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a b s t r a c t

The utilization of populations is one of the most important features of evolutionary
algorithms (EAs). There have been many studies analyzing the impact of different
population sizes on the performance of EAs. However, most of such studies are based on
computational experiments, except for a few cases. The common wisdom so far appears
to be that a large population would increase the population diversity and thus help an EA.
Indeed, increasing the population size has been a commonly used strategy in tuning an EA
when it did not perform as well as expected for a given problem. He and Yao (2002) [8]
showed theoretically that for some problem instance classes, a population can help to
reduce the runtime of an EA from exponential to polynomial time. This paper analyzes
the role of population further in EAs and shows rigorously that large populations may not
always be useful. Conditions, under which large populations can be harmful, are discussed
in this paper. Although the theoretical analysis was carried out on onemultimodal problem
using a specific type of EAs, it has much wider implications. The analysis has revealed
certain problem characteristics, which can be either the problem considered here or other
problems, that lead to the disadvantages of large population sizes. The analytical approach
developed in this paper can also be applied to analyzing EAs on other problems.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

As a crucial characteristic of Evolutionary Algorithm (EA), the utilization of population enables explorations to different
parts of the search space via a number of individuals. Although, over the past decades, most practical EAs have employed
populations, rigorous theoretical investigations on the impact of population on evolutionary algorithmsweremainly carried
out in the past eight years. Concerning this issue, He and Yao [8] took one of the first attempts via the comparisons of the
mean first hitting times of both (N + N) and (1 + 1) EAs on a class of multimodal problems derived from the well-known
OneMax problem, and the purpose is to demonstrate the impact of population. Later, a number of theoretical investigations
have been dedicated to study the first hitting times of EAs with either multiple parents [17,5,14] or offsprings [10,14]. It
is expected that the EAs under investigations, which were known as (µ + 1) and (1 + λ) EAs, can establish a bridge from
analyzing the (1+1) EA to studying (µ+λ) EAs. In themeantime, it has also been reported that the recent investigations on
EAswithmultiple parents and offsprings (e.g., (N+N) EAs) have eventually brought to the community broader perspectives
on understanding the behaviors of population-based EAs. Chen et al. analyzed the time complexity of (N + N) EA on
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unimodal problems [2] and a wide-gap problem [1]. Lehre and Yao studied the impact of mutation–selection balance on
the performance of (N + N) EA with linear ranking selection on a multimodal problem [11], but the influence of employing
different population sizes was not investigated. It is still not clear how different population sizes influence the performance
of (N + N) EA on multimodal problems. In this paper, we carry out theoretical investigations on this issue.

To study the effect of population size via theoretical investigation, it is clear that we need a suitable measure of
performance for EAs. Most previous investigations adopt the well-known first hitting time measure, which is a random
variable demonstrating the number of generations required by the EA to find the global optimum for the first time. Here we
denote by τ the first hitting time, and P(τ ≤ a) the accumulated probability of τ . We further denote by τ1 and τ2 the first
hitting times of two arbitrary EAs, say, EA-I and EA-II, respectively. If the following conditions holds

• a1(n) is a polynomial function of the problem size n;
• a2(n) is a super-polynomial function of the problem size n;
• P[τ1 ≤ a1(n)] is super-polynomially close to 1;
• P[τ2 ≤ a2(n)] is super-polynomially close to 0,

then one can conclude that EA-I is more efficient than EA-II with a probability that is super-polynomially close to 1. A recent
example, which successfully utilizes the above methodology in comparison of different EAs, is provided in [3]. However,
when considering the following case, direct comparison of the first hitting times would become infeasible:

• a1(n) is a polynomial function of the problem size n;
• a2(n) is a super-polynomial function of the problem size n;
• a3(n) is a super-polynomial function of the problem size n;
• The reciprocal of P[τ1 ≤ a1(n)] is bounded from above by some polynomial function of n;
• The reciprocal of P[τ1 > a2(n)] is bounded from above by some polynomial function of n;
• P[τ2 ≤ a3(n)] is super-polynomially close to 0.

The reason is that EA-I is likely to perform as inefficient as EA-II. Nevertheless, since EA-I still takes a relatively high
probability to perform efficient while EA-II performs inefficiently almost surely, we can still compare the performances
of EA-I and EA-II by employing the solvable rate as an alternative measure, where the solvable rate is the probability that
the EA finds the global optimum of an optimization problem within a polynomial number of generations. The solvable
rate can be considered as a generalized measure based on the probability distribution of the traditional first hitting time
measure, and it concerns more about the probability with which an EA performs efficiently in general, rather than the
detailed computation time for finding the optimum. In fact, in previous investigations (e.g., [13]), the idea of solvable rate
has been utilized implicitly in company with the first hitting time results, though it has not been adopted as a measure of
performance.

