAM) by

Smaragdakis et al. [2011], Van Horn and Might [2010] in our parameterization

of abstract time to achieve call-site and object sensitivity. We follow the AAM

philosophy of instrumenting a concrete semantics first and performing a systematic

abstraction second. This greatly simplifies the Galois connection arguments during

systematic abstraction, at the cost of proving the correctness of the instrumented

semantics.

Monadic Abstract Interpreters Sergey et al. [2013] first introduced the con-

cept of writing abstract interpreters in monadic style in Monadic Abstract Interpreters

(MAI), where variations in analysis are also recovered through monads.

In MAI, the framework’s interface is based on denotation functions for every

syntactic form of the language. The denotation functions in MAI are language-

specific and specialized to their example language. MAI uses a single monad stack

fixed to the denotation function interface: state on top of list. New analyses are

achieved through multiple denotation functions into this single monad. Analyses in

MAI are all fixed to be path-sensitive, and the methodology for incorporating other

path or flow properties is to surgically instrument the execution of the analysis with

189

a custom Galois connection. Lastly, the framework provides no reasoning principles

or proofs of soundness for the resulting analysis. A user of MAI must inline the

definitions of each analysis and prove each implementation correct from scratch.

Our framework is instead based on state and nondeterminism monadic effects.

This interface comes equipped with laws, allowing one to verify the correctness of a

monadic interpreter independent of a particular monad. State and nondeterminism

monadic effects capture arbitrary small-step relational semantics, and are language

independent. Because we place the monadic interpreter behind an interface of

effects with laws, we are able to introduce language-independent monads which

capture flow-sensitivity and flow-insensitivity, and we show how to compose these

features with other analysis design choices. The monadic effect interface also allows

us to separate the monad from the abstract domain. Finally, our framework is

compositional through the use of monad transformers, and constructs execution

engines and end-to-end soundness proofs for free.

Widening for Control-Flow Hardekopf et al. [2014] also introduce a unifying

account of control flow properties in Widening for Control-Flow (WCF), which

accounts for path, flow and call-site sensitivities. WCF achieves this through an

instrumentation of the abstract machine’s state space which is allowed to track

arbitrary contextual information, up to the path-history of the entire execution.

WCF also develops a modular proof framework, proving the bulk of soundness proofs

for each instantiation of the instrumentation at once.

Our work achieves similar goals, although isolating path and flow sensitivity is

190

not our primary objective. WCF is based on a language-dependent instrumentation

of the semantics, whereas we achieve variations in path and flow sensitivity through

language-independent monads.

Particular strengths of WCF are the wide range of choices for control-flow

sensitivity which are shown to be implementable within the design, and the modular

proof framework. For example, WCF is able to account for call-site sensitivity in

their design; we account for call-site sensitivity through a different mechanism.

Particular strengths of our work is the understanding of path and flow sensitivity

not through instrumentation but through semantics-independent control properties

of the interpreter, and also a modular proof framework, although modular in a

different sense from WCF. We also show how to compose different path and flow

sensitivity choices for independent components of the state space, like a flow-sensitive

data-store and path-sensitive stack-store, for example.

5.11 Conclusions

We have shown that Galois transformers, monad transformers that transport Galois

connections and mappings to an executable transition system, are effective, language-

independent building blocks for constructing program analyzers, and form the basis

of a modular, reusable and composable metatheory for program analysis.

In the end, we hope language independent characterizations of analysis ingredi-

ents will both facilitate the systematic construction of program analyses and bridge

the gap between various communities which often work in isolation.

191

Chapter 6: Abstracting Definitional Interpreters

6.1 Introduction

An abstract interpreter is intended to soundly and effectively compute an over-

approximation to its concrete counterpart. For higher-order languages, these concrete

interpreters tend to be formulated as state-machines (e.g., Jagannathan and Weeks

[1995], Jagannathan et al. [1998], Midtgaard and Jensen [2008, 2009], Might and

Shivers [2006b], Might and Van Horn [2011], Sergey et al. [2013], Wright and

Jagannathan [1998]). There are several reasons for this choice: they operate with

simple transfer functions defined over similarly simple data structures, they make

explicit all aspects of the state of a computation, and computing fixed-points in

the set of reachable states is straightforward. The essence of the state-machine

based approach was distilled by Van Horn and Might in their “abstracting abstract

machines” (AAM) technique, which provides a systematic method for constructing

abstract interpreters from standard abstract machines like the CEK- or Krivine-

machines [Van Horn and Might, 2010]. Language designers who would like to build

abstract interpreters and program analysis tools for their language can now, in

principle at least, first build a state-machine interpreter and then turn the crank to

construct the approximating abstract counterpart.

192

A natural pair of questions that arise from this past work is to wonder:

1. Can a systematic abstraction technique similar to AAM be carried out for

interpreters written, not as state-machines, but instead as high-level definitional

interpreters, i.e. recursive, compositional evaluators?

2. is such a perspective fruitful?

In this chapter, we seek to answer both questions in the affirmative.

For the first question, we show the AAM recipe can be applied to definitional

interpreters in a straightforward adaptation of the original method. The primary

technical challenge in this new setting is handling interpreter fixed-points in a way

that is both sound and always terminates—a naive abstraction of fixed-points will be

sound but isn’t always terminating, and a naive use of caching for fixed-points will

guarantee termination but is inherently unsound. We address this technical challenge

with a straightforward caching fixed-point-finding algorithm which is both sound

and guaranteed to terminate when abstracting arbitrary definitional interpreters.

For the second question, we claim that the abstract definitional interpreter

perspective is fruitful in two regards. The first is unsurprising: high-level abstract

interpreters offer the usual beneficial properties of their concrete counterparts in terms

of being re-usable and extensible. In particular, we show that abstract interpreters

can be structured with monad transformers to good effect. The second regard is

more surprising, and we consider its observation to be the main contribution of this

chapter.

Definitional interpreters, in contrast to abstract machines, can leave aspects of

193

computation implicit, relying on the semantics of the defining-language to define the

semantics of the defined -language, an observation made by Reynolds in his landmark

paper, Definitional Interpreters for Higher-order Programming Languages [Reynolds,

1972]. For example, Reynolds showed it is possible to write a definitional interpreter

such that it defines a call-by-value language when the metalanguage is call-by-value,

and defines a call-by-name language when the metalanguage is call-by-name. Inspired

by Reynolds, we show that definitional abstract interpreters can likewise inherit

properties of the metalanguage. In particular we construct an abstract definitional

interpreter where there is no explicit representation of continuations or a call stack.

Instead the interpreter is written in a straightforward recursive style, and the call

stack is implicitly handled by the metalangauge. What emerges from this construction

is a total abstract evaluation function that soundly approximates all possible concrete

executions of a given program. But remarkably, since the abstract evaluator relies

on the metalanguage to manage the call stack implicitly, it is easy to observe that

it introduces no approximation in the matching of calls and returns, and therefore

implements a “pushdown” analysis [Earl et al., 2010, Vardoulakis and Shivers, 2011],

all without the need for any explicit machinery to do so.

6.1.1 Outline

In the remainder of this chapter, we present an adaptation of the AAM method to the

setting of recursively-defined, compositional evaluation functions, a.k.a. definitional

interpreters. We first briefly review the basic ingredients in the AAM recipe (§ 6.2)

194

and then define our definitional interpreter (§ 6.3). The interpreter is largely standard,

but is written in a monadic and extensible style, so as to be re-usable for various forms

of semantics we examine. The AAM technique applies in a basically straightforward

way by store-allocating bindings and soundly finitizing the heap. But when naively

run, the interpreter will not always terminate. To solve this problem we introduce

a caching strategy and a simple fixed-point computation to ensure the interpreter

terminates (§ 6.4). It is at this point that we observe the interpreter we have built

enjoys the “pushdown” property à la Reynolds—it is inherited from the defining

language of our interpreter and requires no explicit mechanism (§ 6.5).

Having established the main results, we then explore some variations in brief

vignettes that showcase the flexibility of our definitional abstract interpreter approach.

First we consider the widely used technique of so-called “store-widening,” which

trades precision for efficiency by modeling the abstract store globally instead of

locally (§ 6.6). Thanks to our monadic formulation of the interpreter, this is achieved

by a simple re-ordering of the monad transformer stack. We also explore some

alternative abstractions, showing that due to the extensible construction, it’s easy to

experiment with alternative components for the abstract interpreter. In particular,

we define an alternative interpretation of the primitive operations that remains

completely precise until forced by joins in the store to introduce approximation

(§ 6.7). As another variation, we explore computing a form of symbolic execution

as yet another instance of our interpreter, as well as how to incorporate so-called

“abstract garbage collection,” a well-known technique for improving the precision of

abstract interpretation by clearing out unreachable store locations, thus avoiding

195

future joins which cause imprecision (§ 6.8). This last variation is significant because

it demonstrates that even though we have no explicit representation of the stack, it

is possible to compute analyses that typically require such explicit representations in

order to calculate root sets for garbage collection.

Next, we prove the approach sound w.r.t. a derived big-step collecting and

abstract semantics (§ 6.10), where the key insight in the formalism is to model not

only standard big-step evaluation relations, but also big-step reachability relations.

Finally, we place our work in the context of the prior literature on higher-order

abstract interpretation (§ 6.11) and draw some conclusions (§ 6.12).

To convey the ideas of this chapter as concretely as possible, we present

code implementing our definitional abstract interpreter and all its variations. As

a metalanguage, we use an applicative subset of Racket [Flatt and PLT, 2010], a

dialect of Scheme. This choice is largely immaterial: any functional language would

do. However, to aide extensibility, we use Racket’s unit system [Flatt and Felleisen,

1998] to write program components that can be linked together.

6.2 From Machines to Compositional Evaluators

In recent years, there has been considerable effort in the systematic construction

of abstract interpreters for higher-order languages using abstract machines—first-

order transition systems—as a semantic basis. The so-called Abstracting Abstract

Machines (AAM) approach to abstract interpretation [Van Horn and Might, 2010] is

a recipe for transforming a machine semantics into an easily abstractable form. The

196

transformation includes the following ingredients:

• Allocating continuations in the store;

• Allocating variable bindings in the store;

• Using a store that maps addresses to sets of values;

• Interpreting store updates as a join; and

• Interpreting store dereference as a non-deterministic choice.

These transformations are semantics-preserving due to the original and derived

machines operating in a lock-step correspondence. After transforming the semantics

in this way, a computable abstract interpreter is achieved by:

• Bounding store allocation to a finite set of addresses; and

• Widening base values to some abstract domain.

After performing these transformations, the soundness and computability of the

resulting abstract interpreter are then self-evident and easily proved.

The AAM approach has been applied to a wide variety of languages and

applications, and given the success of the approach it’s natural to wonder what is

essential about its use of low-level machines. It is not at all clear whether a similar

approach is possible with a higher-level formulation of the semantics, such as a

compositional evaluation function defined recursively over the syntax of expressions.

This chapter shows that the essence of the AAM approach can be applied to a

high-level semantic basis. We show that compositional evaluators written in monadic

197

style can express similar abstractions to that of AAM, and like AAM, the design

remains systematic. Moreover, we show that the high-level semantics offers a number

of benefits not available to the machine model.

There is a rich body of work concerning tools and techniques for extensible

interpreters [Jaskelioff, 2009, Kiselyov, 2010, Liang et al., 1995], all of which applies

to high-level semantics. By putting abstract interpretation for higher-order languages

on a high-level semantic basis, we can bring these results to bear on the construction

of extensible abstract interpreters.

6.3 A Definitional Interpreter

We begin by constructing a definitional interpreter for a small but representative

higher-order, functional language. The abstract syntax of the language is defined in

Figure 6.1; it includes variables, numbers, binary operations on numbers, conditionals,

letrec expressions, functions and applications.

The interpreter for the language is defined in Figure 6.2. At first glance, it has

many conventional aspects:

• It is compositionally defined by structural recursion on the syntax of expressions.

• It represents function values as a closure data structure which pairs the lambda

term with the evaluation environment.

• It is structured monadically and uses monad operations to interact with the

environment and store.

198

x ∈ var [variable names]

e ∈ exp ::= (vbl x) [variable]

| (num n) [number]

| (if0 e e e) [conditional]

| (op2 b e e) [binary op]

| (app e e) [application]

| (lam x e) [lambda]

| (rec x e e) [letrec]

b ∈ binop := {+,−, . . .} [binary prim]

Figure 6.1: Programming Language Syntax

• It relies on a helper function δ to interpret primitive operations.

There are a few superficial aspects that deserve a quick note: environments ρ are

finite maps and the syntax (ρ x) denotes ρ(x) while (ρ x a) denotes ρ[x 7→ a]. The

do-notation is just shorthand for bind, as usual:

(do x← e . r) ≡ (bind e (λ (x) (do . r)))

(do e . r) ≡ (bind e (λ () (do . r)))

(do x := e . r) ≡ (let ((x e)) (do . r))

(do b) ≡ b

Finally, there are two unconventional aspects worth noting.

First, the interpreter is written in an open recursive style; the evaluator does

not call itself recursively, instead it takes as an argument a function ev—shadowing

the name of the function ev being defined—and ev (the argument) is called instead

of self-recursion. This is a standard encoding for recursive functions in a setting

199

(define ((ev ev) e)
(match e

[(num n) (return n)]
[(vbl x) (do ρ← ask-env

(find (ρ x)))]
[(if0 e0 e1 e2) (do v ← (ev e0) z?← (zero? v)

(ev (if z? e1 e2)))]
[(op2 o e0 e1) (do v0 ← (ev e0) v1 ← (ev e1)

(δ o v0 v1))]
[(rec f l e) (do ρ← ask-env a← (alloc f)

ρ′ := (ρ f a)
(ext a (cons l ρ′))
(local-env ρ′ (ev e)))]

[(lam x e0) (do ρ← ask-env
(return (cons (lam x e0) ρ)))]

[(app e0 e1) (do (cons (lam x e2) ρ)← (ev e0)
v1 ← (ev e1)
a← (alloc x)
(ext a v1)
(local-env (ρ x a) (ev e2)))]))

ev@

Figure 6.2: The Extensible Definitional Interpreter

200

without recursive binding. It is up to an external function, such as the Y-combinator,

to close the recursive loop. This open recursive form is crucial because it allows

intercepting recursive calls to perform “deep” instrumentation of the interpreter.

Second, the code is clearly incomplete. There are a number of free variables,

typeset as italics, which implement the following:

• The underlying monad of the interpreter: return and bind ;

• An interpretation of primitives: δ and zero? ;

• Environment operations: ask-env for retrieving the environment and local-env

for installing an environment;

• Store operations: ext for updating the store, and find for dereferencing locations;

and

• An operation for allocating new store locations.

Going forward, we make frequent use of definitions involving free variables, and we

call such a collection of such definitions a component. We assume components can be

named (in this case, we’ve named the component ev@, indicated by the box in the

upper-right corner) and linked together to eliminate free variables. We use Racket

units [Flatt and Felleisen, 1998] to model components in our implementation.

6.3.1 Instantiating the Interpreter

Next we examine a set of components which complete the definitional interpreter,

shown in Figure 6.3. The first component monad@ uses a macro define-monad which

201

(define-monad (

env︷ ︸︸ ︷
ReaderT (

errors︷ ︸︸ ︷
FailT (

store︷ ︸︸ ︷
StateT ID)))) monad@

(define (δ o n0 n1)

(match o

['+ (return (+ n0 n1))]

['- (return (− n0 n1))]

['* (return (∗ n0 n1))]

['/ (if (= 0 n1) fail (return (/ n0 n1)))]))

(define (zero? v) (return (= 0 v)))

δ@

(define (find a) (do σ ← get-store (return (σ a))))

(define (ext a v) (update-store (λ (σ) (σ a v))))

store@

(define (alloc x) (do σ ← get-store (return (size σ)))) alloc@

Figure 6.3: Components for Definitional Interpreters

generates a set of bindings based on a monad transformer stack. We use a failure

monad to model divide-by-zero errors, a state monad to model the store, and a

reader monad to model the environment. The define-monad form generates bindings

for return, bind, ask-env, local-env, get-store and update-store; their definitions are

standard [Liang et al., 1995].

We also define mrun for running monadic computations, starting with the

202

empty environment and store ∅:

(define (mrun m) (run-StateT ∅ (run-ReaderT ∅ m)))

While the define-monad form is hiding some details, this component could have

equivalently been written out explicitly. For example, return and bind can be defined

as:

(define (((return a) r) s) (cons a s))

(define (((bind ma f) r) s)

(match ((ma r) s)

[(cons a s′) (((f a) r) s′)]

['failure 'failure]))

So far our use of monad transformers is as a mere convenience, however the monad

abstraction will become essential for easily deriving new analyses later on.

The δ@ component defines the interpretation of primitives, which is given in

terms of the underlying monad. The alloc@ component provides a definition of

alloc, which fetches the store and uses its size to return a fresh address, assuming

the invariant (∈ a σ)⇔ a < (size σ). The alloc function takes a single argument,

which is the name of the variable whose binding is being allocated. For the time

being, it is ignored, but will become relevant when abstracting closures (§ 6.3.4).

The store@ component defines find and ext for finding and extending values in the

store.

The only remaining pieces of the puzzle are a fixed-point combinator and the

203

main entry-point for the interpreter, which are straightforward to define:

(define ((fix f) x) ((f (fix f)) x))

(define (eval e) (mrun ((fix ev) e)))

Using Racket’s languages-as-libraries features [Tobin-Hochstadt et al., 2011],

we construct REPLs for interacting with this interpreter. Here are a few evaluation

examples in a succinct concrete syntax:

> (λ (x) x) ;; Closure over the empty

'(((λ (x) x) . ()) . ()) ;; environment and store.

> ((λ (x) (λ (y) x)) 4) ;; Closure over a non-empty

'(((λ (y) x) . ((x . 0))) . ((0 . 4))) ;; environment and store.

> (∗ (+ 3 4) 9) ;; Primitive operations work

'(63 . ()) ;; as expected.

> (/ 5 (− 3 3)) ;; Divide-by-zero errors

'(failure . ()) ;; result in failures.

Because our monad stack places FailT above StateT, the answer includes the (empty)

store at the point of the error. Had we changed monad@ to use:

(ReaderT (StateT (FailT ID))))

then failures would not include the store:

> (/ 5 (− 3 3))

'failure

At this point we’ve defined a simple definitional interpreter, although the exten-

sible components involved—monadic operations and open recursion—will allow

us to instantiate the same interpreter to achieve a wide range of useful abstract

interpretations.

