207,062 research outputs found

    Theory and practice of population diversity in evolutionary computation

    Get PDF
    Divergence of character is a cornerstone of natural evolution. On the contrary, evolutionary optimization processes are plagued by an endemic lack of population diversity: all candidate solutions eventually crowd the very same areas in the search space. The problem is usually labeled with the oxymoron “premature convergence” and has very different consequences on the different applications, almost all deleterious. At the same time, case studies from theoretical runtime analyses irrefutably demonstrate the benefits of diversity. This tutorial will give an introduction into the area of “diversity promotion”: we will define the term “diversity” in the context of Evolutionary Computation, showing how practitioners tried, with mixed results, to promote it. Then, we will analyze the benefits brought by population diversity in specific contexts, namely global exploration and enhancing the power of crossover. To this end, we will survey recent results from rigorous runtime analysis on selected problems. The presented analyses rigorously quantify the performance of evolutionary algorithms in the light of population diversity, laying the foundation for a rigorous understanding of how search dynamics are affected by the presence or absence of diversity and the introduction of diversity mechanisms

    On the evolutionary optimisation of many conflicting objectives

    Get PDF
    This inquiry explores the effectiveness of a class of modern evolutionary algorithms, represented by Non-dominated Sorting Genetic Algorithm (NSGA) components, for solving optimisation tasks with many conflicting objectives. Optimiser behaviour is assessed for a grid of mutation and recombination operator configurations. Performance maps are obtained for the dual aims of proximity to, and distribution across, the optimal trade-off surface. Performance sweet-spots for both variation operators are observed to contract as the number of objectives is increased. Classical settings for recombination are shown to be suitable for small numbers of objectives but correspond to very poor performance for higher numbers of objectives, even when large population sizes are used. Explanations for this behaviour are offered via the concepts of dominance resistance and active diversity promotion

    DRAFT Report:Community Systems Strengthening Toward a Research Agenda

    Get PDF
    Communities have a long history of acting to preserve and promote the health of their members. Public health researchers, programmers, and funders are increasingly recognizing that community involvement is essential to improving health, especially among populations that are disproportionately affected by HIV. The Global Fund to fight AIDS, Tuberculosis and Malaria, together with civil society organizations and other development partners, created the Community Systems Strengthening (CSS) Framework to help Global Fund applicants frame, define, and quantify efforts to strengthen community contributions engagement (Global Fund 2011). Although the use of a CSS approach in health programming implementation shows promise, it lacks a theoretical framework to guide collaborations with communities. Additionally, it suffers from a paucity of program designs and evaluation practices, an incomplete evidence-based rationale for investing in CSS, and imprecise definitions (e.g., what is meant by “community” and “CSS”).The purpose of this paper is to highlight promising areas for future research related to CSS. Toward this objective, we propose to lay a foundation for a CSS research agenda by using theories and approaches relevant to CSS, reinforced with evidence from projects that employ similar approaches

    Modeling the ecology and evolution of biodiversity: Biogeographical cradles, museums, and graves

    Get PDF
    Individual processes shaping geographical patterns of biodiversity are increasingly understood, but their complex interactions on broad spatial and temporal scales remain beyond the reach of analytical models and traditional experiments. To meet this challenge, we built a spatially explicit, mechanistic simulation model implementing adaptation, range shifts, fragmentation, speciation, dispersal, competition, and extinction, driven by modeled climates of the past 800,000 years in South America. Experimental topographic smoothing confirmed the impact of climate heterogeneity on diversification. The simulations identified regions and episodes of speciation (cradles), persistence (museums), and extinction (graves). Although the simulations had no target pattern and were not parameterized with empirical data, emerging richness maps closely resembled contemporary maps for major taxa, confirming powerful roles for evolution and diversification driven by topography and climate

    Estimating the Value of Oil Capital in a Small Open Economy: the Venezuela’s Example

    Get PDF
    The paper focuses in the calculation of the oil capital value in a small open economy depending on oil rents. The Venezuelan case is used as an example. In valuing the oil capital, two issues are recalled and discussed: how should the exploration costs and the capital gains be treated? It is shown that the estimations vary significantly depending on which set of assumptions are made about the way to account for them and the assumptions made about how the economy functions. It is argued that during the studied period the value of the Venezuelan stock of oil capital has increased, and it has done so faster than the population.Venezuela, Oil Capital, Capital Gains, Exploration Costs, Property Rights

    Improved dynamical particle swarm optimization method for structural dynamics

    Get PDF
    A methodology to the multiobjective structural design of buildings based on an improved particle swarm optimization algorithm is presented, which has proved to be very efficient and robust in nonlinear problems and when the optimization objectives are in conflict. In particular, the behaviour of the particle swarm optimization (PSO) classical algorithm is improved by dynamically adding autoadaptive mechanisms that enhance the exploration/exploitation trade-off and diversity of the proposed algorithm, avoiding getting trapped in local minima. A novel integrated optimization system was developed, called DI-PSO, to solve this problem which is able to control and even improve the structural behaviour under seismic excitations. In order to demonstrate the effectiveness of the proposed approach, the methodology is tested against some benchmark problems. Then a 3-story-building model is optimized under different objective cases, concluding that the improved multiobjective optimization methodology using DI-PSO is more efficient as compared with those designs obtained using single optimization.Peer ReviewedPostprint (published version

    Opinion Polarization by Learning from Social Feedback

    Full text link
    We explore a new mechanism to explain polarization phenomena in opinion dynamics in which agents evaluate alternative views on the basis of the social feedback obtained on expressing them. High support of the favored opinion in the social environment, is treated as a positive feedback which reinforces the value associated to this opinion. In connected networks of sufficiently high modularity, different groups of agents can form strong convictions of competing opinions. Linking the social feedback process to standard equilibrium concepts we analytically characterize sufficient conditions for the stability of bi-polarization. While previous models have emphasized the polarization effects of deliberative argument-based communication, our model highlights an affective experience-based route to polarization, without assumptions about negative influence or bounded confidence.Comment: Presented at the Social Simulation Conference (Dublin 2017
    • 

    corecore