By employing the solvable rate measure in this paper, we carry out theoretical analysis to study the impact of the
population size on the performance of an (N + N) EA on a multimodal problem. This multimodal problem, which is called
the TrapZeros problem, contains a global optimum (1, . . . , 1) and a local optimum (0, . . . , 0). The attraction basin of the
global optimum only consists of solutions with the leading substring made up of ln2 n + 2 consecutive 1-bits. To find the
global optimum, the EA has to enter its basin of attraction first by resisting the selection pressure which tends to preserve
the solutions with leading 0-bits. For the (N + N) EA on the above problem, we consider three cases for the population size
N , N = 1, N = O(ln n) and N = Ω(n/ ln n), where the well-known (1 + 1) EA is considered as a special case of (N + N)
EA (N = 1). It is discovered that when the population size is relatively small (N = 1 or N = O(ln n)), the solvable rate
of (N + N) EA is still larger than the reciprocal of some polynomial function of the problem size, which implies that the
EA, if running on an appropriate polynomial number of processors simultaneously and independently, can find the global
optimum with a polynomial number of generations. However, given a large enough population size N = Ω(n/ ln n), the
solvable rate of the (N + N) EA has dropped to a level that is super-polynomially close to 0, implying that the EA cannot
find the global optimum within a polynomial number of generations, unless one can offer a super-polynomial number of
processors for the EA to run on.

The rest of the paper is organized as follows: Section 2 introduces the algorithm and problem investigated in this paper.
Section 3 presents the mathematical tools utilized in this paper. Section 4 analyzes the (N +N) EA with the population size
N = 1. Section 5 shows the analytical result of the (N + N) EA with the population size N = O(ln n). Section 6 concerns
the (N + N) EA with the population size N = Ω(n/ ln n). Section 7 carries out discussions on the results presented in the
previous sections. Section 8 concludes the whole paper.

2. Problem and algorithm

In this section, we introduce the concrete optimization problem and EA investigated in this paper.

2.1. Problem

The maximization problem we consider in this paper, defined over the domain x = (x1, . . . , xn) ∈ {0, 1}n, is called
TrapZeros:
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Fig. 1. Illustration of the TrapZeros problem.
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 ;

0, if (x1 = 0) ∧ (x2 = 1);
1, if (x1 = 1) ∧ (x2 = 0);
0, Other.

(1)

The TrapZeros problem is a multimodal problem, and its global optimum is x∗
= (1, . . . , 1). For TrapZeros, increasing the

leading 0-bits in its solution may eventually lead to the local optimum (0, . . . , 0) instead of leading to the global optimum
(1, . . . , 1). To reach the attraction basin of the global optimum, an optimization algorithm should first find some solutions
with the leading substring consisting of ln2 n+ 2 consecutive 1-bits. Otherwise, the selection pressure of an EA will tend to
preserve the solutions with leading 0-bits. To facilitate the later investigations, we define three schemata as follows:

S1 = {(1, 1, ∗, . . . , ∗)},
S0 = {(0, 0, ∗, . . . , ∗)},

S∗
=

(1, 1, 1, . . . , 1  
ln2 n

, ∗, . . . , ∗)

 ,
S∗

∈ S1,

where ‘‘∗’’ can represent either 0 or 1, S∗ and S1 are the schemata containing the global optimum. Fig. 1 illustrates the
fitness landscape of TrapZeros with respect to the schemata defined above, and it shows that the individuals belonging to
S∗ are strictly better than any individual belonging to S0, while the individuals belonging to S0 are strictly better than any
individual belonging to S1 \ S∗. Utilizing this property, we will carry out rigorous analysis of an EA on TrapZeros later.

2.2. Algorithm

The (N + N) EA studied in this paper is with equal parent and offspring sizes. The detailed algorithm is described as
follows:
1. Initialization: The N initial individuals are generated uniformly at random, and the initial population ξ1 is obtained.
2. Mutation: At the t th generation (t ∈ N+), the N individuals in the parent population ξt are mutated, and the offspring

population ξ (m)t is obtained. The mutation of each individual in ξt utilizes the bitwise mutation, i.e., each bit of the
individual is flipped independently with a uniform probability 1/n, where n is the problem size.