204

(define-monad

(

env︷ ︸︸ ︷
ReaderT (

errors︷ ︸︸ ︷
FailT (

store︷ ︸︸ ︷
StateT (

traces︷ ︸︸ ︷
WriterT List ID)))))

trace-monad@

(define (((ev-tell ev0) ev) e)

(do ρ← ask-env σ ← get-store

(tell (list e ρ σ))

((ev0 ev) e)))

ev-tell@

Figure 6.4: Trace Collecting Semantics

6.3.2 Collecting Variations

The formal development of abstract interpretation often starts from a so-called

“non-standard collecting semantics.” A common form of collecting semantics is a

trace semantics, which collects streams of states the interpreter reaches. Figure 6.4

shows the monad stack for a tracing interpreter and a “mix-in” for the evaluator. The

monad stack adds WriterT List, which provides a new operation tell for writing lists

of items to the stream of reached states. The ev-tell function is a wrapper around

an underlying ev0 unfixed evaluator, and interposes itself between each recursive call

by tell ing the current state of the evaluator: the current expression, environment

and store. The top-level evaluation function is then:

(define (eval e) (mrun ((fix (ev-tell ev)) e)))

Now when an expression is evaluated, we get an answer and a list of all states

205

seen by the evaluator, in the order in which they were seen. For example (not

showing ρ or σ in results):

> (∗ (+ 3 4) 9)

'((63 . ()) (* (+ 3 4) 9) (+ 3 4) 3 4 9)

> ((λ (x) (λ (y) x)) 4)

'((((λ (y) x) . ((x . 0))) . ((0 . 4)))

(((λ (x) (λ (y) x)) 4) () ())

((λ (x) (λ (y) x)) () ())

(4 () ())

((λ (y) x) ((x . 0)) ((0 . 4))))

Were we to swap List with Set in the monad stack, we would obtain a reachable

state semantics, another common form of collecting semantics, that loses the order

and repetition of states.

As another collecting semantics variant, we show how to collect the dead code in

a program. Here we use a monad stack that has an additional state component (with

operations named put-dead and get-dead) which stores the set of dead expressions.

Initially this will contain all subexpressions of the program. As the interpreter

evaluates expressions it will remove them from the dead set.

Figure 6.5 defines the monad stack for the dead code collecting semantics and

the ev-dead@ component, another mix-in for an ev0 evaluator to remove the given

subexpression before recurring. Since computing the dead code requires an outer

wrapper that sets the initial set of dead code to be all of the subexpressions in the

program, we define eval-dead@ which consumes a closed evaluator, i.e. something of

the form (fix ev). Putting these pieces together, the dead code collecting semantics

206

(define-monad

(

env︷ ︸︸ ︷
ReaderT (

store︷ ︸︸ ︷
StateT (

dead︷ ︸︸ ︷
StateT (

errors︷ ︸︸ ︷
FailT ID)))))

dead-monad@

(define (((ev-dead ev0) ev) e)

(do θ ← get-dead

(put-dead (set-remove θ e))

((ev0 ev) e)))

ev-dead@

(define ((eval-dead eval) e0)

(do (put-dead (subexps e0))

(eval e0)))

eval-dead@

Figure 6.5: Dead Code Collecting Semantics

is defined:

(define (eval e) (mrun ((eval-dead (fix (ev-dead ev))) e)))

Running a program with the dead code interpreter produces an answer and

the set of expressions that were not evaluated during the running of a program:

> (if0 0 1 2)

(cons '(1 . ()) (set 2))

> (λ (x) x)

(cons '(((λ (x) x) . ()) . ()) (set 'x))

> (if0 (/ 1 0) 2 3)

(cons '(failure . ()) (set 3 2))

Our setup makes it easy not only to express the concrete interpreter, but also

207

(define-monad (

env︷ ︸︸ ︷
ReaderT (

errors︷ ︸︸ ︷
FailT (

store︷ ︸︸ ︷
StateT (

mplus︷ ︸︸ ︷
NondetT ID))))) monad^@

(define (δ o n0 n1)

(match* (o n0 n1)

[('+) (return 'N)]

[('/ (? num?)) (if (= 0 n1) fail (return 'N))]

[('/ 'N) (mplus fail (return 'N))]

. . .))

(define (zero? v)

(match v

['N (mplus (return #t) (return #f))]

[(return (= 0 v))]))

δ^@

Figure 6.6: Abstracting Primitive Operations

these useful forms of collecting semantics.

6.3.3 Abstracting Base Values

Our interpreter must become decidable before it can be considered an analysis, and

the first step towards decidability is to abstract the base types of the language to

something finite. We do this for our number base type by introducing a new abstract

number, written 'N, which represents the set of all numbers. Abstract numbers

are introduced by an alternative interpretation of primitive operations, given in

Figure 6.6, which simply produces 'N in all cases.

Some care must be taken in the abstraction of '/. If the denominator is

208

the abstract number 'N, then it is possible the program could fail as a result of

divide-by-zero, since 0 is contained in the representation of 'N. Therefore there

are two possible answers when the denominator is 'N: 'N and 'failure. Both

answers are returned by introducing non-determinism NondetT into the monad

stack. Adding non-determinism provides the mplus operation for combining multiple

answers. Non-determinism is also used in zero?, which returns both true and false

on 'N.

By linking together δ^@ and the monad stack with non-determinism, we obtain

an evaluator that produces a set of results:

> (∗ (+ 3 4) 9)

'((N . ()))

> (/ 5 (+ 1 2))

'((failure . ()) (N . ()))

> (if0 (+ 1 0) 3 4)

'((3 . ()) (4 . ()))

If we link δ^@ with the tracing monad stack plus non-determinism:

(

env︷ ︸︸ ︷
ReaderT (

errors︷ ︸︸ ︷
FailT (

store︷ ︸︸ ︷
StateT (

traces︷ ︸︸ ︷
WriterT List (

mplus︷ ︸︸ ︷
NondetT ID)))))

we get an evaluator that produces sets of traces (again not showing ρ or σ in the

results):

> (if0 (+ 1 0) 3 4)

(set '((3 . ()) (if0 (+ 1 0) 3 4) (+ 1 0) 0 3)

'((4 . ()) (if0 (+ 1 0) 3 4) (+ 1 0) 0 4))

It is clear that the interpreter will only ever see a finite set of numbers (including

209

'N), but it’s definitely not true that the interpreter halts on all inputs. First, it’s still

possible to generate an infinite number of closures. Second, there’s no way for the

interpreter to detect when it sees a loop. To make a terminating abstract interpreter

requires tackling both. We look next at abstracting closures.

6.3.4 Abstracting Closures

Closures consist of code—a lambda term—and an environment—a finite map from

variables to addresses. Since the set of lambda terms and variables is bounded by the

program text, it suffices to finitize closures by finitizing the set of addresses. Following

the AAM approach, we do this by modifying the allocation function to produce

elements drawn from a finite set. In order to retain soundness in the semantics, we

modify the store to map addresses to sets of values, model store update as a join,

and model dereference as a non-deterministic choice.

Any abstraction of the allocation function that produces a finite set will do,

but the choice of abstraction will determine the precision of the resulting analysis.

A simple choice is to allocate variables using the variable’s name as its address. This

gives a monomorphic, or 0CFA-like, abstraction.

Figure 6.7 shows the component alloc^@ which implements monomorphic

allocation, and the component store-nd@ for implementing find and ext which

interact with a store mapping to sets of values. The for/monad+ form is a convenience

for combining a set of computations with mplus, and is used so find returns all of the

values in the store at a given address. The ext function joins whenever an address is

210

(define (alloc x) (return x)) alloc^@

(define (find a)

(do σ ← get-store

(for/monad+ ([v (σ a)])

(return v))))

(define (ext a v)

(update-store (λ (σ)

(σ a (if (∈ a σ) (set-add (σ a) v) (set v))))))

store-nd@

Figure 6.7: Abstracting Allocation: 0CFA

already allocated, otherwise it maps the address to a singleton set. By linking these

components with the same monad stack from before, we obtain an interpreter that

loses precision whenever variables are bound to multiple values. For example, this

program binds x to both 0 and 1 and produces both answers when run:

> (let f (λ (x) x)

(let (f 0) (f 1)))]

'((0 . ((x 1 0) (f ((λ (x) x) . ()))))

(1 . ((x 1 0) (f ((λ (x) x) . ())))))

Our abstract interpreter now has a truly finite domain; the next step is to

detect loops in the state-space to achieve termination.

211

6.4 Caching and Finding Fixed-points

At this point, the interpreter obtained by linking together monad^@, δ^@, alloc^@

and store-nd@ components will only ever visit a finite number of configurations for

a given program. A configuration (ς) consists of an expression (e), environment (ρ)

and store (σ). This configuration is finite because: expressions are finite in the given

program; environments are maps from variables (again, finite in the program) to

addresses; the addresses are finite thanks to alloc^; the store maps addresses to

sets of values; base values are abstracted to a finite set by δ^; and closures consist of

an expression and environment, which are both finite.

Although the interpreter will only ever see a finite set of inputs, it doesn’t know

it. A simple loop will cause the interpreter to diverge:

> (rec f (λ (x) (f x)) (f 0))

timeout

To solve this problem, we introduce a cache ($in) as input to the algorithm, which

maps from configurations (ς) to sets of value-and-store pairs (v×σ). When a config-

uration is reached for the second time, rather than re-evaluating the expression and

entering an infinite loop, the result is looked up from $in, which acts as an oracle. It

is important that the cache is used co-inductively: it is only safe to use $in as an

oracle so long as some progress has been made first.

The results of evaluation are then stored in an output cache ($out), which after

the end of evaluation is “more defined” than the input cache ($in), again following a

co-inductive argument. The least fixed-point $+ of an evaluator which transforms

212

an oracle $in and outputs a more defined oracle $out is then a sound approximation

of the program, because it over-approximates all finite unrollings of the unfixed

evaluator.

The co-inductive caching algorithm is shown in Figure 6.8, along with the

monad transformer stack monad-cache@ which has two new components: ReaderT

for the input cache $in, and StateT+ for the output cache $out. We use a StateT+

instead of WriterT monad transformer in the output cache so it can double as

tracking the set of seen states. The “+” in StateT+ signifies that caches for multiple

non-deterministic branches will be merged automatically, producing a set of results

and a single cache, rather than a set of results paired with individual caches.

In the algorithm, when a configuration ς is first encountered, we place an

entry in the output cache mapping ς to ($in ς), which is the “oracle” result. Also,

whenever we finish computing the result v×σ′ of evaluating a configuration ς, we

place an entry in the output cache mapping ς to v×σ′. Finally, whenever we reach a

configuration ς for which a mapping in the output cache exists, we use it immediately,

returning each result using the for/monad+ iterator. Therefore, every “cache hit”

on $out is in one of two possible states: 1) we have already seen the configuration,

and the result is the oracle result, as desired; or 2) we have already computed the

“improved” result (w.r.t. the oracle), and need not recompute it.

To compute the least fixed-point $+ for the evaluator ev-cache we perform

a standard Kleene fixed-point iteration starting from the empty map, the bottom

element for the cache, as shown in Figure 6.9.

The algorithm runs the caching evaluator eval on the given program e from the

213

(define-monad

(

env︷ ︸︸ ︷
ReaderT (

errors︷ ︸︸ ︷
FailT (

store︷ ︸︸ ︷
StateT

(

mplus︷ ︸︸ ︷
NondetT (

$in︷ ︸︸ ︷
ReaderT (

$out︷ ︸︸ ︷
StateT+ ID)))))))

monad-cache@

(define (((ev-cache ev0) ev) e)

(do ρ← ask-env σ ← get-store

ς := (list e ρ σ)

$out ← get-cache-out

(if (∈ ς $out)

(for/monad+ ([v×σ ($out ς)])

(do (put-store (cdr v×σ))

(return (car v×σ))))

(do $in ← ask-cache-in

v×σ0 := (if (∈ ς $in) ($in ς) ∅)

(put-cache-out ($out ς v×σ0))

v ← ((ev0 ev) e)

σ′ ← get-store

v×σ′ := (cons v σ′)

(update-cache-out (λ ($out)

($out ς (set-add ($out ς) v×σ′))))

(return v)))))

ev-cache@

Figure 6.8: Co-inductive Caching Algorithm

214

(define ((fix-cache eval) e)

(do ρ← ask-env σ ← get-store

ς := (list e ρ σ)

$+ ← (mlfp (λ ($)

(do (put-cache-out ∅)

(put-store σ)

(local-cache-in $ (eval e))

get-cache-out)))

(for/monad+ ([v×σ ($+ ς)])

(do (put-store (cdr v×σ))

(return (car v×σ))))))

(define (mlfp f)

(let loop ([x ∅])

(do x′ ← (f x)

(if (equal? x′ x) (return x) (loop x′)))))

fix-cache@

Figure 6.9: Finding Fixed-Points in the Cache

215

initial environment and store. This is done inside of mlfp, a monadic least fixed-point

finder. After finding the least fixed-point, the final values and store for the initial

configuration ς are extracted and returned.

Termination of the least fixed-point is justified by the monotonicity of the

evaluator (it always returns an “improved” oracle), and the finite domain of the

cache, which maps abstract configurations to pairs of values and stores, all of which

are finite.

With these pieces in place we construct a complete interpreter:

(define (eval e) (mrun ((fix-cache (fix (ev-cache ev))) e)))

When linked with δ^ and alloc^, this abstract interpreter is sound and computable,

as demonstrated on the following examples:

> (rec f (λ (x) (f x))

(f 0))

'()

> (rec f (λ (n) (if0 n 1 (∗ n (f (− n 1)))))

(f 5))

'(N)

> (rec f (λ (x) (if0 x 0 (if0 (f (− x 1)) 2 3)))

(f (+ 1 0)))

'(0 2 3)

216

6.4.1 Formal soundness and termination

In this chapter, we have focused on the code and its intuitions rather than rigorously

establishing the usual formal properties of our abstract interpreter, but this is just a

matter of presentation: the interpreter is indeed proven sound and computable. We

have formalized this co-inductive caching algorithm in Section 6.10, where we prove

both that it always terminates, and that it computes a sound over-approximation of

concrete evaluation. Here, we give a short summary of our metatheory approach.

In formalising the soundness of this caching algorithm, we extend a standard

big-step evaluation semantics into a big-step reachability semantics, which charac-

terizes all intermediate configurations which are seen between the evaluation of

a single expression and its eventual result. These two notions—evaluation which

relates expressions to fully evaluated results, and reachability which characterizes

intermediate configuration states—remain distinct throughout the formalism.

After specifying evaluation and reachability for concrete evaluation, we develop

a collecting semantics which gives a precise specification for any abstract interpreter,

and an abstract semantics which partially specifies a sound, over-approximating

algorithm w.r.t. the collecting semantics.

The final step is to compute an oracle for the abstract evaluation relation,

which maps individual configurations to abstractions of the values they evaluate

to. To construct this cache, we mutually compute the least-fixed point of both

the evaluation and reachability relations: based on what is evaluated, discover new

things which are reachable, and based on what is reachable, discover new results

217

of evaluation. The caching algorithm developed in this section is a slightly more

efficient strategy for solving the mutual fixed-point, by taking a deep exploration

of the reachability relation (up-to seeing the same configuration twice) rather than

applying just a single rule of inference.

6.5 Pushdown à la Reynolds

By combining the finite abstraction of base values and closures with the termination-

guaranteeing cache-based fixed-point algorithm, we have obtained a terminating

abstract interpreter. But what kind of abstract interpretation did we get? We have

followed the basic recipe of AAM, but adapted to a compositional evaluator instead

of an abstract machine. However, we did manage to skip over one of the key steps

in the AAM method: we never store-allocated continuations. In fact, there are no

continuations at all.

A traditional abstract machine formulation of the semantics would model the

object-level stack explicitly as an inductively defined data structure. Because stacks

may be arbitrarily large, they must be finitized like base values and closures, and

like closures, the AAM trick is to thread them through the store, which itself must

become finite. But in the definitional interpreter approach, the story of this chapter,

the model of the stack is implicit and simply inherited from the meta-language.

But here is the remarkable thing: since the stack is inherited from the meta-

language, the abstract interpreter inherits the “call-return matching” of the meta-

language, which is to say there is no loss of precision of in the analysis of the

218

control stack. This is a property that usually comes at considerable effort and

engineering in the formulations of higher-order flow analysis that model the stack

explicitly. So-called higher-order “pushdown” analysis has been the subject of

multiple publications and two dissertations [Earl, 2014, Earl et al., 2010, 2012, Gilray

et al., 2016b, Johnson and Van Horn, 2014, Johnson et al., 2014, Van Horn and

Might, 2012, Vardoulakis, 2012, Vardoulakis and Shivers, 2011]. Yet when formulated

in the definitional interpreter style, the pushdown property requires no mechanics

and is simply inherited from the meta-language.

Reynolds, in his celebrated paper Definitional Interpreters for Higher-order

Programming Languages [Reynolds, 1972], first observed that when the semantics of a

programming language is presented as a definitional interpreter, the defined language

could inherit semantic properties of the defining metalanguage. We have now shown

this observation can be extended to abstract interpretation as well, namely in the

important case of the pushdown property.

In the remainder of this chapter, we explore a few natural extensions and

variations on the basic pushdown abstract interpreter we have established up to this

point.

6.6 Widening the Store

In this section, we show how to recover the well-known technique of store-widening

in our formulation of a definitional abstract interpreter. This example demonstrates

the ease of which we can construct existing abstraction choices.

219

The abstract interpreter we’ve constructed so far uses a store-per-program-state

abstraction, which is precise but prohibitively expensive. A common technique to

combat this cost is to use a global “widened” store [Might, 2007a, Shivers, 1991],

which over-approximates each individual store in the current set-up. This change is

achieved easily in the monadic setup by re-ordering the monad stack, a technique

due to Darais et al. [2015]. Whereas before we had monad-cache@ we instead swap

the order of StateT for the store and NondetT :

(

env︷ ︸︸ ︷
ReaderT (

errors︷ ︸︸ ︷
FailT (

mplus︷ ︸︸ ︷
NondetT (

store︷ ︸︸ ︷
StateT+ (

$in︷ ︸︸ ︷
ReaderT (

$out︷ ︸︸ ︷
StateT+ ID))))))

we get a store-widened variant of the abstract interpreter. Because StateT for the

store appears underneath nondeterminism, it will be automatically widened. We

write StateT+ to signify that the cell of state supports such widening. To see the

difference, here is an example without store-widening:

> (let x (+ 1 0)

(let y (if0 x 1 2)

(let z (if0 x 3 4)

(if0 x y z))))

'((4 . ((x N) (y 2) (z 4)))

(1 . ((x N) (y 1) (z 3)))

(2 . ((x N) (y 2) (z 3)))

(3 . ((x N) (y 1) (z 3)))

(1 . ((x N) (y 1) (z 4)))

(3 . ((x N) (y 2) (z 3)))

(2 . ((x N) (y 2) (z 4)))

(4 . ((x N) (y 1) (z 4))))

220

and an example with store-widening:

> (let x (+ 1 0)

(let y (if0 x 1 2)

(let z (if0 x 3 4)

(if0 x y z))))

'((1 3 2 4) . ((x N) (y 1 2) (z 3 4)))

Notice that before widening, the result is a set of value, store pairs. After widening

the result is a pair of a set of values and a store. Importantly, the cache, which

bounds the overall run-time of the abstract interpreter, is potentially exponential

without store-widening, but collapses to polynomial after store-widening.

