844 research outputs found

    Recurrent Neural Networks For Accurate RSSI Indoor Localization

    Full text link
    This paper proposes recurrent neuron networks (RNNs) for a fingerprinting indoor localization using WiFi. Instead of locating user's position one at a time as in the cases of conventional algorithms, our RNN solution aims at trajectory positioning and takes into account the relation among the received signal strength indicator (RSSI) measurements in a trajectory. Furthermore, a weighted average filter is proposed for both input RSSI data and sequential output locations to enhance the accuracy among the temporal fluctuations of RSSI. The results using different types of RNN including vanilla RNN, long short-term memory (LSTM), gated recurrent unit (GRU) and bidirectional LSTM (BiLSTM) are presented. On-site experiments demonstrate that the proposed structure achieves an average localization error of 0.750.75 m with 80%80\% of the errors under 11 m, which outperforms the conventional KNN algorithms and probabilistic algorithms by approximately 30%30\% under the same test environment.Comment: Received signal strength indicator (RSSI), WiFi indoor localization, recurrent neuron network (RNN), long shortterm memory (LSTM), fingerprint-based localizatio

    Wi-Fi Finger-Printing Based Indoor Localization Using Nano-Scale Unmanned Aerial Vehicles

    Get PDF
    Explosive growth in the number of mobile devices like smartphones, tablets, and smartwatches has escalated the demand for localization-based services, spurring development of numerous indoor localization techniques. Especially, widespread deployment of wireless LANs prompted ever increasing interests in WiFi-based indoor localization mechanisms. However, a critical shortcoming of such localization schemes is the intensive time and labor requirements for collecting and building the WiFi fingerprinting database, especially when the system needs to cover a large space. In this thesis, we propose to automate the WiFi fingerprint survey process using a group of nano-scale unmanned aerial vehicles (NAVs). The proposed system significantly reduces the efforts for collecting WiFi fingerprints. Furthermore, since these NAVs explore a 3D space, the WiFi fingerprints of a 3D space can be obtained increasing the localization accuracy. The proposed system is implemented on a commercially available miniature open-source quadcopter platform by integrating a contemporary WiFi - fingerprint - based localization system. Experimental results demonstrate that the localization error is about 2m, which exhibits only about 20cm of accuracy degradation compared with the manual WiFi fingerprint survey methods

    A Robust Indoor Positioning System Based on the Procrustes Analysis and Weighted Extreme Learning Machine

    Get PDF
    Indoor positioning system (IPS) has become one of the most attractive research fields due to the increasing demands on location-based services (LBSs) in indoor environments. Various IPSs have been developed under different circumstances, and most of them adopt the fingerprinting technique to mitigate pervasive indoor multipath effects. However, the performance of the fingerprinting technique severely suffers from device heterogeneity existing across commercial off-the-shelf mobile devices (e.g., smart phones, tablet computers, etc.) and indoor environmental changes (e.g., the number, distribution and activities of people, the placement of furniture, etc.). In this paper, we transform the received signal strength (RSS) to a standardized location fingerprint based on the Procrustes analysis, and introduce a similarity metric, termed signal tendency index (STI), for matching standardized fingerprints. An analysis of the capability of the proposed STI to handle device heterogeneity and environmental changes is presented. We further develop a robust and precise IPS by integrating the merits of both the STI and weighted extreme learning machine (WELM). Finally, extensive experiments are carried out and a performance comparison with existing solutions verifies the superiority of the proposed IPS in terms of robustness to device heterogeneity

    A Soft Range Limited K-Nearest Neighbours Algorithm for Indoor Localization Enhancement

    Full text link
    This paper proposes a soft range limited K nearest neighbours (SRL-KNN) localization fingerprinting algorithm. The conventional KNN determines the neighbours of a user by calculating and ranking the fingerprint distance measured at the unknown user location and the reference locations in the database. Different from that method, SRL-KNN scales the fingerprint distance by a range factor related to the physical distance between the user's previous position and the reference location in the database to reduce the spatial ambiguity in localization. Although utilizing the prior locations, SRL-KNN does not require knowledge of the exact moving speed and direction of the user. Moreover, to take into account of the temporal fluctuations of the received signal strength indicator (RSSI), RSSI histogram is incorporated into the distance calculation. Actual on-site experiments demonstrate that the new algorithm achieves an average localization error of 0.660.66 m with 80%80\% of the errors under 0.890.89 m, which outperforms conventional KNN algorithms by 45%45\% under the same test environment.Comment: Received signal strength indicator (RSSI), WiFi indoor localization, K-nearest neighbor (KNN), fingerprint-based localizatio

    A Survey of Positioning Systems Using Visible LED Lights

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.As Global Positioning System (GPS) cannot provide satisfying performance in indoor environments, indoor positioning technology, which utilizes indoor wireless signals instead of GPS signals, has grown rapidly in recent years. Meanwhile, visible light communication (VLC) using light devices such as light emitting diodes (LEDs) has been deemed to be a promising candidate in the heterogeneous wireless networks that may collaborate with radio frequencies (RF) wireless networks. In particular, light-fidelity has a great potential for deployment in future indoor environments because of its high throughput and security advantages. This paper provides a comprehensive study of a novel positioning technology based on visible white LED lights, which has attracted much attention from both academia and industry. The essential characteristics and principles of this system are deeply discussed, and relevant positioning algorithms and designs are classified and elaborated. This paper undertakes a thorough investigation into current LED-based indoor positioning systems and compares their performance through many aspects, such as test environment, accuracy, and cost. It presents indoor hybrid positioning systems among VLC and other systems (e.g., inertial sensors and RF systems). We also review and classify outdoor VLC positioning applications for the first time. Finally, this paper surveys major advances as well as open issues, challenges, and future research directions in VLC positioning systems.Peer reviewe

    Evaluating indoor positioning systems in a shopping mall : the lessons learned from the IPIN 2018 competition

    Get PDF
    The Indoor Positioning and Indoor Navigation (IPIN) conference holds an annual competition in which indoor localization systems from different research groups worldwide are evaluated empirically. The objective of this competition is to establish a systematic evaluation methodology with rigorous metrics both for real-time (on-site) and post-processing (off-site) situations, in a realistic environment unfamiliar to the prototype developers. For the IPIN 2018 conference, this competition was held on September 22nd, 2018, in Atlantis, a large shopping mall in Nantes (France). Four competition tracks (two on-site and two off-site) were designed. They consisted of several 1 km routes traversing several floors of the mall. Along these paths, 180 points were topographically surveyed with a 10 cm accuracy, to serve as ground truth landmarks, combining theodolite measurements, differential global navigation satellite system (GNSS) and 3D scanner systems. 34 teams effectively competed. The accuracy score corresponds to the third quartile (75th percentile) of an error metric that combines the horizontal positioning error and the floor detection. The best results for the on-site tracks showed an accuracy score of 11.70 m (Track 1) and 5.50 m (Track 2), while the best results for the off-site tracks showed an accuracy score of 0.90 m (Track 3) and 1.30 m (Track 4). These results showed that it is possible to obtain high accuracy indoor positioning solutions in large, realistic environments using wearable light-weight sensors without deploying any beacon. This paper describes the organization work of the tracks, analyzes the methodology used to quantify the results, reviews the lessons learned from the competition and discusses its future
    • …
    corecore