3. Selection: After the mutation step at the t th generation (t ∈ N+), the best N individuals in the parent and offspring
populations (ξt ∪ξ

(m)
t ) are selected to form the population ξt+1, which is the parent population of the (t+1)th generation.

Afterward, set t = t + 1 and then go to the mutation step.

The execution of the EA will stop if the stopping criterion is met. The above algorithm adopts the truncation selection, and
does not employ any recombination operator. The investigation of EAs with recombination operator and other selection
operators will be left as our future work.

With respect to the (N + N) EA, the population size N must be a polynomial function of the problem size n, otherwise
each generation of the EA would require super-polynomial number of fitness evaluations. When N = 1, the above (N + N)
EA degenerates to the well-known (1 + 1) EA [4].
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2.3. Solvable rate

So far we have introduced the problem and algorithm investigated in this paper. In this subsection, we present the
measure of performance for EA. First, let us review the first hitting time τ , which is defined formally as below:

τ = min{t; x∗
∈ ξt},

where x∗ is the global optimum, and ξt is the population at the t th generation. As the example we have presented in Section
I, the first hitting timemeasuremay sometimes become invalid for comparing the performance of two EAs. Here we provide
an alternative measure, the solvable rate, to deal with the situation shown in the aforementioned example. Denoted by κ ,
the solvable rate is formally defined by

κ = P (τ ≺ Poly(n)) ,

where the event τ ≺ Poly(n) means that there exists some polynomial function (of the problem size n) F(n) such that
τ < F(n) holds for any n > n0, and n0 is a positive constant. Generally speaking, to derive appropriate bounds for the
solvable rate, we have to concern the first hitting time τ . In the next section, we introduce the mathematical tools for our
further investigations.

3. Analytical approaches

In this section, we present the analytical tools utilized in this paper.

3.1. Probability inequalities

First of all, three well-known probabilistic inequalities are necessary to our later analysis. The inequalities are presented
as the following lemmas:
Lemma 1 (Chernoff Bounds [12,4]). Let X1, X2, . . . , Xk ∈ {0, 1} be k independent random variables with a same distribution:

∀i ≠ j : P[Xi = 1] = P[Xj = 1],

where i, j ∈ {1, . . . , k}. Let X be the sum of those random variables, i.e., X =
k

i=1 Xi, then we have

• ∀0 < ψ < 1: P

X < (1 − ψ)E[X]


< e−E[X]ψ2/2.

• ∀0 < ψ ≤ 2e − 1: P

X > (1 + ψ)E[X]


< e−E[X]ψ2/4.

• ∀ψ > 0: P

X > (1 + ψ)E[X]


<


eψ

(1+ψ)1+ψ

E[X]

.

Lemma 2 (Chebyshev Inequality [15]). Let X be a random variable with expectation E[X] and finite variance Var[X]. Then for
any real number r > 0,

P
X − E[X]

 ≥ r ·


Var[X]


≤

1
r2
. (2)

Lemma 3 (Markov Inequality [12]). Let X ≥ 0 be a random variable with expectation E[X]. Then for a > 0, we have

P[X ≥ a] ≤
E[X]

a
. (3)

3.2. Decomposition of population set

In this subsection, we introduce the concrete definitions and approaches for analyzing the EA on TrapZeros, which are
inherited from our previous investigation [2]. Recall that we have defined the schemata S1, S0 and S∗ in Section 2.1. Further,
we denote by E the whole population set containing all populations. Based on the aforementioned definitions of the three
schemata, we now present the decomposition of the population set E, which is necessary for our analytical approaches:

• We denote by E0 the population set consisting of population ξ with its best individual belonging to neither S1 nor S0.
• For any population ξ with its best individual belonging to S1, we define the metricm(A)(ξ)

m(A)(ξ) = min

g(A)(y); TrapZeros(y) = max {TrapZeros(z); z ∈ ξ} , y ∈ S1, y ∈ ξ


,

where g(A)(y) = n− 2−
n

i=3 |yi − 1| and y = (y1, y2, . . . , yn) and z are individuals belonging to ξ . Based on the metric
m(A)(ξ), we obtain n − 1 population sets, E(A)ρ (ρ = 0, . . . , n − 2), where

E(A)ρ = {ξ ;m(A)(ξ) = ρ}, ρ = 0, . . . , n − 2.
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The above definition, along with the fitness function TrapZeros, implies that E(A)n−2 is the population set that is made up
of all the population containing the global optimum x∗

= (1, 1, . . . , 1).
Moreover, for any population ξ ∈ E(A)ρ , we define a subset of ξ :

G(A) = {y; TrapZeros(y) = max{TrapZeros(z); z ∈ ξ}, y ∈ S1, y ∈ ξ} .