6.7 An Alternative Abstraction

In this section, we demonstrate how easy it is to experiment with alternative abstrac-

tion strategies by swapping out components. In particular we look at an alternative

abstraction of primitive operations and store joins that results in an abstraction

that—to the best of our knowledge—has not been explored in the literature. This

example shows the potential for rapidly prototyping novel abstractions using our

approach.

Figure 6.10 defines two new components: precise-δ@ and store-crush@.

The first is an alternative interpretation for primitive operations that is precision

preserving. Unlike δ^@, it does not introduce abstraction, it merely propagates it.

When two concrete numbers are added together, the result will be a concrete number,

but if either number is abstract then the result is abstract.

221

(define (δ o n0 n1)

(match* (o n0 n1)

[('+ (? num?) (? num?)) (return (+ n0 n1))]

[('+) (return 'N)]

. . .))

(define (zero? v)

(match v

['N (mplus (return #t) (return #f))]

[(return (= 0 v))]))

precise-δ@

(define (find a)

(do σ ← get-store

(for/monad+ ([v (σ a)])

(return v))))

(define (crush v vs)

(if (closure? v)

(set-add vs v)

(set-add (set-filter closure? vs) 'N)))

(define (ext a v)

(update-store (λ (σ) (if (∈ a σ)

(σ a (crush v (σ a)))

(σ a (set v))))))

store-crush@

Figure 6.10: An Alternative Abstraction for Precise Primitives

222

This interpretation of primitive operations clearly doesn’t impose a finite

abstraction on its own, because the state space for concrete numbers is infinite. If

precise-δ@ is linked with the store-nd@ implementation of the store, termination

is therefore not guaranteed.

The store-crush@ operations are designed to work with precise-δ@ by per-

forming widening when joining multiple concrete values into the store. This abstrac-

tion offers a high-level of precision; for example:

> (∗ (+ 3 4) 9) ;; Constant arithmetic expressions are

'(63) ;; computed with full precision.

> ((λ (x) (∗ x x)) 5) ;; Even linear binding and arithmetic

'(25) ;; preserves precision.

> (let f (λ (x) x)

(∗ (f 5) (f 5)))

;; Precision only lost when bindings

;; contact base values.

'(N)

This combination of precise-δ@ and store-crush@ allows termination for most

programs, but still not all. In the following example, id is eventually applied to

a widened argument 'N, which makes both conditional branches reachable. The

function returns 0 in the base case, which is propagated to the recursive call and

added to 1, which yields the concrete answer 1. This results in a cycle where the

intermediate sum returns 2, 3, 4 when applied to 1, 2, 3, etc.

> (rec id (λ (n) (if0 n 0 (+ 1 (id (− n 1)))))

(id 3))

timeout

To ensure termination for all programs, we assume all references to primitive opera-

223

tions are η-expanded, so that store-allocations also take place at primitive applications,

ensuring widening at repeated bindings. In fact, all programs terminate when using

precise-δ@, store-crush@ and η-expanded primitives, which means we have a

achieved a computable and uniquely precise abstract interpreter.

Here we see one of the strengths of the extensible, definitional approach to

abstract interpreters. The combination of added precision and widening is encoded

quite naturally. In contrast, it’s hard to imagine how such a combination could be

formulated as, say, a constraint-based flow analysis.

6.8 Symbolic Execution and Garbage Collection

In the published version of this work [Darais et al., 2017] we carry out two exam-

ples which demonstrate the wide range of possibilities enabled by the Abstracting

Definitional Interpreters technique.

First, we work through an example which shows how to instantiate our defini-

tional abstract interpreter to obtain a symbolic execution engine that performs sound

program verification. In the example we describe the monad stack and metafunctions

that implement a symbolic executor [King, 1976], then we show how abstractions

discussed in previous sections can be applied to enforce termination, turning a

traditional symbolic execution into a path-sensitive verification engine.

Next, we show how to incorporate abstract garbage collection [Might and

Shivers, 2006a] into our definitional abstract interpreter. The difficulty in defining

abstract garbage collection for definitional interpreters is that there is no repre-

224

sentation of the execution stack to crawl for establishing a root set of reachable

addresses. We show how abstract garbage collection can be achieved by extending

the instantiated monad with an explicit root set of addresses, and extending the

interpreter to perform what looks remarkably similar to off-the-shelf concrete garbage

collection.

The result of each of these exercises is the realization that although definitional

interpreters defer much of the interpretation structure to the implementing meta-

language, complex analysis techniques (like symbolic execution) and introspective

analysis techniques (like abstract garbage collection) can still be achieved within

the interpreter framework. The key challenges are to (1) achieve the desired seman-

tics through an instrumented definitional interpreter, (2) model the instrumented

semantics using new monadic effects as needed, and (3) finitize the state space for

the instrumentation.

6.9 Try It Out

All of the components discussed in this chapter have been implemented as units [Flatt

and Felleisen, 1998] in Racket [Flatt and PLT, 2010]. We have also implemented a

#lang language so that composing and experimenting with these interpreters is easy.

Assuming Racket is installed, you can install the monadic-eval package with:

raco pkg install https://github.com/plum-umd/monadic-eval.git

225

A #lang monadic-eval program starts with a list of components, which are linked

together, and an expression producing an evaluator. Subsequent forms are interpreted

as expressions when run. Programs can be run from the command-line or interactively

in the DrRacket IDE.

6.10 Formalism

In this section we formalize our approach to designing definitional abstract inter-

preters. We begin with a “ground truth” big-step semantics and concludes with

the fixed-point iteration strategy described in Section 6.4, which we prove sound

and computable w.r.t. a synthesized abstract semantics. The design is systematic,

and applies to arbitrary developments which use big-step operational semantics. We

demonstrate the systematic process as applied to a subset of the language described

in Figure 6.1, which we call λIF:

n ∈ N

x ∈ variables

b ∈ binop := {plus, . . .}

e ∈ exp ::= n | x | λx.e | e(e) | if0(e){e}{e} | b(e, e)

τ ∈ time := N

` ∈ addr := var× time

ρ ∈ env := var→ addr⊥

σ ∈ store := addr→ val⊥

v ∈ val ::= n | 〈λx.e, ρ〉

Concrete Semantics We begin with the concrete semantics of λIF as a big-step

evaluation relation ρ, τ ` e, σ ⇓ v, σ′, shown in Figure 6.11. The definition is mostly

226

(Concrete Evaluation) ρ, τ ` e, σ ⇓ v, σ′

(Lit)
ρ, τ ` n, σ ⇓ n, σ

(Var)
ρ, τ ` x, σ ⇓ σ(ρ(x)), σ

(Lam)
ρ, τ ` λx.e, σ ⇓ 〈λx.e, ρ〉, σ

(Bin)
ρ, τ ` e1, σ ⇓ v1, σ1 ρ, τ ` e2, σ1 ⇓ v2, σ2

ρ, τ ` b(e1, e2), σ ⇓ JbK(v1, v2), σ2

(App)

ρ, τ ` e1, σ ⇓ v1, σ1 ρ, τ ` e2, σ1 ⇓ v2, σ2

ρ′[x 7→ `], τ ′ ` e′, σ2[` 7→ v2] ⇓ v′, σ3

ρ, τ ` e1(e2), σ ⇓ v′, σ3

〈λx.e′, ρ′〉 = v1

` = 〈x, τ ′〉

τ ′ fresh

(IfT)
ρ, τ ` e1, σ ⇓ n, σ1 ρ, τ ` e2, σ1 ⇓ v, σ2

ρ, τ ` if0(e1){e2}{e3}, σ ⇓ v, σ2

n = 0

(IfF)
ρ, τ ` e1, σ ⇓ n, σ1 ρ, τ ` e3, σ1 ⇓ v, σ2

ρ, τ ` if0(e1){e2}{e3}, σ ⇓ v, σ2

n 6= 0

Figure 6.11: λIF Big-step Concrete Evaluation Semantics

standard: ρ and σ are the environment and store, e is the initial expression, and v

is the resulting value. The argument τ represents “time,” which when abstracted

supports modeling execution contexts like call-site sensitivity. Concretely time is

modeled as a natural number, and all that is required is that “fresh” numbers are

available for allocating values in the store.

227

Reachability The primary limitation of using big-step semantics as a starting

point for abstraction is that intermediate computations are not represented in the

model for evaluation. For example, consider the program that applies the identity

function to an expression that loops, which we notate Ω:

(λx.x)(Ω)

A big-step evaluation relation can only describe results of terminating computations,

and because this program never terminates, such a relation says nothing about the

behavior of the program. A good static analyzer will explore the behavior of Ω to

(possibly) discover that it loops, or more importantly, to provide analysis results

(like data-flow or side-effects) for intermediate computation states.

The need to analyze intermediate states is the primary reason that big-step

semantics are overlooked as a starting point for abstract interpretation. To remedy the

situation, while remaining in a big-step setting, we introduce a big-step reachability

relation, notated ρ, τ ` e, σ ⇑ ς and shown in Figure 6.12. Configurations ς are tuples

〈e, ρ, σ, τ〉, and are reachable when evaluation passes through the configuration at

any point on its way to a final value, or during an infinite loop.

The complete big-step semantics of an expression (e) under environment (ρ),

store (σ) and time (τ), which we notate JeKbs(ρ, σ, τ), is then the set of all reachable

evaluations :

JeKbs(ρ, σ, τ) := {〈v, σ′′〉 | ρ, σ, τ ⇑ 〈e′, ρ′, σ′, τ ′〉

∧ ρ′, τ ′ ` e′, σ′ ⇓ v, σ′′}

We construct a formal bridge between the big-step and small-step worlds through

228

(Concrete Reachability) ρ, τ ` e, σ ⇑ ς

(Refl)
ρ, τ ` e, σ ⇑ 〈e, ρ, σ, τ〉

(RBin1)
ρ, τ ` e1, σ ⇑ ς

ρ, τ ` b(e1, e2), σ ⇑ ς

(RBin2)
ρ, τ ` e1, σ ⇓ v1, σ1 ρ, τ ` e2, σ1 ⇑ ς

ρ, τ ` b(e1, e2), σ ⇑ ς

(RApp1)
ρ, τ ` e1, σ ⇑ ς

ρ, τ ` e1(e2), σ ⇑ ς

(RApp2)
ρ, τ ` e1, σ ⇓ v1, σ1ρ, τ ` e2, σ1 ⇑ ς

ρ, τ ` e1(e2), σ ⇑ ς
〈λx.e′, ρ′〉 = v1

(RApp3)

ρ, τ ` e1, σ ⇓ v1, σ1 ρ, τ ` e2, σ1 ⇓ v2, σ2

ρ′[x 7→ `], τ ′ ` e′, σ2[` 7→ v2] ⇑ ς

ρ, τ ` e1(e2), σ ⇑ ς

〈λx.e′, ρ′〉 = v1

` = 〈x, τ ′〉

τ ′ fresh

(RIf1)
ρ, τ ` e1, σ ⇑ ς

ρ, τ ` if0(e1){e2}{e3}, σ ⇑ ς

(RIfT)
ρ, τ ` e1, σ ⇓ n, σ1 ρ, τ ` e2, σ1 ⇑ ς

ρ, τ ` if0(e1){e2}{e3}, σ ⇑ ς
n = 0

(RIfF)
ρ, τ ` e1, σ ⇓ n, σ1 ρ, τ ` e3, σ1 ⇑ ς

ρ, τ ` if0(e1){e2}{e3}, σ ⇑ ς
n 6= 0

Figure 6.12: λIF Big-step Concrete Reachability Semantics

229

the complete big-step semantics (JeKbs) and a complete small-step semantics ∗,

which is traditionally used as the starting point of abstraction for program analysis:

JeKss(ρ, σ, τ) := {〈v, σ′′〉 | ∀κ. 〈e, ρ, σ, τ, κ〉 ∗ 〈e′, ρ′, σ′, τ ′, κ′ ++ κ〉

∧ 〈e′, ρ′, σ′, τ ′, κ′ ++ κ〉 ∗ 〈v, ρ′′, σ′′, τ ′′, κ′ ++ κ〉}

We connect the complete big-step and small-step semantics through the following

theorem:

Theorem 7 (Complete Big-step/Small-step Equivalence).

JeKbs(ρ, σ, τ) = JeKss(ρ, σ, τ)

The proof is by induction on the big-step derivation for ⊆, and on the transitive

small-step derivation for ⊇.

Collecting Semantics Before abstracting the semantics—in pursuit of a sound

static analysis algorithm—we pass through a big-step collecting evaluation and

reachability semantics, notated ρ, τ ` e, σ̃ ⇓ ṽ, σ̃ and ρ, τ ` e, σ̃ ⇑ ς̃ and shown in

figures 6.13 and 6.14, where ṽ, σ̃ and ς̃ range over collecting state spaces:

ṽ ∈ ṽal := ℘(val)

σ̃ ∈ s̃tore := addr 7→ ṽal

ς̃ ∈ c̃onfig := exp× env× s̃tore× time

and the denotation for binary operators (JbK) is lifted to a collecting denotation

operator J̃bK:

J̃bK(ṽ1, ṽ2) := {JbK(v1, v2) | v1 ∈ ṽ1 ∧ v2 ∈ ṽ2}

The big-step collecting and reachability relations are structurally similar to the

230

(Collecting Evaluation) ρ, τ ` e, σ̃ ⇓ ṽ, σ̃′

(OLit)
ρ, τ ` n, σ̃ ⇓ {n}, σ̃

(OVar)
ρ, τ ` x, σ̃ ⇓ σ̃(ρ(x)), σ̃

(OLam)
ρ, τ ` λx.e, σ̃ ⇓ {〈λx.e, ρ〉}, σ̃

(OBin)
ρ, τ ` e1, σ̃ ⇓ ṽ1, σ̃1 ρ, τ ` e2, σ̃1 ⇓ ṽ2, σ̃2

ρ, τ ` b(e1, e2), σ̃ ⇓ J̃bK(ṽ1, ṽ2), σ̃2

(OApp)

ρ, τ ` e1, σ̃ ⇓ ṽ1, σ̃1 ρ, τ ` e2, σ̃1 ⇓ ṽ2, σ̃2

ρ′[x 7→ `], τ ′ ` e′, σ̃2[` 7→ ṽ2] ⇓ ṽ′, σ̃3

ρ, τ ` e1(e2), σ̃ ⇓ ṽ′, σ̃3

〈λx.e′, ρ′〉 ∈ ṽ1

` = 〈x, τ ′〉

τ ′ fresh

(OIfT)
ρ, τ ` e1, σ̃ ⇓ ṽ1, σ̃1 ρ, τ ` e2, σ̃1 ⇓ ṽ, σ̃2

ρ, τ ` if0(e1){e2}{e3}, σ̃ ⇓ ṽ, σ̃2

0 ∈ ṽ1

(OIfF)
ρ, τ ` e1, σ̃ ⇓ ṽ1, σ̃1 ρ, τ ` e3, σ̃1 ⇓ ṽ, σ̃2

ρ, τ ` if0(e1){e2}{e3}, σ̃ ⇓ ṽ, σ̃2

n ∈ ṽ1

n 6= 0

Figure 6.13: Big-step Collecting Evaluation Semantics

231

(Collecting Reachability) ρ, τ ` e, σ̃ ⇑ ς̃

(ORefl)
ρ, τ ` e, σ̃ ⇑ 〈e, ρ, σ̃, τ〉

(ORBin1)
ρ, τ ` e1, σ̃ ⇑ ς

ρ, τ ` b(e1, e2), σ̃ ⇑ ς̃

(ORBin2)
ρ, τ ` e1, σ̃ ⇓ ṽ1, σ̃1 ρ, τ ` e2, σ̃1 ⇑ ς̃

ρ, τ ` b(e1, e2), σ̃ ⇑ ς̃

(ORApp1)
ρ, τ ` e1, σ̃ ⇑ ς̃

ρ, τ ` e1(e2), σ̃ ⇑ ς̃

(ORApp2)
ρ, τ ` e1, σ̃ ⇓ ṽ1, σ̃1 ρ, τ ` e2, σ̃1 ⇑ ς̃

ρ, τ ` e1(e2), σ̃ ⇑ ς̃
λx.e′, ρ′〉 ∈ ṽ1

(ORApp3)

ρ, τ ` e1, σ̃ ⇓ ṽ1, σ̃1 ρ, τ ` e2, σ̃1 ⇓ ṽ2, σ̃2

ρ′[x 7→ `], τ ′ ` e′, σ̃2[` 7→ ṽ2] ⇑ ς̃

ρ, τ ` e1(e2), σ̃ ⇑ ς̃

〈λx.e′, ρ′〉 ∈ ṽ1

` = 〈x, τ ′〉

τ ′ fresh

(ORIf1)
ρ, τ ` e1, σ̃ ⇑ ς̃

ρ, τ ` if0(e1){e2}{e3}, σ̃ ⇑ ς̃

(ORIfT)
ρ, τ ` e1, σ̃ ⇓ ṽ1, σ̃1 ρ, τ ` e2, σ̃1 ⇑ ς̃

ρ, τ ` if0(e1){e2}{e3}, σ̃ ⇑ ς̃
0 ∈ ṽ1

(ORIfF)
ρ, τ ` e1, σ̃ ⇓ ṽ1, σ̃1 ρ, τ ` e3, σ̃1 ⇑ ς̃

ρ, τ ` if0(e1){e2}{e3}, σ̃ ⇑ ς̃

n ∈ ṽ1

n 6= 0

Figure 6.14: Big-step Collecting Reachability Semantics

232

concrete semantics. The primary differences are the use of set containment (∈) in

place of equality (=) when branching on application and conditional expressions.

The big-step collecting reachability semantics is a sound approximation of the

big-step concrete reachability semantics:

Theorem 8 (Collecting Reachability Semantics Soundness).