• For any population ξ with its best individual belonging to S0, we define the metricm(B)(ξ)

m(B)(ξ) = min

g(B)(y); TrapZeros(y) = max {TrapZeros(z); z ∈ ξ} , y ∈ S0, y ∈ ξ


,

where g(B)(y) = n− 2−
n

i=3 yi and y = (y1, y2, . . . , yn). Based on the metricm(B)(ξ), we obtain n− 1 population sets,
E(B)ρ (ρ = 0, . . . , n − 2), where

E(B)ρ = {ξ ;m(B)(ξ) = ρ}, ρ = 0, . . . , n − 2.

Moreover, for any population ξ ∈ E(B)ρ , we define a subset of ξ :

G(B) = {y; TrapZeros(y) = max{TrapZeros(z); z ∈ ξ}, y ∈ S0, y ∈ ξ} .

• According to the above definitions, we have

E = E0 ∪


n−2
ρ=0

E(A)ρ


∪


n−2
ρ=0

E(B)ρ


.

On the basis of the decomposition of E, we introduce the definitions of local optimal individual (type A and type B):
Definition 1 (Local Optimal Individual, type A (LOIA)). Given a population set E(A)ρ (ρ = 0, . . . , n − 2) and a population
ξ ∈ E(A)ρ , we call an individual x ∈ G(A) the ρ-LOIA of ξ on E(A)ρ (LOIA for short, if we restrict the discussion on a given
E(A)ρ and ξ ), if and only if x ∈ G(A); We call an individual x′ the advanced LOIA for ∀ξ ∈ E(A)ρ (advanced LOIA for short, if we
restrict the discussion on a given E(A)ρ ), if and only if x′ is the LOIA of a population ζ satisfying that ζ ∈

n−2
i=ρ+1 E

(A)
i .

Definition 2 (Local Optimal Individual, type B (LOIB)). Given a population set E(B)ρ (ρ = 0, . . . , n − 2) and a population
ξ ∈ E(B)ρ , we call an individual x ∈ G(B) the ρ-LOIB of ξ on E(B)ρ (LOIB for short, if we restrict the discussion on a given E(B)ρ
and ξ ), if and only if x ∈ G(B). We call an individual x′ the advanced LOIB for ∀ξ ∈ E(B)ρ (advanced LOIB for short, if we restrict
the discussion on a given E(B)ρ ), if and only if x′ is the LOIB of a population ζ satisfying that ζ ∈

n−2
i=ρ+1 E

(B)
i .

So far we have defined LOIA and LOIB so as to characterize the individuals belonging to the attraction basins of the
global and local optima respectively, which enables us to define the so-called takeover times for the (N +N) EA. Briefly, the
takeover time, proposed by Goldberg andDeb [6], originallymeasures the number of generations required by the population
to accumulate enough promising individuals, where a repeated selection process is concerned. Chen et al. [2] generalized
the concept of ‘‘takeover process’’ to characterize the behavior population-based EAs on unimodal problems containing no
local optimum. In this paper, on the TrapZeros problem, we further define two types of takeover processes for the global
and local optima respectively:
Definition 3 ((A, ρ, ϵ)-takeover). A population ξ is said to be (A, ρ, ϵ)-takeover (ρ = 0, . . . , n − 2, and 0 < ϵ ≤ 1) if and
only if its number of the ρ-LOIAs has reached ⌈ϵN⌉ (i.e., the proportion of LOIAs in ξ has reached ϵ), where all advanced
LOIAs are pessimistically considered as ρ-LOIAs.
Definition 4 ((B, ρ, ϵ)-takeover). A population ξ is said to be (B, ρ, ϵ)-takeover (ρ = 0, . . . , n − 2, and 0 < ϵ ≤ 1) if and
only if its number of the ρ-LOIBs has reached ⌈ϵN⌉ (i.e., the proportion of LOIBs in ξ has reached ϵ), where all advanced
LOIBs are pessimistically considered as ρ-LOIBs.

As it is assumed pessimistically in [2], throughout the paper we consider that the advanced LOIAs (LOIBs) cannot be
generated, if a population is not (A, ρ, ϵ)-taken over ((B, ρ, ϵ)-taken over). Once a population has been (A, ρ, ϵ)-taken over
((B, ρ, ϵ)-taken over), it will concentrate on producing advanced LOIAs (LOIBs) for E(A)ρ (E(B)ρ ). Next, we formally define the
(A, ρ, ϵ)-takeover time and (B, ρ, ϵ)-takeover time, and then characterize the processes of generating advanced LOIAs and
LOIBs by the so-called (A, ρ, ϵ) and (B, ρ, ϵ) upgrade times, respectively.

Given the population ξtρ ∈ E(A)ρ at the t thρ generation, we define its (A, ρ, ϵ)-first hitting time to E(A)ρ be

η(A)ρ,ϵ(ξtρ ) = min


t ′ρ − tρ; ξt ′ρ ∈


N

i=⌈ϵN⌉

E(A)ρ,i


∪


n−2

j=ρ+1

E(A)j


, (4)

where E(A)ρ,i is the population set containing the populations containing i ρ-LOIAs (i = 1, . . . ,N). The expectation of η(A)ρ,ϵ(ξtρ ),
restricted to a finite η(A)ρ,ϵ(ξtρ ) and conditional on the starting population ξ , is defined by

η̄(A)ρ,ϵ(ξ) = E

η(A)ρ,ϵ(ξtρ ), η

(A)
ρ,ϵ(ξtρ ) < ∞ | ξtρ = ξ


.
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The expectation η̄(A)ρ,ϵ(ξ) is called the (A, ρ, ϵ)-takeover time of population ξ . Afterward, we define the maximal (A, ρ, ϵ)-
takeover time as:

η̄(A)max,ρ,ϵ = max

η̄(A)ρ,ϵ(ξ); ξ ∈ E(A)ρ


,

and the (A, ·, ϵ)-takeover time is defined by

η̄(A)ϵ = max

η̄(A)max,ρ,ϵ; 0 ≤ ρ ≤ n − 2


. (5)

Similarly, we can define (B, ρ, ϵ)-takeover time η̄(B)ρ,ϵ(ξ), and the (B, ·, ϵ)-takeover time η̄(B)ϵ .
According to the notion presented in [2], the evolution of individuals, if restricted in a specific attraction basin, can be

characterized by the repeated ‘‘takeover-upgrade processes’’. Concretely, to reach the optimum in the attraction basin, the
(N+N) EA,with bothmutation and selection,may often take a number of steps. At each step, the EAmay need to accumulate
enough promising individuals first, while the qualities of the individuals may not be significantly improved. Afterward,
when a considerable amount of promising individuals have been accumulated, the population will take a high probability
for generating one or more better individuals. Formally, we further define the so-called (A, ρ, ϵ)- and (B, ρ, ϵ)-upgrade
times. Given the population ξtρ ∈

N
i=ϵN E(A)ρ,i


at the t thρ generation, we define its (A, ρ, ϵ)-upgrade time be

φ(A)ρ,ϵ(ξtρ ) = min


t ′ρ − tρ; ξt ′ρ ∈


n−2

i=ρ+1

E(A)i


, tρ < ∞


. (6)

Similarly, the (B, ρ, ϵ)-upgrade time φ(B)ρ,ϵ(ξtρ ) can be defined. In the meantime, when a population ξ has already (A, ρ, ϵ)-
taken over, the probability of generating at least one advanced LOIA in one generation, denoted by u(A)ρ,ϵ , is given by

u(A)ρ,ϵ = min




ζ∈
n−2

i=ρ+1 E(A)i

P(ξ , ζ ); ξ ∈ Eρ,ϵN

 ,
where P(ξ , ζ ) is the one-generation transition probability from population ξ to population ζ . The reciprocal of u(A)ρ,ϵ is an
upper bound of themean (A, ρ, ϵ)-upgrade time, due to the property of geometric distribution [16]. Similarly, we can define
the upgrade probability u(B)ρ,ϵ , and its reciprocal bounds the mean (B, ρ, ϵ)-upgrade time from above.

3.3. Bounding first hitting time

As defined above, both the (A, ρ, ϵ)-takeover time and (B, ρ, ϵ)-takeover time describe the time sufficient for the EA to
accumulate enough promising individuals for generating better individuals. Restricted on S∗, the evolution of individuals
towards the global optimum can be characterized as the so-called repeated takeover-upgrade process: first, the promising
individuals are accumulated by the overall impact of the selection and mutation operators; When there are enough
promising individuals in the population, the probability of generating better individuals becomes large enough, thus one
or more individuals will soon upgrade to better individuals. The evolution of individuals restricted on S0 ∪ (S1 \ S∗) can
be characterized in a similar way, though the evolution will eventually lead to the local optimum (instead of the global
optimum) if no individual belonging to S∗ has been generated.