If ρ, τ ` e, σ ⇑ 〈e′, ρ′, σ′, τ ′〉 and ρ′, τ ′ ` e′, σ′ ⇓ v, σ′′

where η(σ) v σ̃

then ρ, τ ` e, σ̃ ⇑ 〈e′, ρ′, σ̃′, τ ′〉 and ρ′, τ ′ ` e, σ̃′ ⇓ ṽ, σ̃′′

where η(σ′) v σ̃′ and v ∈ ṽ and η(σ′′) v σ̃′′

The proof is by induction on the concrete big-step derivation. The extraction

function η is defined separately for stores (σ) and configurations (ς):

η(σ)(`) := {σ(`)} η(〈e, ρ, σ, τ〉) := 〈e, ρ, η(σ), τ〉

and the partial ordering on stores and configurations is pointwise:

σ̃1 v σ̃2 iff ∀`. σ̃1(`) ⊆ σ̃2(`)

〈e1, ρ1, σ̃1, τ1〉 v 〈e2, ρ2, σ̃2, τ2〉 iff e1 = e2 ∧ ρ1 = ρ2 ∧ σ̃1 v σ̃2 ∧ τ1 = τ2

Finite Abstraction The next step towards a computable static analysis is an

abstract semantics with a finite state space that approximates the big-step collecting

semantics, notated ρ̂, τ̂ ` e, σ̂ ⇓ v̂, σ̂ and ρ̂, τ̂ ` e, σ̂ ⇑ ς̂ and shown in figures 6.15

233

and 6.16, where ρ̂, τ̂ , v̂, σ̂ and ς̂ are finite abstractions of their collecting counterparts:

ρ̂ ∈ ênv := var 7→ âddr⊥̂̀∈ âddr := var× t̂ime

τ̂ ∈ t̂ime := . . .

v̂ ∈ v̂al := . . .

σ̂ ∈ ŝtore := âddr 7→ v̂al

ς̂ ∈ ĉonfig := exp× ênv× ŝtore× t̂ime

The primary structural difference from the collecting semantics is the use of join

when updating the store (σ̂ t [̂̀ 7→ v̂]) rather than strict replacement (σ̃[` 7→ ṽ]).

This is to preserve soundness in the presence of address reuse, which occurs from the

finite size of the address space.

The abstract denotation (ĴbK) is any over-approximation of the collecting

denotation (J̃bK) w.r.t. a Galois connection ṽal −−→←−−α
γ

v̂al:

ĴbK(v̂1, v̂2) w α(J̃bK(γ(v̂1), γ(v̂2)))

Concretization functions bγcclo, bγc0 and bγc¬0 are computable finite subsets of the

full concretization function γ s.t.:

bγcclo(v̂) := {〈λx.e, ρ̂〉 | 〈λx.e, ρ̂〉 ∈ γ(v̂)}

bγc0(v̂) := {0 | 0 ∈ γ(v̂)}

bγc¬0(v̂) := {¬0 | n ∈ γ(v̂) ∧ n 6= 0}

Abstract sets t̂ime and v̂al are left as parameters to the analysis along with their

operations n̂ext, ĴbK, bγcclo, bγc0, bγc¬0 and tv̂al.

The abstract semantics is a sound approximation of the collecting semantics,

which we establish through the theorem:

234

(Abstract Evaluation) ρ̂, τ̂ ` e, σ̂ ⇓ v̂, σ̂′

(ALit)
ρ̂, τ̂ ` n, σ̂ ⇓ η̂(n), σ̂

(AVar)
ρ̂, τ̂ ` x, σ̂ ⇓ σ̂(ρ̂(x)), σ̂

(ALam)
ρ̂, τ̂ ` λx.e, σ̂ ⇓ η̂(〈λx.e, ρ̂〉), σ̂

(ABin)
ρ̂, τ̂ ` e1, σ̂ ⇓ v̂1, σ̂1 ρ̂, τ̂ ` e2, σ̂1 ⇓ v̂2, σ̂2

ρ̂, τ̂ ` b(e1, e2), σ̂ ⇓ ĴbK(v̂1, v̂2), σ̂2

(AApp)

ρ̂, τ̂ ` e1, σ̂ ⇓ v̂1, σ̂1 ρ̂, τ̂ ` e2, σ̂1 ⇓ v̂2, σ̂2

ρ̂′[x 7→ ̂̀], τ̂ ′ ` e′, σ̂2 t [̂̀ 7→ v̂2] ⇓ v̂′, σ̂3

ρ̂, τ̂ ` e1(e2), σ̂ ⇓ v̂′, σ̂3

〈λx.e′, ρ̂′〉 ∈ bγcclo(v̂1)

ς̂ = 〈e1(e2), ρ̂, σ̂, τ̂〉̂̀= 〈x, τ̂ ′〉

τ̂ ′ = n̂ext(τ̂ , ς̂)

(AIfT)
ρ̂, τ̂ ` e1, σ̂ ⇓ v̂1, σ̂1ρ̂, τ̂ ` e2, σ̂1 ⇓ v̂, σ̂2

ρ̂, τ̂ ` if0(e1){e2}{e3}, σ̂ ⇓ v̂, σ̂2

0 ∈ bγc0(v̂1)

(AIfF)
ρ̂, τ̂ ` e1, σ̂ ⇓ v̂1, σ̂1 ρ̂, τ̂ ` e3, σ̂1 ⇓ v̂, σ̂2

ρ̂, τ̂ ` if0(e1){e2}{e3}, σ̂ ⇓ v̂, σ̂2

¬0 ∈ bγc¬0(v̂1)

Figure 6.15: Big-step Abstract Evaluation Semantics

235

(Abstract Reachability) ρ̂, τ̂ ` e, σ̂ ⇑ ς̂

(ARefl)
ρ̂, τ̂ ` e, σ̂ ⇑ 〈e, ρ̂, σ̂, τ̂〉

(ARBin1)
ρ̂, τ̂ ` e1, σ̂ ⇑ ς

ρ̂, τ̂ ` b(e1, e2), σ̂ ⇑ ς̂

(ARBin2)
ρ̂, τ̂ ` e1, σ̂ ⇓ v̂1, σ̂1 ρ̂, τ̂ ` e2, σ̂1 ⇑ ς̂

ρ̂, τ̂ ` b(e1, e2), σ̂ ⇑ ς̂

(ARApp1)
ρ̂, τ̂ ` e1, σ̂ ⇑ ς̂

ρ̂, τ̂ ` e1(e2), σ̂ ⇑ ς̂

(ARApp2)
ρ̂, τ̂ ` e1, σ̂ ⇓ v̂1, σ̂1 ρ̂, τ̂ ` e2, σ̂1 ⇑ ς̂

ρ̂, τ̂ ` e1(e2), σ̂ ⇑ ς̂
〈λx.e′, ρ̂′〉 ∈ bγcclo(v̂1)

(ARApp3)

ρ̂, τ̂ ` e1, σ̂ ⇓ v̂1, σ̂1

ρ̂, τ̂ ` e2, σ̂1 ⇓ v̂2, σ̂2

ρ̂′[x 7→ ̂̀], τ̂ ′ ` e′, σ̂2 t [̂̀ 7→ v̂2] ⇑ ς̂

ρ̂, τ̂ ` e1(e2), σ̂ ⇑ ς̂

〈λx.e′, ρ̂′〉 ∈ bγcclo(v̂1)

ς̂ = 〈e1(e2), ρ̂, σ̂, τ̂〉̂̀= 〈x, τ̂ ′〉

τ̂ ′ = n̂ext(τ̂ , ς̂)

(ARIf1)
ρ̂, τ̂ ` e1, σ̂ ⇑ ς̂

ρ̂, τ̂ ` if0(e1){e2}{e3}, σ̂ ⇑ ς̂

(ARIfT)
ρ̂, τ̂ ` e1, σ̂ ⇓ v̂1, σ̂1 ρ̂, τ̂ ` e2, σ̂1 ⇑ ς̂

ρ̂, τ̂ ` if0(e1){e2}{e3}, σ̂ ⇑ ς̂
0 ∈ bγc0(v̂1)

(ARIfF)
ρ̂, τ̂ ` e1, σ̂ ⇓ v̂1, σ̂1 ρ̂, τ̂ ` e3, σ̂1 ⇑ ς̂

ρ̂, τ̂ ` if0(e1){e2}{e3}, σ̂ ⇑ ς̂
¬0 ∈ bγc¬0(v̂1)

Figure 6.16: Big-step Abstract Reachability Semantics

236

Theorem 9 (Abstract Reachability Semantics Soundness).

If ρ, τ ` e, σ̃ ⇑ 〈e′, ρ′, σ̃′, τ ′〉 and ρ′, τ ′ ` e′, σ̃′ ⇓ ṽ, σ̃′′

where η(ρ) v ρ̂ and η(τ) v τ̂ and η(σ̃) v σ̂

then ρ̂, τ̂ ` e, σ̂ ⇑ 〈e′, ρ̂′, σ̂′, τ̂ ′〉 and ρ̂′, τ̂ ′ ` e, σ̂′ ⇓ v̂, σ̂′′

where η(ρ′) v ρ̂′, η(τ ′) v τ̂ ′, η(σ̃′) v σ̂′, v ∈ ṽ, η(σ′′) v σ̃′′

The proof is by induction on the big-step derivation. The extraction function

η is defined separately for environments (ρ), time (τ), collecting stores (σ̃), values

(ṽ) and configurations (ς̃). η(τ) and η(ṽ) are given with parameters t̂ime and v̂al.

η(ρ), η(σ̃) and η(ς̃) are defined pointwise:

η(ρ)(x) := η(ρ(x)) η(σ̃)(̂̀) :=
⊔
`∈γ(̂̀)

η(σ̃(`))

η(〈e, ρ, τ, σ̃〉) := 〈e, η(ρ), η(τ), η(σ̃)〉

Computing the Analysis An analysis for the program e0 w.r.t. the abstract

semantics is some cache $ ∈ ĉonfig 7→ ℘(v̂al × ŝtore) that maps all configurations

reachable from the initial configuration 〈e0, ρ̂0, σ̂0, τ̂0〉 to their final values and stores

v̂, σ̂, which we notate $ |= e0:

$ |= e0 iff

If ρ̂0, τ̂0 ` e0, σ̂0 ⇑ 〈e, ρ̂, σ̂, τ̂〉

and ρ̂, τ̂ ` e, σ̂ ⇓ v̂, σ̂′

then 〈v̂, σ̂′〉 ∈ $(〈e, ρ̂, σ̂, τ̂〉)

The best cache $+ is then computed as the least fixed point of the functional F :

F ∈ (ĉonfig 7→ ℘(v̂al× ŝtore))→ (ĉonfig 7→ ℘(v̂al× ŝtore))

F := λ$.
⊔

〈e,ρ̂,σ̂,τ̂〉∈$

{〈e, ρ̂, σ̂, τ̂〉 7→ {〈v̂, σ̂′〉} | ρ̂, τ̂ ` e, σ̂ ⇓$ v̂, σ̂′}

{ς̂ 7→ {} | ρ̂, τ̂ ` e, σ̂ ⇑$ ς̂}

237

which also includes the initial configuration:

$+ := lfp(λ$.F($) t {〈e0, η(ρ0), η(σ0), η(τ0)〉 7→ {}})

The relations ρ̂, τ̂ ` e, σ̂ ⇓$ v̂, σ̂′ and ρ̂, τ̂ ` e, σ̂ ⇑$ ς̂ are modified versions of the

original abstract semantics, but with recursive judgements replaced by 〈v̂, σ̂′〉 ∈

$(e, ρ̂, σ̂, τ̂) and ς̂ ∈ $(e, ρ̂, σ̂, τ̂) respectively. Therefore F is not recursive; the

recursion in the relations is lifted to the outer fixed-point of the analysis. Because the

state space ĉonfig 7→ ℘(v̂al× ŝtore) is finite and F is monotonic, $+ can be computed

algorithmically in finite time by Kleene fixed-point iteration. See Nielson et al. [1999]

for more background and examples of static analyzers computed in this style, and

from which the current development was largely inspired.

Theorem 10 (Algorithm Correctness). $+ is a valid analysis for e0, that is: $+ |= e0.

The proof is by induction on the assumed derivations ρ̂0, τ̂0 ` e0, σ̂0 ⇑ 〈ê, ρ̂, σ̂, τ̂〉

and ρ̂, τ̂ ` e, σ̂ ⇓ v̂, σ̂′, and utilizes the fact that $+ is a fixed point, that is:

F($+) = $+. Our final theorem relates the analysis cache $+ back to the concrete

semantics of the initial program as a sound approximation:

Theorem 11 (Algorithm Soundness).

If ρ0, τ0 ` e0, σ0 ⇑ 〈e, ρ, σ, τ〉 and ρ, τ ` e, σ ⇓ v, σ′

then 〈v̂, σ̂′〉 ∈ $+(〈e, ρ̂, σ̂, τ̂〉)

where η(ρ) v ρ̂, η(τ) v τ̂ , η(σ) v σ̂, η(v) v v̂, η(σ′) v σ̂′

The proof follows by composing Theorems 1-4.

238

Computing with Definitional Interpreters The algorithm described in

Section 6.4 is a more efficient strategy for computing $+ using an extensible open-

recursive definitional interpreter. This technique is general, and bridges the gap

between the big-step abstract semantics formalized in this section and the definitional

interpreters we wish to execute to obtain analyses.

An extensible open-recursive definitional interpreter for λIF (the small language

formalized in this section) has domain:

E ∈ Σ→ Σ where Σ := ĉonfig→ ℘(v̂al× ŝtore)

and is defined such that its denotational-fixed-point (Y (E)) recovers concrete inter-

pretation when instantiated with the concrete state-space. For example, the recursive

case for binary operator expressions is defined:

E(E ′)(〈b(e1, e2), ρ̂, σ̂, τ̂) :=

{ĴbK(v̂1, v̂2) | 〈v̂1, σ̂1〉 ∈ E ′(〈e1, ρ̂, σ̂, τ̂〉) ∧ 〈v̂2, σ̂2〉 ∈ E ′(〈e2, ρ̂, σ̂1, τ̂〉)}

The iteration strategy to analyze the program e0 is then to run e0 using E , but

intercepting recursive calls to:

1. Cache results for all intermediate configurations ς̂; and

2. Cache seen states to prevent infinite loops.

(1) is required to fulfill the specification that $+ include results for all reachable

configurations from e0, and (2) is required to reach a fixed point of the analysis. To

track this extra information we add functional state to the interpreter (which was

239

done through a monad transformer in Section 6.4) of type:

ĉache := ĉonfig 7→ ℘(v̂al× ŝtore)

such that the open-recursive evaluator has type:

E ∈ Σ→ Σ where Σ := ĉonfig× ĉache→ ℘(v̂al× ŝtore)× ĉache

The iteration to compute $+ given E is then defined:

$+ := lfp(λ$o.

let E∗ := Y (λE ′.E(λ〈ς̂ , $i〉.

if ς̂ ∈ $i then 〈$i(ς̂), $i〉 else

let 〈V̂ S, $i′〉 := E ′(ς̂ , $i[ς̂ 7→ $o(ς̂)])

in 〈V̂ S, $i′[ς̂ 7→ V̂ S]〉))

in π2(E∗(〈e0, ρ̂0, σ̂0, τ̂0〉, {})))

The fixed interpreter E∗ calls the unfixed interpreter E , but intercepts recursive calls

to perform (1) and (2) described above. When loops are detected, the results from

the previous complete result $o is used, and the outer fixed-point computes the least

fixed point of this $o.

The end result is that, rather than compute analysis results and reachable

states naively with Kleene fixed-point iteration, we are able to reuse the standard

definitional interpreter—written in open-recursive form—to simultaneously explore

reachable states, cache intermediate configurations, and iterate towards a least fixed-

point solution for the analysis. This method is more efficient, and reuses an extensible

definitional interpreter which can recover a wide range of analyses, including concrete

interpretation.

240

Widening Two forms of widening can be employed to the semantics and iteration

algorithm to achieve acceptable performance for the abstract interpreter.

The first form of widening is to widen the store in the result set ℘(v̂al× ŝtore)

to ℘(v̂al)× ŝtore in the evaluator E :

E ∈ Σ→ Σ where Σ := ĉonfig× ĉache→ ℘(v̂al)× ŝtore× ĉache

We perform this widening systematically and with no added effort through the use

of Galois Transformers [Darais et al., 2015] in Section 6.6. The iteration strategy for

this widened state space is the same as before, which computes a fixed point of the

outer cache $o.

The next form of widening is to pull the store out of the configuration space

entirely, that is:

ς̂ ∈ ĉonfig := exp× ênv× t̂ime

$ ∈ ĉache := ĉonfig 7→ ℘(v̂al)

and:

E ∈ Σ→ Σ where Σ := ĉonfig× ŝtore× ĉache→ ℘(v̂al)× ŝtore× ĉache

The fixed point iteration then finds a mutual least fixed-point of both the outer

241

cache $o and the store σ̂:

〈$+, σ̂+〉 := lfp(λ〈$o, σ̂〉.

let E∗ := Y (λE ′.E(λ〈ς̂ , σ̂i, $i〉.

if ς̂ ∈ $i then 〈$i(ς̂), σi, $i〉 else

let 〈V̂ , σ̂i′, $i′〉 := E ′(ς̂ , σ̂i, $i[ς̂ 7→ $o(ς̂)])

in 〈V̂ , σ̂i′, $i′[ς̂ 7→ V̂]〉))

in π2×3(E∗(〈e0, ρ̂0, τ̂0〉, σ̂, {})))

This second version of widening, which computes a fixed-point also over the store,

recovers a so-called flow-insensitive analysis. In this model, all program states are

re-analyzed in the store resulting from execution. Also, the cache ($) does not index

over store states σ̂ in its domain, greatly reducing its size, and leading to a much

more efficient (although less precise) static analyzer.

Recovering Classical 0CFA From the fully widened static analyzer, which

computes a mutual fixed-point between a cache and store, we can easily recover a

classical 0CFA analysis. We do this by instantiating t̂ime to the singleton abstraction

{•}, as was shown in Section 6.3. In this setting, the lexical environment ρ is uniquely

determined by the program expression e, and can therefore be eliminated, resulting

in the analysis state space:

ς̂ ∈ ĉonfig := exp

$ ∈ ĉache := exp 7→ ℘(v̂al)

σ̂ ∈ ŝtore := var 7→ ℘(v̂al)

The specification for the analysis and the fully store-widened least fixed-point iteration

for computing it recovers the constraint-based description of 0CFA given by Nielson

242

et al. [1999], where 0CFA is defined as the smallest cache ($) and store (σ) which

satisfy a co-inductively defined judgment: $, σ |= e.

Recovering Pushdown Analysis We borrow from the recent result in push-

down analysis by Gilray et al. [2016b] which shows that full pushdown precision can

be achieved in a small-step store-widened abstract semantics by allocating continu-

ations using a particular address space: program expressions paired with abstract

environments (〈e, ρ̂〉). In other words, 〈e, ρ̂〉 is sufficient to achieve full pushdown

precision because the tuple uniquely identifies the evaluation context up to the final

result of evaluation.