Formally, given 0 ≤ ρ1 ≤ ρ2 ≤ n − 2 and generation index tρ1 satisfying that the population ξtρ1 belongs to E(A)ρ1 , define
the mean first hitting time to E(A)ρ2 of the (N + N) EA starting from E(A)ρ1 be

τ (A)ρ1,ρ2
= min


t − tρ1; ξt ∈


n−2
i=ρ2

E(A)i


, tρ1 < ∞


. (7)

By drift analysis [7] utilized in the proof of Proposition 1 in [2],we can easily combine the aforementioned repeated takeover-
upgrade processes together and obtain the lemmas concerning the mean first hitting time to different population subset:

Lemma 4. On the TrapZeros problem, the mean first hitting time to E(A)ρ2 of the (N + N) EA starting from E(A)ρ1 (where 0 ≤ ρ1 ≤

ρ2 ≤ ln2 n holds), conditional on that no individual belonging to S0 has ever been generated before the first time the EA reaches
E(A)ρ2 , satisfies:

E

τ (A)ρ1,ρ2

 τ
(A)
ρ1,ρ2
t=1

(S0 ∩ ξt+1 = ∅)

 = O


ρ2

k=ρ1+1


η̄(A)ϵ + 1/u(A)k,ϵ


, (8)

where η̄(A)ϵ is defined by Eq. (5).
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The mean first hitting time to E(A)ρ2 of the (N + N) EA starting from E(A)ρ1 (where ln2 n ≤ ρ1 ≤ ρ2 ≤ n − 2 holds) satisfies:

E

τ (A)ρ1,ρ2


= O


ρ2

k=ρ1+1


η̄(A)ϵ + 1/u(A)k,ϵ


; (9)

Interested readers can refer to the appendix of this paper for the detailed proof of the above lemma. On the other hand,
combining the takeover-upgrade processes for the LOIBs, we have the following lemma:

Lemma 5. On the TrapZeros problem, given the population size N = Ω(n/ ln n), the first hitting time to E(B)ρ2 of the (N + N) EA
starting from E(B)ρ1 (where 0 ≤ ρ1 ≤ ρ2 ≤ n−2 holds), conditional on that no individual belonging to S∗ has ever been generated
before the first time the EA reaches E(B)ρ2 , satisfies the following inequality with an overwhelming probability:

τ (B)ρ1,ρ2 ≤ (ρ2 − ρ1)

η̂(B)ϵ + ln3 n


, (10)

where τ (B)ρ1,ρ2 is the first hitting time to E(B)ρ2 starting from E(B)ρ1 , η̂
(B)
ϵ satisfies the following condition: ∀i ∈ {0, . . . , n − 2},∀ξti ∈

E(B)i : P

η
(B)
i,ϵ (ξti) ≤ η̂(B)ϵ


≻ 1 − 1/SuperPoly(n), i.e., it is super-polynomially close to 1.

The detailed proof is given in the appendix.
In this section, we have provided the analytical tools for the theoretical investigations of the (N +N) EA. In the following

parts of the paper, we will apply the tools to study the performance of the (N + N) EA with different population sizes, so as
to demonstrate the impact of population size on the performance of EA.

4. (N + N) EA with N = 1

In this section, we analyze the performance of (1 + 1) EA on TrapZeros, where the (1 + 1) EA can be considered as a
degenerate case of the (N + N) EA. By employing the aforementioned solvable rate as a measure, we obtain the following
result:

Theorem 6. The first hitting time τ of the (1+ 1) EA on TrapZeros is O(n2)with the probability of 1
4 −O

 ln2 n
n


. In other words,

the solvable rate κ of the (1 + 1) EA on TrapZeros is at least 1
4 − O

 ln2 n
n


.

Proof. After initialization, with a probability of 1/4, the first and second bits of the initial individual both take the value 1,
i.e., the initial individual belongs to S1. At any generation, the probability that the EA generates an offspring belonging to
S0 is 1/n2. Noting that the fitness of individual belonging to the schemata {(1, 0, ∗, . . . , ∗)} and {(0, 1, ∗, . . . , ∗)} is strictly
smaller than that of any individual belonging to S1, the probability of avoiding finding any individual belonging to S0 at no
later than the t th generation is at least (1 − 1/n2)t/4. Hence, for any t ≤ (2en − 1) ln2 n, the above probability is at least
(1 − 1/n2)2en ln2 n/4 > (1 − 4e ln2 n/n)/4.

Given the condition that the EA does not find any individual belonging to S0 before the ((2en−1) ln2 n)th generation, we
then estimate the time sufficient for the EA to find some solutions belonging to the schema S∗. The reason of concerning the
schema S∗ is that, once some individual belonging to S∗ is found, the elitist selection operator will not accept any individual
belonging to S0, whichwill eventually lead to the global optimum. It is easy to see that, at t th (t ≤ (2en−1) ln2 n) generation
of optimization, the EA takes the probability of no less than (1/n)(1 − 1/n)n−3

≥ 1/(e2n) to find an individual with better
fitness, conditional on the event that the EA does not find any individual belonging to S0 before the ((2en − 1) ln2 n)th

generation. Hence, according to Chernoff bounds, with an extra probability of 1− e−Θ(ln2 n) the EA can find some individual
belonging to S∗ no later than the ((2en − 1) ln2 n)th generation.

Once the EA has found a solution belonging to S∗, it will continue to find better solutions and eventually find the global
optimum. In this phase, the EA takes the probability of no less than (1/n)(1− 1/n)n−3

≥ 1/(e2n) to find an individual with
better fitness, and in the worst case the Hamming distance between the individual and global optimum is n − ln2 n − 2.
Hence, by Chernoff bounds, with an extra probability of 1 − e−Θ(n), the EA can find the global optimum with extra O(n2)
generations.

Combining the above propositions together, we have proved that the first hitting time τ of the (1 + 1) EA on TrapZeros
is O(n2)with a probability of (1/4)(1 − 2e ln2 n/n)(1 − e−Θ(ln2 n))(1 − e−Θ(n)) = 1/4 − O(ln2 n/n). �

The above theorem demonstrates that, when the population size is extremely small, the (N + N) EA can find the global
optimum of TrapZeroswith a constant probability.

5. (N + N) EA with N = O(ln n)

In this section, the population size of the (N + N) EA grows to N = O(ln n). The investigation begins with the following
lemma concerning the number of LOIAs:
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Lemma 7. Let Xt be the total number of LOIAs at the end of the t th generation. For the (N + N) EA with truncation selection, we
have

P

Xt+1 > (1 + ch)Xt

Xt <
N

1 + ch
, S0 ∩ ξt+1 = ∅


> 1 −

1 − h
(1 − c)2Xth

,

where h is the probability that an old LOIA generates a new LOIA, c ∈ (0, 1) is a constant.

The proof of the above lemma is given in the appendix. Similar to Lemma 7 focusing on LOIAs, the following lemma about
LOIBs holds:

Lemma 8. Let Yt be the total number of LOIBs at the end of the t th generation. For the (N + N) EA with truncation selection, we
have

P

Yt+1 > (1 + ch′)Yt

Yt <
N

1 + ch′
, S∗

∩ ξt+1 = ∅


> 1 −

1 − h′

(1 − c)2Yth′
,

where h′ is the probability that an old LOIB generates a new LOIB, c ∈ (0, 1) is a constant.

For the sake of brevity, we do not offer the detailed proof of the above lemma. Interested readers can refer to the proof of
Lemma 7 for details.

By Lemma 7, we are able to bound the takeover time from above, which enables us to prove the following result:

Theorem 9. Given the population size N satisfying N = O(ln n) and N = ω(1), the first hitting time τ of the (N + N) EA on
TrapZeros is O

 n2
N


with a probability of 1/Poly(n) 1. In other words, the solvable rate κ of the (N + N) EA on TrapZeros is at

least 1/Poly(n), which is the reciprocal of some polynomial function of the problem size n.

Proof. The proof requires two major steps which aim at proving the following propositions respectively:

9.1 The probabilities of the following two events are both 1/Poly(n): (1) The initial individuals all belong to S1; (2) The EA
does not find any individual belonging to S0 within n ln3 n/N generations.

9.2 The maximal (A, ρ, 5/(5 + c))-takeover time (ρ ∈ {1, . . . , n − 2}, c ∈ (0, 1) is a constant) of the (N + N) EA on
TrapZeros, conditional on the above two events, is upper bounded.

Given the upper bound of the takeover times obtained when proving Theorem 9.2, we can utilize Lemma 4 to obtain a
conditional expected first hitting time of the EA,which immediately leads to the theoremaccording to 3 (Markov inequality).