Our fully widened semantics recovers pushdown precision because the cache

maps tuples 〈e, ρ̂, τ̂〉, which contains 〈e, ρ̂〉. We then see that abstract time τ̂ is

redundant and eliminate it from the cache, resulting in a smaller domain for the

same analysis:

ς̂ ∈ ĉonfig := exp× ênv× t̂ime

$ ∈ ĉache := exp× ênv 7→ ℘(v̂al)

σ̂ ∈ ŝtore := var× âddr 7→ ℘(v̂al)

An advantage of our setting is that we recover pushdown analysis also for varying

degrees of store-widening, which is not the case in Gilray et al., although push-

down precision for non-widened semantics has been achieved by Johnson and Van

Horn [Johnson and Van Horn, 2014]. Furthermore, the implementation of our an-

alyzer inherits this precision through precise call-return matching in the defining

metalanguage, requiring no added instrumentation to the state-space of the analyzer.

243

Going back to Nielson et al. [1999], it would be interesting to redevelop their

constraint-based analysis descriptions of kCFA in a form that recovers pushdown

precision. Such an exercise would amount to translating our big-step abstract

semantics instantiated to kCFA to a constraint system. The resulting system would

differ from classical kCFA by the addition of environments ρ̂ (which Nielson et al.

call context environments) to the domain of the cache. In this way our formal

framework is able to bridge the gap between results in pushdown analysis described

via small-step machines à la Van Horn and Might [Van Horn and Might, 2010], and

constraint-based systems à la Nielson et al. for which pushdown analysis has yet to

be described effectively.

6.11 Related Work

This work draws upon and re-presents many ideas from the literature on abstract

interpretation for higher-order languages [Midtgaard, 2012]. In particular, it closely

follows the abstracting abstract machines [Van Horn and Might, 2010, 2012] approach

to deriving abstract interpreters from a small-step machine. The key difference here

is that we operate in the setting of a monadic definitional interpreter instead of

an abstract machine. In moving to this new setting we developed a novel caching

mechanism and fixed-point algorithm, but otherwise followed the same recipe. Re-

markably, in the setting of definitional interpreters, the pushdown property for the

analysis is simply inherited from the meta-language rather than requiring explicit

instrumentation to the abstract interpreter.

244

Compositionally defined abstract interpretation functions for higher-order

languages were first explored by Jones and Nielson [1995], which introduces the

technique of interpreting a higher-order object language directly as terms in a meta-

language to perform abstract interpretation. While their work lays the foundations

for this idea, it does not consider abstractions for fixed-points in the domain, so

although their abstract interpreters are sound, they are not in general computable.

They propose a näıve solution of truncating the interpretation of syntactic fixed-

points to some finite depth, but this solution isn’t general and doesn’t account for

non-syntactic occurrences of bottom in the concrete domain (e.g., via Y combinators).

Our work develops such an abstraction for concrete denotational fixed-points using

a fixed-point caching algorithm, resulting in general, computable abstractions for

arbitrary definitional interpreters.

The use of monads and monad transformers to make extensible (concrete)

interpreters is a well-known idea [Liang et al., 1995, Moggi, 1989, Steele, 1994], which

we have extended to work for compositional abstract interpreters. The use of monads

and monad transformers in machine-based formulations of abstract interpreters has

previously been explored by Sergey et al. [2013] and Darais et al. [2015], respectively,

and inspired our own adoption of these ideas. Darais has also shown that certain

monad transformers are also Galois transformers, i.e., they compose to form monads

that transport Galois connections. Using Galois transformers may enable both

compositional code and proofs for abstract interpreters in the style presented here.

The caching mechanism used to ensure termination in our abstract interpreter

is similar to that used by Johnson and Van Horn [2014]. They use a local- and

245

meta-memoization table in a machine-based interpreter to ensure termination for a

pushdown abstract interpreter. This mechanism is in turn reminiscent of Glück’s

use of memoization in an interpreter for two-way non-deterministic pushdown au-

tomata [Glück, 2013].

Caching recursive, non-deterministic functions is a well-studied problem in the

functional logic programming community through a technique called “tabling” [Bol

and Degerstedt, 1993, Chen and Warren, 1996, Swift and Warren, 2012, Tamaki

and Sato, 1986], which has been successfully applied to program verification and

analysis [Dawson et al., 1996, Janssens and Sagonas, 1998]. Unlike these systems, our

approach uses a shallow embedding of cached non-determinism that can be applied

in general-purpose functional languages. Monad transformers that enable shallow

embedding of cached non-determinism are of continued interest since Hinze’s Deriving

Backtracking Monad Transformers [Fischer et al., 2009, Hinze, 2000, Kiselyov et al.,

2005], and recent work [Ploeg and Kiselyov, 2014, Vandenbroucke et al., 2015] points

to potential optimizations that can be applied to our naive iteration strategy.

Vardoulakis, who was the first to develop the idea of a pushdown abstraction

for higher-order flow analysis [Vardoulakis and Shivers, 2011], formalized CFA2 using

a CPS model, which is similar in spirit to a machine-based model. However, in

his dissertation [Vardoulakis, 2012] he sketches an alternative presentation dubbed

“Big CFA2” which is a big-step operational semantics for doing pushdown analysis

quite similar in spirit to the approach presented here. One key difference is that Big

CFA2 fixes a particular coarse abstraction of base values and closures—for example,

both branches of a conditional are always evaluated. Consequently, it only uses

246

a single iteration of the abstract evaluation function, and avoids the need for the

cache-based fixed-point of Section 6.4. We believe Big CFA2 as stated is sound,

however if the underlying abstractions were tightened, it may then require a more

involved fixed-point finding algorithm like the one we developed.

Our formulation of a pushdown abstract interpreter computes an abstraction

similar to the many existing variants of pushdown flow analysis [Earl et al., 2010,

Gilray et al., 2016b, Johnson and Van Horn, 2014, Van Horn and Might, 2012,

Vardoulakis, 2012, Vardoulakis and Shivers, 2011]. Our incorporation of an abstract

garbage collector into a pushdown abstract interpreter achieves a similar goal as that

of so-called introspective pushdown abstract interpreters [Earl et al., 2012, Johnson

et al., 2014]. The mixing of symbolic execution and abstract interpretation is similar

in spirit to the logic flow analysis of Might [Might, 2007b], albeit in a pushdown

setting and with a stronger notion of negation; generally, our presentation resembles

traditional formulations of symbolic execution more closely [King, 1976]. Our

approach to symbolic execution only handles the first-order case of symbolic values,

as is common. However, Nguyẽ̂n’s work on higher-order symbolic execution [Nguyẽ̂n

and Van Horn, 2015] demonstrates how to scale to behavioral symbolic values. In

principle, it should be possible to handle this case in our approach by adapting

Nguyẽ̂n’s method to a formulation in a compositional evaluator, but this remains to

be carried out.

Now that we have abstract interpreters formulated with a basis in abstract

machines and with a basis in monadic interpreters, an obvious question is can we

obtain a correspondence between them similar to the functional correspondence

247

between their concrete counterparts [Ager et al., 2005]. An interesting direction

for future work is to try to apply the usual tools of defunctionalization, CPS, and

refocusing to see if we can interderive these abstract semantic artifacts.

6.12 Conclusions

We have shown that the AAM methodology can be adapted to definitional interpreters

written in monadic style. Doing so captures a wide variety of semantics, such as the

usual concrete semantics, collecting semantics, and various abstract interpretations.

Beyond recreating existing techniques from the literature such as store-widening

and abstract garbage collection, we can also design novel abstractions and capture

disparate forms of program analysis such as symbolic execution. Further, our

approach enables the novel combination of these techniques.

To our surprise, the definitional abstract interpreter we obtained implements

a form of pushdown control flow abstraction in which calls and returns are always

properly matched in the abstract semantics. True to the definitional style of Reynolds,

the evaluator involves no explicit mechanics to achieve this property; it is simply

inherited from the metalanguage.

We believe this formulation of abstract interpretation offers a promising new

foundation towards re-usable components for the static analysis and verification of

higher-order programs. Moreover, we believe the definitional abstract interpreter

approach to be a fruitful new perspective on an old topic. We are left wondering: what

else can be profitably inherited from the metalanguage of an abstract interpreter?

248

Chapter 7: Concluding Remarks

In this thesis we have aimed to lower the barrier to adopting high assurance program

analyzers for use in creating reliable software systems. These barriers are the feasibility

of mechanically verifying individual program analyzers, and the degree to which

general purpose program analysis machinery supports reuse. Without feasibility and

reuse, program analyzers will never make a meaningful impact on the quality of

software produced by practitioners.

Our first contribution, Constructive Galois Connections, addresses feasibility by

making it possible to mechanically verify a large class of correct-by-construction pro-

gram analyzers which previous approaches were unable to verify. This was achieved

by solving an open problem from the literature which was the primary barrier to

achieving mechanized verification for this class of analyzers. Using Constructive

Galois Connections, it is now possible to synthesize correct-by-construction program

analyzers directly from programming language semantics, all while remaining embed-

ded in a mechanized verification framework which supports immediate extraction of

verified program analyzers from the results of synthesis.

Our second contribution, Galois Transformers, makes it possible to reuse

program analysis machinery across different program analyzer implementations. This

249

was achieved by isolating a large class of analyzer design decisions using a novel

interface for separating these concerns. Using Galois Transformers, it is now possible

to design a single program analyzer—for, say, Java or C programming languages—and

tune each of context, object, path, and flow sensitivity for the analyzer, all without

needing to modify the implementation. The ability to tune these precision parameters

is important for practitioners because there is no one-size-fits-all point in their design

space. E.g., analyzing buffer overflows requires a very different instantiation for these

parameters than analyzing data integrity and confidentiality.

Our third and final contribution, Abstracting Definitional Interpreters, makes

it possible to reuse programming language features across different program analyzer

implementations. This was achieved by transplanting an existing systematic approach

for designing program analyzers into a new setting which supports plug-and-play

composition of programming language features. Using Abstracting Definitional

Interpreters, it is now possible to design a single program analyzer—for, say, Ruby

or Python—merely as the composition of its programming language features. The

ability to quickly construct new analyzers from existing components is becoming more

and more important as the number of programming languages used by practitioners

continues to expand. E.g., Ruby and Python share many language features in

common (object-orientation, first-class procedures, late binding, etc.) and our work

paves the way towards a modular analysis tool which supports a wide range of similar

programming languages, as opposed to most tools which only support one language.

250

Appendix A: Galois Transformer Proofs

A.0.1 Lemma 5 [Galois Transformers] (Section 5.8.4)

State St[s] is a Galois transformer.

Recall the definition of St[s] and ΠSt
[s]:

St[s](m)(A) := s→ m(A× s)

ΠSt
[s](Σ)(A) := Σ(A× s)→ Σ(A× s)

State Property (1) The action St[s] on functions:

St[s] : (A→ m(B))→ A→ St[s](m)(B)

St[s](f)(x)(s) := y ←m f(x) ; returnm(y, s)

To transport Galois connections, we assume a Galois connection A→ m1(B) −−−−→←−−−−
αm

γm

A→ m2(B) and define α and γ:

α : (A→ St[s](m1)(B))→ A→ St[s](m2)(B)

γ : (A→ St[s](m2)(B))→ A→ St[s](m1)(B)

α(f)(x)(s) := αm(λ〈x, s〉.f(x)(s))(x, s)

γ(f)(x)(s) := γm(λ〈x, s〉.f(x)(s))(x, s)

251

α and γ are monotonic by inspection, and extensive and reductive:

extensive : ∀fxs.f(x)(s) v γ(α(f))(x)(s)

γ(α(f))(x)(s)

= * definition of α and γ +

γm(λ〈x, s〉.αm(λ〈x, s〉.f(x)(s))(x, s))(x, s)

= * η-reduction +

γm(αm(λ〈x, s〉.f(x)(s)))(x, s)

w * γm ◦ αm extensive +

(λ〈x, s〉.f(x)(s))(x, s)

= * β-reduction +

f(x)(s) �

reductive : ∀fxs.α(γ(f))(x)(s) v f(x)(s)

α(γ(f))(x)(s)

= * definition of α and γ +

αm(λ〈x, s〉.γm(λ〈x, s〉.f(x)(s))(x, s))(x, s)

= * η-reduction +

αm(γm(λ〈x, s〉.f(x)(s))(x, s))(x, s)

v * αm ◦ γm reductive +

(λ〈x, s〉.f(x)(s))(x, s)

252

= * β-reduction +

f(x)(s) �

Finally, Property (1) commutes, assuming that A→ m1(B) −−−−→←−−−−
αm

γm

A→ m2(B) is

homomorphic:

goal : St[s][m2](αm(f))(x)(s) = α(St[s][m1](f))(x)(s)

α(St[s][m1](f))(x)(s)

= * definition of α and St[s][m1] +

αm(λ〈x, s〉.y ←m1 f(x) ; returnm1(y, s))(s, x)

= * αm homomorphic on bindm1 and returnm1 +

(λ〈x, s〉.y ←m1 αm(f)(x) ; returnm2(y, s))(s, x)

= * β-reduction +

y ←m2 αm(f)(x) ; returnm2(y, s)

= * definition of St[s] +

St[s][m2](αm(f))(s)(x) �

State Property (2) The action ΠSt
[s] on functions uses the mapping to

monadic functions defined in Property (3):

ΠSt
[s] : (Σ(A)→ Σ(B))→ ΠSt

[s](Σ)(A)→ ΠSt
[s](Σ)(B)

ΠSt
[s](f)(ς) := γΣ↔m(St[s](αΣ↔m(f)))(ς)

253

To transport Galois connections, we assume Σ1(A)→ Σ1(B) −−−→←−−−
αΣ

γΣ

Σ2(A)→ Σ2(B)

and define α and γ as instantiations of αΣ and γΣ:

α : (ΠSt
[s](Σ1)(A)→ ΠSt

[s](Σ1)(B))→ ΠSt
[s](Σ2)(A)→ ΠSt

[s](Σ2)(B)

γ : (ΠSt
[s](Σ2)(A)→ ΠSt

[s](Σ2)(B))→ ΠSt
[s](Σ1)(A)→ ΠSt

[s](Σ1)(B)

γ(f)(ς) := γΣ(f)(ς)

α(f)(ς) := αΣ(f)(ς)

Monotonicity, reductive and extensive properties carry over by definition. Finally,

Property (2) commutes, assuming that αΣ and αm commute with both γΣ↔m and

αΣ↔m:

goal : ΠSt

[s][Σ2](αΣ(f))(ς) = αΣ(ΠSt

[s][Σ1](f))(ς)

αΣ(ΠSt

[s][Σ1](f)(ς)

= * definition of ΠSt

[s][Σ1] +

αΣ(γΣ↔m(St[s](αΣ↔m(f))))(ς)

= * definition of St[s] +

αΣ(γΣ↔m(λx.λs.y ←m1 αΣ↔m(f)(x) ; returnm1(y, s)))(ς)

= * αΣ and γΣ↔m commute +

γΣ↔m(αm(λx.λs.y ←m1 αΣ↔m(f)(x) ; returnm1(y, s)))(ς)

= * αm homomorphic +

γΣ↔m(λx.λs.y ←m2 αm(αΣ↔m(f))(x) ; returnm2(y, s))(ς)

= * αm and αΣ↔m commute +

γΣ↔m(λx.λs.y ←m2 αΣ↔m(αΣ(f))(x) ; returnm2(y, s))(ς)

254

= * definition of St[s] +

γΣ↔m(St[s](αΣ↔m(αΣ(f))))(ς)

= * definition of ΠSt

[s][Σ2] +

ΠSt

[s][Σ2](αΣ(f))(ς) �

State Property (3) Assume a Galois connection Σ(A)→ Σ(B) −−−−−→←−−−−−
αΣ↔m

γΣ↔m

A→ m(B). The Galois connection between St[s](m) and ΠSt
[s](Σ) is defined:

α : (ΠSt
[s](Σ)(A)→ ΠSt

[s](Σ)(B))→ A→ St[s](m)(B)

γ : (A→ St[s](m)(B))→ ΠSt
[s](Σ)(A)→ ΠSt

[s](Σ)(B)

α(f)(x)(s) := αΣ↔m(f)(x, s)

γ(f)(ς) := γΣ↔m(λ〈x, s〉 → f(x)(s))(ς)

α and γ are monotonic by inspection, and extensive and reductive:

extensive : ∀fς.f(ς) v γ(α(f))(ς)

γ(α(f))(ς)

= * definition of α and γ +

γΣ↔m(λ〈x, s〉 → αΣ↔m(f)(x, s))(ς)

= * η-reduction +

γΣ↔m(αΣ↔m(f))(ς)

w * γΣ↔m ◦ αΣ↔m extensive +

f(ς) �

255

reductive : ∀fxs.α(γ(f))(x)(s) v f(x)(s)

α(γ(f))(x)(s)

= * definition of α and γ +

αΣ↔m(γΣ↔m(λ〈x, s〉 → f(x)(s)))(x, s)

v * αΣ↔m ◦ γΣ↔m reductive +

(λ〈x, s〉 → f(x)(s))(x, s)

= * β-reduction +

f(x)(s) �

Finally, Property (3) commutes:

goal : ΠSt

[s][Σ](γΣ↔m(f))(ς) v γ(St[s](f))(ς)

ΠSt

[s][Σ](γΣ↔m(f))(ς)

= * definition of ΠSt

[s][Σ] +

γΣ↔m(λ〈x, s〉 → St[s](αΣ↔m(γΣ↔m(f)))(x)(s))(ς)

v * αΣ↔m ◦ γΣ↔m reductive +

γΣ↔m(λ〈x, s〉 → St[s](f)(x)(s))(ς)

= * definition of γ +

γ(St[s](f))(ς) �

Nondeterminism ℘t is a Galois transformer.

256

Recall the definition of ℘t and Π℘t
:

℘t(m)(A) := m(℘(A)) Π℘t

(Σ)(A) := Σ(℘(A))

Nondeterminism Property (1) The action ℘t on functions:

℘t : (A→ m(B))→ A→ ℘t(m)(B)

℘t(f)(x) := y ←m f(x) ; returnm(y)

To transport Galois connections, we assume a Galois connection A→ m1(B) −−−−→←−−−−
αm

γm

A→ m2(B) define α and γ:

α : (A→ ℘(m1)(B))→ A→ ℘(m2)(B)

γ : (A→ ℘(m2)(B))→ A→ ℘(m1)(B)

α(f)(x) := αm(λ{x1, . . . , xn}.f(x1) tm1 · · · tm1 f(xn))({x})

γ(f)(x) := γm(λ{x1, . . . , xn}.f(x1) tm2 · · · tm2 f(xn))({x})

α and γ are monotonic by inspection, and extensive and reductive:

extensive : ∀fx.f(x) v γ(α(f))(x)

γ(α(f))(x)

= * definition of α and γ +

γm(λ{x1, . . . , xn}.

αm(λ{x1, . . . , xn}.f(x1) tm1 · · · tm1 f(xn))({x1})

tm2 · · · tm2

αm(λ{x1, . . . , xn}.f(x1) tm1 · · · tm1 f(xn))({xn}))({x})

257

= * left-unit of m2 +

γm(λ{x1, . . . , xn}.

({x1, . . . , xn} ←m2 returnm2({x1}) ; αm(λ{x1, . . . , xn}.

f(x1) tm1 · · · tm1 f(xn))({x1, . . . , xn}))

tm2 · · · tm2

({x1, . . . , xn} ←m2 returnm2({xn}) ; αm(λ{x1, . . . , xn}.

f(x1) tm1 · · · tm1 f(xn))({x1, . . . , xn})))({x})

w * αm ◦ γm reductive +

γm(λ{x1, . . . , xn}.

({x1, . . . , xn} ←m2 αm(γm(returnm2({x1}))) ;

αm(λ{x1, . . . , xn}.f(x1) tm1 · · · tm1 f(xn))({x1, . . . , xn}))

tm2 · · · tm2

({x1, . . . , xn} ←m2 αm(γm(returnm2({xn}))) ;

αm(λ{x1, . . . , xn}.f(x1) tm1 · · · tm1 f(xn))({x1, . . . , xn})))({x})

= * αm and γm homomorphic on bindm2 and returnm2 +

γm(λ{x1, . . . , xn}.

(αm({x1, . . . , xn} ←m1 returnm1({x1}) ;

f(x1) tm1 · · · tm1 f(xn))) tm2 · · · tm2

(αm({x1, . . . , xn} ←m1 returnm1({xn}) ;

f(x1) tm1 · · · tm1 f(xn))))({x})

258

= * join-semilattice functorality of m +

γm(αm(λ{x1, . . . , xn}.{x1, . . . , xn} ← returnm1({x1, . . . , xn}) ;

f(x1) tm1 · · · tm1 f(xn)))({x})

w * γm ◦ αm extensive +

{x1, . . . , xn} ← returnm1({x}) ; f(x1) tm1 · · · tm1 f(xn)

= * left-unit of m +

f(x) �

reductive : ∀fx.α(γ(f))(x) v f(x)

α(γ(f))(x)

= * definition of α and γ +

αm(λ{x1, . . . , xn}.

γm(λ{x1, . . . , xn}.f(x1) tm2 · · · tm2 f(xn))({x1})

tm1 · · · tm1

γm(λ{x1, . . . , xn}.f(x1) tm2 · · · tm2 f(xn))({xn}))({x})

259

= * left-unit of m1 +

αm(λ{x1, . . . , xn}.

({x1, . . . , xn} ←m1 returnm1({x1}) ; γm(λ{x1, . . . , xn}.

f(x1) tm2 · · · tm2 f(xn))({x1, . . . , xn}))

tm1 · · · tm1

({x1, . . . , xn} ←m1 returnm1({x2}) ; γm(λ{x1, . . . , xn}.

f(x1) tm2 · · · tm2 f(xn))({x1, . . . , xn})))({x})

v * γm ◦ αm extensive +

αm(λ{x1, . . . , xn}.

({x1, . . . , xn} ←m1 γm(αm(returnm1({x1}))) ;

γm(λ{x1, . . . , xn}.f(x1) tm2 · · · tm2 f(xn))({x1, . . . , xn}))

tm1 · · · tm1

({x1, . . . , xn} ←m1 γm(αm(returnm1({xn}))) ;

γm(λ{x1, . . . , xn}.f(x1) tm2 · · · tm2 f(xn))({x1, . . . , xn})))({x})

= * αmandγm homomorphic on bindm1 and returnm1 +

αm(λ{x1, . . . , xn}.

γm({x1, . . . , xn} ←m2 returnm2({x1}) ; f(x1) tm2 · · · tm2 f(xn))

tm1 · · · tm1

γm({x1, . . . , xn} ←m2 returnm2({x1}) ; f(x1) tm2 · · · tm2 f(xn)))({x})

260

= * join-semilattice functorailty of m +

αm(γm(λ{x1, . . . , xn}.{x1, . . . , xn} ←m2 returnm2({x1, . . . , xn}) ;

f(x1) tm2 · · · tm2 f(xn)))({x})

v * αm ◦ γm reductive +

{x1, . . . , xn} ←m2 returnm2({x}) ; f(x1) tm2 · · · tm2 f(xn)

= * left-unit of m +

f(x) �

Finally, Property (1) commutes, assuming that A→ m1(B) −−−−→←−−−−
αm

γm

A→ m2(B) is

homomorphic:

goal : ∀fs.℘t[m2](αm(f))(x) = α(℘t[m1](f))(x)

α(℘t[m1](f))(x)

= * definition of α and ℘t[m1](f) +

αm(λ{x1, . . . , xn}.

(y ←m1 f(x1) ; returnm1({y}))

tm1 · · · tm1

(y ←m1 f(xn) ; returnm1({y})))({x})

= * homomorphic on bindm1 and returnm1 +

y ←m2 αm(f)(x) ; returnm2({y})

261

= * definition of ℘t[m2] +

℘t[m2](αm(f))(x) �

Nondeterminism Property (2) The action Π℘t
on functions uses the

mapping to monadic functions defined in Property (3):

Π℘t
: (Σ(A)→ Σ(B))→ Π℘t

(Σ)(A)→ Π℘t
(Σ)(B)

Π℘t
(f)(ς) := γΣ↔γ(℘t(αΣ↔γ(f)))

To transport Galois connections, we assume Σ1(A)→ Σ1(B) −−−→←−−−
αΣ

γΣ

Σ2(A)→ Σ2(B)

and define α and γ as instantiations of αΣ and γΣ:

α : (Π℘t
(Σ1)(A)→ Π℘t

(Σ1)(B))→ Π℘t
(Σ2)(A)→ Π℘t

(Σ2)(B)

γ : (Π℘t
(Σ2)(A)→ Π℘t

(Σ2)(B))→ Π℘t
(Σ1)(A)→ Π℘t

(Σ1)(B)

α(f)(ς) := αΣ(f)(ς)

γ(f)(ς) := γΣ(f)(ς)

Monotonicity, reductive and extensive properties carry over by definition. Finally,

Property (2) commutes, assuming that αΣ and αm commute with both γΣ↔m and

αΣ↔m:

goal : Π℘t

[Σ2](αΣ(f))(ς) = αΣ(Π℘t

[Σ1](f))(ς)

αΣ(Π℘t

[Σ1](f))(ς)

= * definition of Π℘t

+

αΣ(γΣ↔γ(℘t(αΣ↔γ(f))))(ς)

= * definition of ℘t +

αΣ(γΣ↔γ(λx.y ←m1 αΣ↔γ(f)(x) ; returnm1({y})))(ς)

262

= * αΣ and γΣ↔γ commute +

γΣ↔γ(αm(λx.y ←m1 αΣ↔γ(f)(x) ; returnm1({y})))(ς)

= * αm homomorphic on bindm1 and returnm2 +

γΣ↔γ(λx.y ←m2 αm(αΣ↔γ(f))(x) ; returnm2({y}))(ς)

= * αm and αΣ↔γ commute +

γΣ↔γ(λx.y ←m2 αΣ↔γ(αΣ(f))(x) ; returnm2({y}))(ς)

= * definition of Π℘t

[Σ2] and αΣ +

Π℘t

[Σ2](αΣ(f))(ς) �

Nondeterminism Property (3) Assume a Galois connection Σ(A) →

Σ(B) −−−−−→←−−−−−
αΣ↔m

γΣ↔m

A→ m(B). The Galois connection between ℘t(m) and Π℘t
(Σ) is:

α : (Π℘t
(Σ)(A)→ Π℘t

(Σ)(B))→ A→ ℘t(m)(B)

γ : (A→ ℘t(m)(B))→ Π℘t
(Σ)(A)→ Π℘t

(Σ)(B)

α(f)(x) := αΣ↔m(f)({x})

γ(f)(ς) := γΣ↔m(λ{x1, . . . , xn}.f(x1) tm · · · tm f(xn))(ς)

α and γ are monotonic by inspection, and extensive and reductive:

extensive : ∀fς.f(ς) v γ(α(f))(ς)

γ(α(f))(ς)

= * definition of α and γ +

γΣ↔m(λ{x1, . . . , xn}.αΣ↔m(f)({x1}) tm · · · tm αΣ↔m(f)({xn}))(ς)

263

= * join-semilattice functorality of m +

γΣ↔m(λ{x1, . . . , xn}.αΣ↔m(f)({x1, . . . , xn}))(ς)

w * γΣ↔m ◦ αΣ↔m extensive and η-reduction +

f(ς) �

reductive : ∀fx.α(γ(f))(x) v f(x)

α(γ(f))(x)

= * definition of α and γ +

αΣ↔m(γΣ↔m(λ{x1, . . . , xn}.f(x1) tm · · · tm f(xn)))({x})

v * αΣ↔m ◦ γΣ↔m reductive +

(λ{x1, . . . , xn}.f(x1) tm · · · tm f(xn))({x})

= * β-reduction +

f(x) �

Finally, Property (3) commutes:

goal : Π℘t

(γΣ↔m(f))(ς) v γ(℘t(f))(ς)

Π℘t

(γΣ↔m(f))(ς)

= * definition of Π℘t

+

γΣ↔m(℘t(αΣ↔m(γΣ↔m(f))))(ς)

v * αΣ↔m ◦ γΣ↔m reductive +

γΣ↔m(℘t(f))(ς)

264

= * definition of γ +

γ(℘t(f))(ς) �

Flow Sensitivity F t[s] is a Galois transformer.

Recall the definition of F t[s] and ΠF t
[s]:

F t[s](m)(A) := s→ m([A 7→ s])

ΠF t
[s](Σ)(A) := Σ([A 7→ s])

Flow Sensitivity Property (1) The action F t[s] on functions:

F t[s] : (A→ m(B))→ A→ F t[s](m)(B)

F t[s](f)(x)(s) := y ←m f(x) ; returnm({y 7→ s})

To transport Galois connections we assume A → m1(B) −−−−→←−−−−
αm

γm

A → m2(B) and

define α and γ:

α : (A→ F t[s](m1)(B))→ A→ F t[s](m2)(B)

γ : (A→ Ft[s](m2)(B))→ A→ F t[s](m1)(B)

α(f)(x)(s) := αm(λ{x1 7→ s1, . . . , xn 7→ sn}.

f(x1)(s1) tm · · · tm f(xn)(sn))({x 7→ s})

γ(f)(x)(s) := γm(λ{x1 7→ s1, . . . , xn 7→ sn}.

f(x1)(s1) tm · · · tm f(xn)(sn))({x 7→ s})

α and γ are monotonic by inspection. α and γ are extensive and reductive:

extensive : ∀fxs.f(x)(s) v γ(α(f))(x)(s)

γ(α(f))(x)(s)

265

= * definition of α and γ +

γm(λ{x1 7→ s1, . . . , xn 7→ sn}.

αm(λ{x1 7→ s1, . . . , xn 7→ sn}.

f(x1)(s1) tm1 · · · tm1 f(xn)(sn))({x1 7→ s1})

tm2 · · · tm2

αm(λ{x1 7→ s1, . . . , xn 7→ sn}.

f(x1)(s1) tm1 · · · tm1 f(xn)(sn))({xn 7→ sn}))({x 7→ s})

w * left-unit of m and αm ◦ γm reductive +

γm(λ{x1 7→ s1, . . . , xn 7→ sn}.

({x1 7→ s1, . . . , xn 7→ sn} ←m2 αm(γm(returnm2({x1 7→ s1}))) ;

αm(f(x1)(s1) tm1 · · · tm1 f(xn)(sn)))

tm2 · · · tm2

({x1 7→ s1, . . . , xn 7→ sn} ←m2 αm(γm(returnm2({xn 7→ sn}))) ;

αm(f(x1)(s1) tm1 · · · tm1 f(xn)(sn))))({x 7→ s})

= * αm and γm homomorphic and join functorality +

γm(αm(λ{x1 7→ s1, . . . , xn 7→ sn}.

{x1 7→ s1, . . . , xn 7→ sn} ←m1 returnm1({x1 7→ s1, . . . , xn 7→ sn}) ;

f(x1)(s1) tm1 · · · tm1 f(xn)(sn)))({x 7→ s})

w * γm ◦ αm extensive and left-unit of m +

f(x)(s) �

266

reductive : ∀fxs.α(γ(f))(x)(s) v f(x)(s)

α(γ(f))(x)(s)

= * definition of α and γ +

αm(λ{x1 7→ s1, . . . , xn 7→ sn}.

γm(λ{x1 7→ s1, . . . , xn 7→ sn}.

f(x1)(s1) tm2 · · · tm2 f(xn)(sn))({x1 7→ s1})

tm1 · · · tm1

γm(λ{x1 7→ s1, . . . , xn 7→ sn}.

f(x1)(s1) tm2 · · · tm2 f(xn)(sn))({xn 7→ sn}))({x 7→ s})

v * left-unit of m and γm ◦ αm extensive +

αm(λ{x1 7→ s1, . . . , xn 7→ sn}.

({x1 7→ s1, . . . , xn 7→ sn} ←m1 γm(αm(returnm1({x1 7→ s1}))) ;

γm(f(x1)(s1) tm2 · · · tm2 f(xn)(sn)))

tm1 · · · tm1

({x1 7→ s1, . . . , xn 7→ sn} ←m1 γm(αm(returnm1({xn 7→ sn}))) ;

γm(f(x1)(s1) tm2 · · · tm2 f(xn)(sn))))({x 7→ s})

= * αm and γm homomorphic and join functorality +

αm(γm(λ{x1 7→ s1, . . . , xn 7→ sn}.

{x1 7→ s1, . . . , xn 7→ sn} ←m2 returnm2({x1 7→ s1, . . . , xn 7→ sn}) ;

f(x1)(s1) tm2 · · · tm2 f(xn)(sn)))({x 7→ s})

267

v * αm ◦ γm extensive and left-unit of m +

f(x)(s) �

Finally, Property (1) commutes, assuming that A→ m1(B) −−−−→←−−−−
αm

γm

A→ m2(B) is

homomorphic:

goal : ∀fs.F t[s][m2](αm(f))(x)(s) = α(F t[s][m1](f))(x)(s)

α(F t[s][m1](f))(x)(s)

= * definition of α and F t[s][m1] +

αm(λ{x1 7→ s1, . . . , xn 7→ sn}.

(y ←m1 f(x) ; returnm1(y1)(s1))

tm1 · · · tm1

(y ←m1 f(x) ; returnm1(yn)(sn)))({x 7→ s})

= * homomorphic on bindm1 and returnm1 +

y ←m2 αm(f)(x) ; returnm2(y)(s)

= * definition of F t[s][m2] +

F t[s][m2](αm(f))(x) �

Flow Sensitivity Property (2) The action ΠF t[s] on functions uses the

mapping to monadic functions defined in Property (3):

ΠF t
[s] : (Σ(A)→ Σ(B))→ ΠF t

[s](Σ)(A)→ ΠF t
[s](Σ)(B)

ΠF t
[s](f)(ς) := γΣ↔γ(F t[s](αΣ↔γ(f)))

268

To transport Galois connections, we assume Σ1(A)→ Σ1(B) −−−→←−−−
αΣ

γΣ

Σ2(A)→ Σ2(B)

and define α and γ as instantiations of αΣ and γΣ:

α : (ΠF t
[s](Σ1)(A)→ ΠF t

[s](Σ1)(B))→ ΠF t
[s](Σ2)(A)→ ΠF t

[s](Σ2)(B)

γ : (ΠF t
[s](Σ2)(A)→ ΠF t

[s](Σ2)(B))→ ΠF t
[s](Σ1)(A)→ ΠF t

[s](Σ1)(B)

α(f)(ς) := αΣ(f)(ς)

γ(f)(ς) := γΣ(f)(ς)

Monotonicity, reductive and extensive properties carry over by definition. Finally,

Property (2) commutes, assuming that αΣ and αm commute with both γΣ↔m and

αΣ↔m:

goal : ΠF t

[s][Σ2](αΣ(f))(ς) = αΣ(ΠF t

[s][Σ1](f))(ς)

αΣ(ΠF t

[s][Σ1](f))(ς)

= * definition of ΠF t

[s] +

αΣ(γΣ↔γ(F t[s](αΣ↔γ(f))))(ς)

= * definition of F t[s] +

αΣ(γΣ↔γ(λx.λs.y ←m1 αΣ↔γ(f)(x) ; returnm1({y 7→ s})))(ς)

= * αΣ and γΣ↔γ commute +

γΣ↔γ(αm(λx.λs.y ←m1 αΣ↔γ(f)(x) ; returnm1({y 7→ s})))(ς)

= * αm homomorphic +

γΣ↔γ(λx.λs.y ←m2 αm(αΣ↔γ(f))(x) ; returnm2({y 7→ s}))(ς)

= * αm and αΣ↔γ commute +

γΣ↔γ(λx.λs.y ←m2 αΣ↔γ(αΣ(f))(x) ; returnm2({y 7→ s}))(ς)

269

= * definition of Π℘t

[Σ2] and αΣ +

Π℘t

[Σ2](αΣ(f))(ς) �

Flow Sensitivity Property (3) Assume a Galois connection:

Σ(A)→ Σ(B) −−−−−→←−−−−−
αΣ↔m

γΣ↔m

A→ m(B)

The Galois connection between F t[s](m) and ΠF t
[s](Σ) is:

α : (ΠF t
[s](Σ)(A)→ ΠF t

[s](Σ)(B))→ A→ F t[s](m)(B)

γ : (A→ F t[s](m)(B))→ ΠF t
[s](Σ)(A)→ ΠF t

[s](Σ)(B)

α(f)(x)(s) := αΣ↔m(f)({x 7→ s})

γ(f)(ς) := γΣ↔m(λ{x1 7→ s1, . . . , xn 7→ sn}.f(x1)(s1) tm · · · tm f(xn)(sn))(ς)

α and γ are monotonic by inspection. α and γ are extensive and reductive:

extensive : ∀fς.f(ς) v γ(α(f))(ς)

γ(α(f))(ς)

= * definition of α and γ +

γΣ↔m(λ{x1 7→ s1, . . . , xn 7→ sn}.

αΣ↔m(f)({x1 7→ s1}) tm · · · tm αΣ↔m(f)({xn 7→ sn}))(ς)

= * join-semilattice functorality of m +

γΣ↔m(αΣ↔m(f))(ς)

w * γΣ↔m ◦ αΣ↔m extensive +

f(ς) �

270

reductive : ∀fx.α(γ(f))(x)(s) v f(x)(s)

α(γ(f))(x)(s)

= * definition of α and γ +

αΣ↔m(γΣ↔m(λ{x1 7→ s1, . . . , xn 7→ sn}.

f(x1)(s1) tm · · · tm f(xn)(sn)))({x 7→ s})

v * αΣ↔m ◦ γΣ↔m reductive +

(λ{x1 7→ s1, . . . , xn 7→ sn}.f(x1)(s1) tm · · · tm f(xn)(sn))({x 7→ s})

= * β-reduction +

f(x)(s) �

Finally, Property (3) commutes:

goal : ΠF t

[s](γΣ↔m(f))(ς) v γ(F t[s](f))(ς)

ΠF t

[s](γΣ↔m(f))(ς)

= * definition of ΠF t

[s] +

γΣ↔m(F t[s](αΣ↔m(γΣ↔m(f))))(ς)

v * αΣ↔m ◦ γΣ↔m reductive +

γΣ↔m(F t[s](f))(ς)

= * definition of γ +

γ(F t[s](f))(ς) �

271

A.0.2 Lemma 3 [P t laws] (Section 5.8.2)

bindP
t

and returnP
t

satisfy monad laws, getP
t

and putP
t

satisfy state monad laws,

and mzeroP
t

and �P
t

satisfy nondeterminism monad laws:

left-unit : ∀fx.bindP
t

(returnP
t

(x))(f) = f(x)

bindP
t

(returnP
t

(x))(f)

= * definition of bindP
t

+

{x1, . . . , xn} ←m returnP
t

(x) ; f(x1) tm · · · tm f(xn)

= * definition of returnP
t

+

{x1, . . . , xn} ←m returnm({x}) ; f(x1) tm · · · tm f(xn)

= * do-notation for m +

bindm(returnm({x}))(λ{x1, . . . , xn}.f(x1) tm · · · tm f(xn))

= * left-unit for m +

f(x) �

right-unit : ∀X.bindP
t

(X)(returnP
t

) = X

bindP
t

(X)(returnP
t

)

= * definition of bindP
t

+

{x1, . . . , xn} ←m X ; returnP
t

(x1) tm · · · tm returnP
t

(xn)

= * definition of returnP
t

+

{x1, . . . , xn} ←m X ; returnm({x1}) tm · · · tm returnm({xn})

272

= * join-semilattice functorality of m distribution over returnm +

{x1, . . . , xn} ←m X ; returnm({x1} ∪ · · · ∪ {xn})

= * definition of ∪ +

{x1, . . . , xn} ←m X ; returnm({x1, . . . , xn})

= * do-notation for m +

bindm(X)(returnm)

= * right-unit for m +

X �

associativity : ∀fgX.bindP
t

(bindP
t

(X)(f))(g) = bindP
t

(X)(λx.bindP
t

(f(x))(g))

bindP
t

(bindP
t

(X)(f))(g)

= * definition of bindP
t

+

{y1, . . . , yn} ←m bindP
t

(X)(f) ; g(y1) tm · · · tm g(yn)

= * definition of bindP
t

+

{y1, . . . , yn} ←m ({x1, . . . , xn} ←m X ; f(x1) tm · · · tm f(xn)) ;

g(y1) tm · · · tm g(yn)

= * do-notation for m +

{y1, . . . , yn} ←m bindm(X)(λ{x1, . . . , xn}.f(x1) tm · · · tm f(xn)) ;

g(y1) tm · · · tm g(yn)

273

= * do-notation for m +

bindm(bindm(X)(λ{x1, . . . , xn}.f(x1) tm · · · tm f(xn)))

(λ{y1, . . . , yn}.g(y1) tm · · · tm g(yn))

= * associativity for m +

bindm(X)(λ{x1, . . . , xn}.bindm(f(x1) tm · · · tm f(xn))

(λ{y1, . . . , yn}.g(y1) tm · · · tm g(yn)))

= * do-notation for m +

{x1, . . . , xn} ←m X ;

bindm(f(x1) tm · · · tm f(xn))(λ{y1, . . . , yn}.g(y1) tm · · · tm g(yn))

= * do-notation for m +

{x1, . . . , xn} ←m X ; {y1, . . . , yn} ←m (f(x1) tm · · · tm f(xn)) ;

g(y1) tm · · · tm g(yn)

= * join-semilattice functorality of m distribution over bindm +

{x1, . . . , xn} ←m X ;

({y1, . . . , yn} ←m f(x1) ; g(y1) tm · · · tm g(yn))

tm · · · tm

({y1, . . . , yn} ←m f(xn) ; g(y1) tm · · · tm g(yn))

= * definition of bindP
t

+

{x1, . . . , xn} ←m X ; bindP
t

(f(x1))(g) tm · · · tm bindP
t

(f(xn)(g))

274

= * definition of bindP
t

+

bindP
t

(X)(λx.bindP
t

(f(x))(g)) �

get-get : s1 ← getP
t

; s2 ← getP
t

; returnP
t

(s1, s2) = s← getP
t

; returnP
t

(s, s)

s1 ← getP
t

; s2 ← getP
t

; returnP
t

(s1, s2)

= * definition of getP
t

+

s1 ← (s←m getm ; return({s})) ;

s2 ← (s← getm ; return({s})) ; returnP
t

(s1, s2)

= * definition of returnP
t

+

s1 ← (s←m getm ; return({s})) ;

s2 ← (s← getm ; return({s})) ; returnm({〈s1, s2〉})

= * do-notation for m and definition of bindP
t

+

{s11, . . . , s1n} ←m (s←m getm ; return({s})) ;

(s2 ← (s←m getm ; return({s})) ; returnm({〈s11, s2〉}))

tm · · · tm

(s2 ← (s←m getm ; return({s})) ; returnm({〈s1n, s2〉}))

= * associativity and left-unit of m +

s1 ←m getm ; (s2 ← (s←m getm ; return({s})) ; returnm({〈s1, s2〉}))

275

= * do-notation for m and definition of bindP
t

+

s1 ←m getm ;

{s21, . . . , s2n} ←m (s←m getm ; return({s})) ;

returnm({〈s1, s21〉}) tm · · · tm returnm({〈s1, s2n〉})

= * associativity and left-unit of m +

s1 ←m getm ; s2 ←m getm ; returnm({〈s1, s2〉})

= * associativity and left-unit of m +

p←m (s1 ←m getm ; s2 ←m getm ; returnm(s1, s2)) ; returnm({p})

= * get-get of m +

p←m (s← getm ; returnm(s, s)) ; returnm({p})

= * associativity and left-unit of m +

s←m getm ; returnm({〈s, s〉})

= * associativity and left-unit of m +

{s1, . . . , sn} ←m (s←m getm ; returnm({s})) ;

returnm({〈s1, s1〉}) tm · · · tm returnm({〈sn, sn〉})

= * definition of getP
t

and returnP
t

+

s← getP
t

; returnP
t

(s, s) �

get-put : (s← getP
t

; putP
t

(s)) = return(•)

put-get : ∀s.(• ← putP
t

(s) ; getP
t

) = (• ← putP
t

(s) ; returnP
t

(s))

put-put : ∀s1s2.(• ← putP
t

(s1) ; putP
t

(s2)) = putP
t

(s2)

276

get-put, put-get and put-put are analogous to get-get ; they follow from monad

associativity and the property from the underlying monad.

mzero-unit : ∀X.mzeroP
t

�P
t

X = X

�-associativity : ∀XY Z.(X �Pt

Y)�P
t

Z�P
t

= X �P
t

(Y �P
t

Z)

�-commutativity : ∀XY.X �Pt

Y = Y �P
t

X

�-idempotence : ∀X.X �Pt

X = X

mzero-left-zero : ∀k.(x← mzeroP
t

; k(x)) = mzeroP
t

mzero-right-zero : ∀X.(x← X ; mzeroP
t

) = mzeroP
t

�-distributivity : ∀XY k.

(x← X �P
t

Y ; k(x)) = (x← X ; k(x))�P
t

(x← Y ; k(x))

These follow directly from the definition of mzeroP
t

and �P
t

and the join-semilattice

properties from the underlying monad.

A.0.3 Lemma 4 [F t laws] (Section 5.8.3)

bindF
t

and returnF
t

satisfy monad laws, getF
t

and putF
t

satisfy state monad laws,

and mzeroF
t

and �F
t

satisfy nondeterminism monad laws.

We go into slightly less detail in these proofs than was done for P t.

left-unit : ∀fxs.bindF
t

(returnF
t

(x))(f)(s) = f(x)(s)

bindF
t

(returnF
t

(x))(f)(s)

277

= * definition of bindF
t

and returnF
t

+

{x1 7→ s1, . . . , xn 7→ sn} ←m returnm({x 7→ s}) ; f(x1)(s1) tm · · · tm f(xn)(sn)

= * left-unit for m +

f(x)(s) �

right-unit : ∀Xs.bindF
t

(X)(returnF
t

)(s) = X(s)

bindF
t

(X)(returnF
t

)(s)

= * definition of bindF
t

and returnF
t

+

{x1 7→ s1, . . . , xn 7→ sn} ←m X(s) ;

returnm({x1 7→ s1}) tm · · · tm returnm({xn 7→ sn})

= * join-semilattice functorality of m distribution over returnm +

{x1 7→ s1, . . . , xn 7→ sn} ←m X(s) ; returnm({x1 7→ s1, . . . , xn 7→ sn})

= * right-unit of m +

X(s) �

associativity : ∀fgXs.

bindF
t

(bindF
t

(X)(f))(g)(s) = bindF
t

(X)(λx.bindF
t

(f(x))(g))(s)

bindF
t

(bindF
t

(X)(f))(g)(s)

= * definition of bindF
t

+

{y1 7→ sy1, . . . , yn 7→ syn} ←m

({x1 7→ sx1, . . . , xn 7→ sxn} ← X(s) ; f(x1)(sx1) tm · · · tm f(xn)(sxn)) ;

g(y1)(sy1) tm · · · tm g(yn)(syn)

278

= * associativity of m +

{x1 7→ sx1, . . . , xn 7→ sxn} ←m X(s) ;

{y1 7→ sy1, . . . , yn 7→ syn} ←m f(x1)(sx1) tm · · · tm f(xn)(sxn) ;

g(y1)(sy1) tm · · · tm g(yn)(syn)

= * join-semilattice functorality of m distribution over bindm +

{x1 7→ sx1, . . . , xn 7→ sxn} ←m X(s) ;

({y1 7→ sy1, . . . , yn 7→ syn} ←m f(x1)(sx1) ; g(y1)(sy1) tm · · · tm g(yn)(syn))

tm · · · tm

({y1 7→ sy1, . . . , yn 7→ syn} ←m f(xn)(sxn) ; g(y1)(sy1) tm · · · tm g(yn)(syn))

= * definition of bindF
t

+

bindF
t

(X)(λx.bindF
t

(f(x))(g))(s) �

get-get : ∀s.

(s1 ← getF
t

; s2 ← getF
t

; returnF
t

(s1, s2))(s) = (s← getF
t

; returnF
t

(s, s))(s)

(s1 ← getF
t

; s2 ← getF
t

; returnF
t

(s1, s2))(s)

= * definition of bindF
t

and getF
t

+

{x1 7→ sx1, . . . , xn 7→ sxn} ←m returnm{s 7→ s} ;

(s2 ← getF
t

; returnF
t

(x1, s2))(sx1)

tm · · · tm

(s2 ← getF
t

; returnF
t

(xn, s2))(sxn)

279

= * left-unit of m +

(s2 ← getF
t

; returnF
t

(s, s2))(s)

= * definition of bindF
t

and getF
t

+

{x1 7→ sx1, . . . , xn 7→ sxn} ←m returnm{s 7→ s} ;

returnF
t

(s, x1)(sx1) tm · · · tm returnF
t

(s, xn)(sxn)

= * left-unit of m +

returnF
t

(s, s)(s)

= * left-unit of m and definition of getF
t

+

(s← getF
t

; returnF
t

(s, s))(s) �

get-put : ∀s.(s1 ← getF
t

; putF
t

(s1))(s) = return(•)(s)

(s1 ← getF
t

; putF
t

(s1))(s)

= * definition of bindF
t

and getF
t

+

{x1 7→ sx1, . . . , xn 7→ sxn} ←m returnm({s 7→ s})

; putF
t

(x1)(sx1) tm · · · tm putF t

(xn)(sxn)

= * right-unit of m +

putF
t

(s)(s)

= * definition of putF
t

+

returnm({• 7→ s})

= * definition of returnF
t

+

returnF
t

(•)(s) �

280

put-get : ∀ss1.(• ← putF
t

(s1) ; getF
t

)(s) = (• ← putF
t

(s1) ; returnF
t

(s1))(s)

(• ← putF
t

(s1) ; getF
t

)(s)

= * definition of bindF
t

and putF
t

+

{• 7→ s} ←m returnm{• 7→ s1} ; getF
t

(s)

= * right-unit of m +

getF
t

(s1)

= * definition of getF
t

and returnF
t

+

returnF
t

(s1)(s1)

= * definition of bindF
t

and putF
t

+

(• ← putF
t

(s1) ; returnFt(s1))(s) �

put-put : ∀ss1s2.(• ← putF
t

(s1) ; putF
t

(s2))(s) = putF
t

(s2)(s)

(• ← putFt(s1) ; putF
t

(s2))(s)

= * definition of bindF
t

and putF
t

+

{• 7→ s} ←m returnm{• 7→ s1} ; returnm{• 7→ s2}

= * right-unit of m +

returnm{• 7→ s2}

= * definition of putF
t

+

putF
t

(s2)(s) �

mzero-unit : ∀X.mzeroF
t

�F
t

X = X

�-associativity : ∀XY Z.(X �F t

Y)�F
t

Z�F
t

= X �F
t

(Y �F
t

Z)

281

�-commutativity : ∀XY.X �F t

Y = Y �F
t

X

�-idempotence : ∀X.X �F t

X = X

mzero-left-zero : ∀k.(x← mzeroF
t

; k(x)) = mzeroF
t

mzero-right-zero : ∀X.(x← X ; mzeroF
t

) = mzeroF
t

�-distributivity : ∀XY k.

(x← X �F
t

Y ; k(x)) = (x← X ; k(x))�F
t

(x← Y ; k(x))

These follow directly from the definition of mzeroF
t

and �F
t

and the join-semilattice

properties from the underlying monad.

282

Bibliography

Mads Sig Ager, Olivier Danvy, and Jan Midtgaard. A functional correspondence
between monadic evaluators and abstract machines for languages with computa-
tional effects. In Theoretical Computer Science (TCS). Elsevier Science Publishers
Ltd., Essex, UK, 2005.

Lars Ole Andersen. Program Analysis and Specialization for the C Programming
Language. PhD thesis, DIKU, University of Copenhagen, 1994.

J. W. Backus. The syntax and semantics of the proposed international algebraic
language of the Zurich ACM-GAMM conference. In International Conference on
Information Processsing (ICIP). UNESCO, Paris, France, 1959.

Gilles Barthe, David Pichardie, and Tamara Rezk. A certified lightweight non-
interference Java bytecode verifier. In European Symposium on Programming
(ESOP). Springer-Verlag, Berlin, Heidelberg, 2007.

Richard Bird and Oege de Moor. The Algebra of Programming. Prentice Hall, Upper
Saddle River, NJ, USA, 1996.

Richard S. Bird. A calculus of functions for program derivation. In Research Topics in
Functional Programming. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1990.

Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent Mauborgne,
Antoine Miné, David Monniaux, and Xavier Rival. A static analyzer for large
safety-critical software. In Programming Language Design and Implementation
(PLDI). ACM, New York, NY, USA, 2003.

Sandrine Blazy, Vincent Laporte, André Maroneze, and David Pichardie. Formal
verification of a C value analysis based on abstract interpretation. In Static
Analysis Symposium (SAS). Springer-Verlag, Berlin, Heidelberg, 2013.

Roland Bol and Lars Degerstedt. Tabulated resolution for well founded semantics.
In International Logic Programming Symposium (ILPS). MIT Press, Cambridge,
MA, USA, 1993.

283

David Cachera and David Pichardie. A certified denotational abstract interpreter.
In Interactive Theorem Proving (ITP). Springer-Verlag, Berlin, Heidelberg, 2010.

David R. Chase, Mark Wegman, and F. Kenneth Zadeck. Analysis of pointers and
structures. In Programming Language Design and Implementation (PLDI). ACM,
New York, NY, USA, 1990.

Weidong Chen and David S. Warren. Tabled evaluation with delaying for general
logic programs. In Journal of the ACM (JACM). ACM, New York, NY, USA,
1996.

Thierry Coquand and Gerard Huet. The calculus of constructions. In Information
and Computation: Semantics of Data Types. Academic Press, Inc., Duluth, MN,
USA, 1988.

Thierry Coquand and Gérard P. Huet. Constructions: A higher order proof system
for mechanizing mathematics. In European Conference on Computer Algebra
(EUROCAL). Springer-Verlag, London, UK, 1985.

Thierry Coquand and Christine Paulin. Inductively defined types. In International
Conference on Computer Logic (COLOG). Springer-Verlag, London, UK, 1990.

Patrick Cousot. The calculational design of a generic abstract interpreter. In
Calculational System Design, NATO ASI Series F. IOS Press, Amsterdam, The
Netherlands, 1999.

Patrick Cousot. Abstract interpretation. MIT Course 16.399, 2005. URL http:

//web.mit.edu/16.399/www/.

Patrick Cousot. Abstract interpretation, 2008. URL http://www.di.ens.fr/

~cousot/AI/.

Patrick Cousot and Radhia Cousot. Static determination of dynamic properties of
programs. In International Symposium on Programming (ISOP). Dunod, Paris,
France, 1976.

Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fixpoints. In
Principles of Programming Languages (POPL). ACM, New York, NY, USA, 1977.

Patrick Cousot and Radhia Cousot. Systematic design of program analysis frame-
works. In Principles of Programming Languages (POPL). ACM, New York, NY,
USA, 1979.

Patrick Cousot and Radhia Cousot. Inductive definitions, semantics and abstract
interpretations. In Principles of Programming Languages (POPL). ACM, New
York, NY, USA, 1992.

284

http://web.mit.edu/16.399/www/
http://web.mit.edu/16.399/www/
http://www.di.ens.fr/~cousot/AI/
http://www.di.ens.fr/~cousot/AI/

Patrick Cousot and Radhia Cousot. Higher-order abstract interpretation (and appli-
cation to comportment analysis generalizing strictness, termination, projection and
PER analysis of functional languages), invited paper. In International Conference
on Computer Languages (ICCL). IEEE Computer Society Press, Los Alamitos,
CA, USA, 1994.

Patrick Cousot and Radhia Cousot. A Galois connection calculus for abstract
interpretation. In Principles of Programming Languages (POPL). ACM, New
York, NY, USA, 2014.

David Darais and David Van Horn. Constructive Galois connections: Taming
the Galois connection framework for mechanized metatheory. In International
Conference on Functional Programming (ICFP). ACM, New York, NY, USA, 2016.

David Darais, Matthew Might, and David Van Horn. Galois transformers and
modular abstract interpreters: Reusable metatheory for program analysis. In
Object-Oriented Programming, Systems, Languages and Applications (OOPSLA).
ACM, New York, NY, USA, 2015.

David Darais, Nicholas Labich, Phúc C. Nguyẽ̂n, and David Van Horn. Definitional
abstract interpreters for higher-order programming languages. In International
Conference on Functional Programming (ICFP). ACM, New York, NY, USA, 2017.

Manuvir Das, Sorin Lerner, and Mark Seigle. ESP: Path-sensitive program verification
in polynomial time. In Programming Language Design and Implementation (PLDI).
ACM, New York, NY, USA, 2002.

Steven Dawson, C. R. Ramakrishnan, and David S. Warren. Practical program
analysis using general purpose logic programming systems—a case study. In
Programming Language Design and Implementation (PLDI). ACM, New York,
NY, USA, 1996.

Benjamin Delaware, Clément Pit-Claudel, Jason Gross, and Adam Chlipala. Fiat:
Deductive synthesis of abstract data types in a proof assistant. In Principles of
Programming Languages (POPL). ACM, New York, NY, USA, 2015.

The Coq development team. The Coq proof assistant reference manual. LogiCal
Project, 2004.

Christopher Earl. Introspective Pushdown Analysis and Nebo. PhD thesis, University
of Utah, 2014.

Christopher Earl, Matthew Might, and David Van Horn. Pushdown control-flow
analysis of higher-order programs. In Workshop on Scheme and Functional
Programming (Scheme), 2010.

Christopher Earl, Ilya Sergey, Matthew Might, and David Van Horn. Introspective
pushdown analysis of higher-order programs. In International Conference on
Functional Programming (ICFP). ACM, New York, NY, USA, 2012.

285

Matthias Felleisen and Robert Hieb. The revised report on the syntactic theories
of sequential control and state. In Theoretical Computer Science (TCS). Elsevier
Science Publishers Ltd., Essex, UK, 1992.

Mattias Felleisen and Daniel P. Friedman. A calculus for assignments in higher-order
languages. In Principles of Programming Languages (POPL). ACM, New York,
NY, USA, 1987.

Mattias Felleisen, Daniel P. Friedman, Eugene Kohlbecker, and Bruce Duba. A
syntactic theory of sequential control. In Theoretical Computer Science (TCS).
Elsevier Science Publishers Ltd., Essex, UK, 1987.

Sebastian Fischer, Oleg Kiselyov, and Chung-chieh Shan. Purely functional lazy
non-deterministic programming. In International Conference on Functional Pro-
gramming (ICFP). ACM, New York, NY, USA, 2009.

Matthew Flatt and Matthias Felleisen. Units: Cool modules for HOT languages.
In Programming Language Design and Implementation (PLDI). ACM, New York,
NY, USA, 1998.

Matthew Flatt and PLT. Reference: Racket. Technical report, PLT Design Inc.,
2010. URL https://racket-lang.org/tr1/.

Ronald Garcia, Alison M. Clark, and Éric Tanter. Abstracting gradual typing. In
Principles of Programming Languages (POPL). ACM, New York, NY, USA, 2016.

Jeremy Gibbons and Ralf Hinze. Just do it: Simple monadic equational reasoning.
In International Conference on Functional Programming (ICFP). ACM, New York,
NY, USA, 2011.

Thomas Gilray, Michael D. Adams, and Matthew Might. Allocation characterizes
polyvariance: A unified methodology for polyvariant control-flow analysis. In
International Conference on Functional Programming (ICFP). ACM, New York,
NY, USA, 2016a.

Thomas Gilray, Steven Lyde, Michael D. Adams, Matthew Might, and David
Van Horn. Pushdown control-flow analysis for free. In Principles of Programming
Languages (POPL). ACM, New York, NY, USA, 2016b.

Robert Glück. Simulation of two-way pushdown automata revisited. In Electronic
Proceedings in Theoretical Computer Science (EPTCS), volume Semantics, Ab-
stract Interpretation, and Reasoning about Programs: Essays Dedicated to David
A. Schmidt on the Occasion of his Sixtieth Birthday (Festschrift for Dave Schmidt).
Open Publishing Association, 2013.

Ben Hardekopf, Ben Wiedermann, Berkeley Churchill, and Vineeth Kashyap. Widen-
ing for control-flow. In Verification, Model Checking, and Abstract Interpretation
(VMCAI). Springer-Verlag New York, Inc., New York, NY, USA, 2014.

286

https://racket-lang.org/tr1/

Michael Hind. Pointer analysis: Haven’t we solved this problem yet? In Program
Analysis for Software Tools and Engineering (PASTE). ACM, New York, NY,
USA, 2001.

Ralf Hinze. Deriving backtracking monad transformers. In International Conference
on Functional Programming (ICFP). ACM, New York, NY, USA, 2000.

Suresh Jagannathan and Stephen Weeks. A unified treatment of flow analysis in
higher-order languages. In Principles of Programming Languages (POPL). ACM,
New York, NY, USA, 1995.

Suresh Jagannathan, Peter Thiemann, Stephen Weeks, and Andrew Wright. Single
and loving it: Must-alias analysis for higher-order languages. In Principles of
Programming Languages (POPL). ACM, New York, NY, USA, 1998.

Gerda Janssens and Konstantinos Sagonas. On the use of tabling for abstract
interpretation: An experiment with abstract equation systems. In Tabulation in
Parsing and Deduction (TAPD), 1998.

Mauro Javier Jaskelioff. Lifting of Operations in Modular Monadic Semantics. PhD
thesis, University of Nottingham, 2009.

James Ian Johnson and David Van Horn. Abstracting abstract control. In Symposium
on Dynamic Languages (DLS). ACM, New York, NY, USA, 2014.

James Ian Johnson, Ilya Sergey, Christopher Earl, Matthew Might, and David
Van Horn. Pushdown flow analysis with abstract garbage collection. In Journal
of Functional Programming (JFP). Cambridge University Press, Cambridge, UK,
2014.

Neil D. Jones. Flow analysis of lambda expressions (preliminary version). In
International Colloquium on Automata, Languages and Programming (ICALP).
Springer-Verlag, London, UK, 1981.

Neil D. Jones and Flemming Nielson. Abstract interpretation: A semantics-based
tool for program analysis. In Handbook of Logic in Computer Science. Oxford
University Press, Oxford, UK, 1995.

Jacques-Henri Jourdan, Vincent Laporte, Sandrine Blazy, Xavier Leroy, and David
Pichardie. A formally-verified C static analyzer. In Principles of Programming
Languages (POPL). ACM, New York, NY, USA, 2015.

George Kastrinis and Yannis Smaragdakis. Hybrid context-sensitivity for points-to
analysis. In Programming Language Design and Implementation (PLDI). ACM,
New York, NY, USA, 2013.

James C. King. Symbolic execution and program testing. In Communications of the
ACM (CACM). ACM, New York, NY, USA, 1976.

287

Oleg Kiselyov. Typed tagless final interpreters. In Spring School Conference on
Generic and Indexed Programming (SSGIP). Springer-Verlag, Berlin, Heidelberg,
2010.

Oleg Kiselyov, Chung-chieh Shan, Daniel P. Friedman, and Amr Sabry. Backtrack-
ing, interleaving, and terminating monad transformers: (functional pearl). In
International Conference on Functional Programming (ICFP). ACM, New York,
NY, USA, 2005.

Xavier Leroy. Formal verification of a realistic compiler. In Communications of the
ACM (CACM). ACM, New York, NY, USA, 2009.

Sheng Liang, Paul Hudak, and Mark Jones. Monad transformers and modular
interpreters. In Principles of Programming Languages (POPL). ACM, New York,
NY, USA, 1995.

Gregory Malecha and Jesper Bengtson. Extensible and efficient automation through
reflective tactics. In Programming Languages and Systems (PLAS). Springer-Verlag
New York, Inc., New York, NY, USA, 2016.

Per Martin-Löf. An intuitionistic theory of types: Predicative part. In Studies in
Logic and the Foundations of Mathematics (SLFM). Elsevier, Amsterdam, The
Netherlands, 1975.

Per Martin-Löf. Intuitionistic type theory. In Studies in Proof Theory. Bibliopolis,
Naples, Italy, 1984.

Jan Midtgaard. Control-flow analysis of functional programs. In ACM Computing
Surveys (CSUR). ACM, New York, NY, USA, 2012.

Jan Midtgaard and Thomas Jensen. A calculational approach to control-flow analysis
by abstract interpretation. In Static Analysis Symposium (SAS). Springer-Verlag,
Berlin, Heidelberg, 2008.

Jan Midtgaard and Thomas P. Jensen. Control-flow analysis of function calls and
returns by abstract interpretation. In International Conference on Functional
Programming (ICFP). ACM, New York, NY, USA, 2009.

Matthew Might. Environment Analysis of Higher-order Languages. PhD thesis,
Georgia Institute of Technology, 2007a.

Matthew Might. Logic-flow analysis of higher-order programs. In Principles of
Programming Languages (POPL). ACM, New York, NY, USA, 2007b.

Matthew Might and Olin Shivers. Improving flow analyses via γCFA: Abstract
garbage collection and counting. In International Conference on Functional
Programming (ICFP). ACM, New York, NY, USA, 2006a.

288

Matthew Might and Olin Shivers. Environment analysis via δCFA. In Principles of
Programming Languages (POPL). ACM, New York, NY, USA, 2006b.

Matthew Might and David Van Horn. Family of abstract interpretations for static
analysis of concurrent higher-order programs. In Static Analysis Symposium (SAS).
Springer-Verlag, Berlin, Heidelberg, 2011.

Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Parameterized object
sensitivity for points-to analysis for Java. In Transactions on Software Engineering
and Methodology (TOSEM). ACM, New York, NY, USA, 2005.

Antoine Miné. The octagon abstract domain. In Higher Order and Symbolic
Computation (HOSC). Kluwer Academic Publishers, Dordrecht, The Netherlands,
2006.

Eugenio Moggi. An abstract view of programming languages. Technical report,
University of Edinburgh, 1989.

David Monniaux. Réalisation mécanisée d’interpréteurs abstraits. Rapport de DEA,
Université Paris VII, 1998. In French.

Phúc C. Nguyẽ̂n and David Van Horn. Relatively complete counterexamples for
higher-order programs. In Programming Language Design and Implementation
(PLDI). ACM, New York, NY, USA, 2015.

Flemming Nielson and Hanne Riis Nielson. Infinitary control flow analysis: A
collecting semantics for closure analysis. In Principles of Programming Languages
(POPL). ACM, New York, NY, USA, 1997.

Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of Program
Analysis. Springer-Verlag, Berlin, Heidelberg, 1999.

Ulf Norell. Towards a Practical Programming Language Based on Dependent Type
Theory. PhD thesis, Chalmers University of Technology, 2007.

David Pichardie. Interprétation Abstraite en Logique Intuitionniste: Extraction
d’Analyseurs Java Certifiés. PhD thesis, Université Rennes 1, 2005. In French.

Atze van der Ploeg and Oleg Kiselyov. Reflection without remorse: Revealing a
hidden sequence to speed up monadic reflection. In Haskell Symposium (Haskell).
ACM, New York, NY, USA, 2014.

Gordon D. Plotkin. A structural approach to operational semantics. Technical report,
Aarhus University, 1981.

Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interprocedural dataflow
analysis via graph reachability. In Principles of Programming Languages (POPL).
ACM, New York, NY, USA, 1995.

289

John C. Reynolds. Definitional interpreters for higher-order programming languages.
In ACM Annual Conference (ACM). ACM, New York, NY, USA, 1972.

Ilya Sergey, Jan Midtgaard, and Dave Clarke. Calculating graph algorithms for
dominance and shortest path. In Mathematics of Program Construction (MPC).
Springer-Verlag, Berlin, Heidelberg, 2012.

Ilya Sergey, Dominique Devriese, Matthew Might, Jan Midtgaard, David Darais,
Dave Clarke, and Frank Piessens. Monadic abstract interpreters. In Programming
Language Design and Implementation (PLDI). ACM, New York, NY, USA, 2013.

Micha Sharir and Amir Pnueli. Two approaches to interprocedural data flow analysis.
In Program Flow Analysis: Theory and Applications. Prentice Hall, Upper Saddle
River, NJ, USA, 1981.

Olin Grigsby Shivers. Control-Flow Analysis of Higher-Order Languages or Taming
Lambda. PhD thesis, Carnige-Mellon Univeristy, 1991.

Paulo F. Silva and José N. Oliveira. Galculator: Functional prototype of a Galois-
connection based proof assistant. In Principles and Practice of Declarative Pro-
gramming (PPDP). ACM, New York, NY, USA, 2008.

Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták. Pick your contexts
well: Understanding object-sensitivity. In Principles of Programming Languages
(POPL). ACM, New York, NY, USA, 2011.

Guy L. Steele, Jr. Building interpreters by composing monads. In Principles of
Programming Languages (POPL). ACM, New York, NY, USA, 1994.

Terrance Swift and David S. Warren. XSB: Extending prolog with tabled logic
programming. In Theory and Practice of Logic Programming (TPLP). Cambridge
University Press, Cambridge, UK, 2012.

Hisao Tamaki and Taisuke Sato. OLD resolution with tabulation. In International
Conference on Logic Programming (ICLP). Springer-Verlag, London, UK, 1986.

Gregory Tassey. The Economic Impacts of Inadequate Infrastructure for Software
Testing. National Institute Of Standards and Technology, Gaithersburg, MD, USA,
2002.

Julien Tesson, Hideki Hashimoto, Zhenjiang Hu, Frédéric Loulergue, and Masato
Takeichi. Program calculation in Coq. In Algebraic Methodology and Software
Technology (AMAST). Springer-Verlag, Berlin, Heidelberg, 2011.

Sam Tobin-Hochstadt, Vincent St-Amour, Ryan Culpepper, Matthew Flatt, and
Matthias Felleisen. Languages as libraries. In Programming Language Design and
Implementation (PLDI). ACM, New York, NY, USA, 2011.

290

David Van Horn and Matthew Might. Abstracting abstract machines. In International
Conference on Functional Programming (ICFP). ACM, New York, NY, USA, 2010.

David Van Horn and Matthew Might. Systematic abstraction of abstract machines.
In Journal of Functional Programming (JFP). Cambridge University Press, Cam-
bridge, UK, 2012.

Alexander Vandenbroucke, Tom Schrijvers, and Frank Piessens. Fixing non-
determinism. In Implementation and Application of Functional Programming
Languages (IFL). ACM, New York, NY, USA, 2015.

Dimitrios Vardoulakis. CFA2: Pushdown Flow Analysis for Higher-Order Languages.
PhD thesis, Northeastern University, 2012.

Dimitrios Vardoulakis and Olin Shivers. CFA2: A context-free approach to control-
flow analysis. In European Symposium on Programming (ESOP). Springer-Verlag,
Berlin, Heidelberg, 2010.

Dimitrios Vardoulakis and Olin Shivers. CFA2: a context-free approach to control-
flow analysis. In Logical Methods in Computer Science (LMCS). Logical Methods
in Computer Science e.V., Braunschweig, Germany, 2011.

Andrew K. Wright and Suresh Jagannathan. Polymorphic splitting: An effective
polyvariant flow analysis. In Transactions on Programming Languages and Systems
(TOPLAS). ACM, New York, NY, USA, 1998.

Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and understanding
bugs in C compilers. In Programming Language Design and Implementation
(PLDI). ACM, New York, NY, USA, 2011.

Michael Zhivich and Robert K. Cunningham. The real cost of software errors. In
IEEE Security and Privacy. IEEE, Washington D.C., USA, 2009.

291

	Preface
	Dedication
	Acknowledgements
	List of Figures
	Introduction
	Outline

	Technical Background
	Abstract Interpretation
	Galois Connection Mappings
	Galois Connection Laws
	Abstract Interpreters
	Calculational Abstract Interpretation
	Conclusion

	Abstracting Abstract Machines
	Small-step Semantics
	Adding Higher-order Functions
	Adding Indirection through a Store
	Abstraction
	Conclusion

	Mechanized Verification
	Equality
	Embedding Classical Powersets
	Embedding General Classical Reasoning
	Conclusion

	Technical Overview
	Constructive Galois Connections
	The Problem
	The Main Ideas
	Evaluation

	Galois Transformers
	The Problem
	The Main Ideas
	Evaluation

	Abstracting Definitional Interpreters
	The Problem
	The Main Ideas
	Evaluation

	Constructive Galois Connections
	Introduction
	Verifying a Simple Static Analyzer
	The Direct Approach
	Classical Abstract Interpretation

	Constructive Galois Connections
	Partial Orders and Monotonicity
	Relationship to Classical Galois Connections
	The ``Specification Effect''

	Case Study 1: Calculational AI
	Concrete Semantics
	Abstract Semantics with Constructive GCs

	Case Study 2: Gradual Type Systems
	Constructive Galois Connection Metatheory
	Constructing Constructive Galois Connections
	Strictly Classical Galois Connections
	Strictly Constructive Galois Connections
	Primitive Galois Connections—Classical and Constructive
	Composing Galois Connections—Classical and Constructive

	Comparing Classical and Constructive Approaches
	Review: Cousot's Original Classical Calculation
	Using Independent Attributes Explicitly
	Calculating with Constructive Galois Connections

	Optimal Calculations—Constructive and Classical
	Multivalued Constructive Galois Connections
	Review: Cousot's Original Classical Calculation
	The Constructive Calculation

	Related Work
	Conclusions

	Galois Transformers
	Introduction
	Semantics
	Path and Flow Sensitivity in Analysis
	Analysis Parameters
	The Analysis Monad
	The Abstract Domain
	Abstract Time

	The Interpreter
	Recovering Analyses
	Recovering a Concrete Interpreter
	Recovering an Abstract Interpreter
	End-to-end Correctness

	Varying Path and Flow Sensitivity
	Flow Insensitive Monad

	A Compositional Monadic Framework
	State Galois Transformer
	Nondeterminism Galois Transformer
	Flow Sensitivity Galois Transformer
	Galois Transformers
	End-to-End Correctness with Galois Transformers
	Applying the Framework to Our Semantics
	Applying the Framework to Another Semantics

	Implementation
	Related Work
	Conclusions

	Abstracting Definitional Interpreters
	Introduction
	Outline

	From Machines to Compositional Evaluators
	A Definitional Interpreter
	Instantiating the Interpreter
	Collecting Variations
	Abstracting Base Values
	Abstracting Closures

	Caching and Finding Fixed-points
	Formal soundness and termination

	Pushdown à la Reynolds
	Widening the Store
	An Alternative Abstraction
	Symbolic Execution and Garbage Collection
	Try It Out
	Formalism
	Related Work
	Conclusions

	Concluding Remarks
	Galois Transformer Proofs
	 Lemma 5 [Galois Transformers] (Section 5.8.4)
	 Lemma 3 [Pt laws] (Section 5.8.2)
	 Lemma 4 [Ft laws] (Section 5.8.3)

	Bibliography