Proof of Theorem 9.1
The proof begins with the discussions on Theorem 9.1. After the initialization of the EA, with the probability of 1/4N ,

the first and second bits of all initial individuals all take the value of 1, i.e., the initial individuals all belong to S1. In the
meantime, the probability for an individual (belonging to S1) to generate an offspring belonging to S0 is 1/n2. On the other
hand, since the fitness of every individual belonging to the schemata {(1, 0, ∗, . . . , ∗)} or {(0, 1, ∗, . . . , ∗)} is strictly smaller
than that of any individual belonging to S1, the truncation selection of the (N + N) EA will always immediately eliminate
all the newly generated individual belonging to the schemata {(1, 0, ∗, . . . , ∗)} and {(0, 1, ∗, . . . , ∗)}. As a consequence
of the above facts, the probability of avoiding finding any individual belonging to S0 before the t th generation is at least
(1 − 1/n2)Nt/4N . In other words, we have

P


n ln3 n/N

t=1

(S0 ∩ ξt = ∅)


≥


1 −

1
n2
n ln3 n

4N
>

1 −
2 ln3 n

n

4N
. (11)

So far we have proved Theorem 9.1.

Proof of Theorem 9.2
Concerning Theorem 9.2, we focus on the (A, ρ, ϵ)-takeover time, where ρ ∈ {1, . . . , n − 2} holds. Here we need to

consider two cases according to the value of ρ: (1) ρ ∈ {1, . . . , ln2 n}; (2) ρ ∈ {ln2 n + 1, . . . , n − 2}.
Let us study the first case first, where ρ ∈ {1, . . . , ln2 n} holds. We note that at every generation the probability that an

old LOIA generates a new LOIA is no smaller than (1 − pm)n = (1 − 1/n)n > 1/5 (n ≥ 2), where pm = 1/n is the mutation
rate of the EA and (1− pm)n is the probability that an old LOIA generates an offspring that is the same to itself. Hence, in the

(A, ρ, 5/(5 + c))-takeover process (where we let ϵ = 5/(5 + c), and c ∈ (0, 1 −


4
5 ) is a positive constant) starting with

Xt = 1 (we consider the population with a unique LOIA at the beginning of the (A, ρ, 5/(5 + c))-takeover process in our
worst-case analysis), the expected number of generations spent by the EA to accumulate 5 LOIAs is less than 5/(1/5) = 25
generations.

1 In this paper, 1/Poly(n) refers to some positive function (of the problem size n), whose reciprocal is bounded from above by a polynomial function of
the problem size n.
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On the other hand, for Xt ∈ [5, 5N/(5 + c)], according to Lemma 7, we further obtain the following inequality

P

Xt+1 > (1 + c/5)Xt

Xt ∈ [5, 5N/(5 + c)], S0 ∩ ξt+1 = ∅


> P


Xt+1 > (1 + ch)Xt

Xt ∈ [5, 5N/(5 + c)], S0 ∩ ξt+1 = ∅


> 1 −

1 − h
(1 − c)2Xth

≥ 1 −
4

5(1 − c)2
= σ , (12)

where c ∈ (0, 1 −


4
5 ) is a constant, h ≥ (1 − 1/n)n > 1/5 is the probability that an old LOIA generates a new LOIA, and

σ = 1− 4/(5(1− c)2) < 1 is a positive constant. Nowwe can estimate upper bound for the takeover times, conditional on
the event

n ln3 n/N
t=1

(S0 ∩ ξt = ∅). (13)

Here we call the event ‘‘Xt+1 > (1 + c/5)Xt ’’ a success. Let l̂ be the number of successes sufficient for the population to
(A, ρ, ϵ)-takeover, which can be estimated by

l̂ = min

l; 5 ·


1 +

c
5

l
≥ ⌈ϵN⌉


, (14)

where ϵ = 5/(5 + c). As a consequence, we obtain

l̂ ∈

ln 5 − ln⌈ϵN⌉

ln ϵ
− 1,

ln 5 − ln⌈ϵN⌉

ln ϵ
+ 1


.

Hence, l̂ = Θ(lnN) successes are sufficient for (A, ρ, 5/(5 + c))-takeover (in addition to an average of 25 generations that
are sufficient for accumulating 5 LOIAs). According to Eq. (12), the expected number of generations that is sufficient for
(A, ρ, 5/(5 + c))-takeover (ρ ∈ {1, . . . , ln2 n}), conditional on the event described in Eq. (13), is at most l̂/σ + 25.

Similar to the case of ρ ∈ {1, . . . , ln2 n}, we study the (A, ρ, 5/(5 + c))-takeover time for the case of ρ ∈ {ln2 n +

1, . . . , n − 2}. The only difference between the two cases is that the former is carried out in the context of the condition
that the individuals belonging to S0 have not been generated at every generation (which is summarized in Eq. (13)) while
the latter does not require such a condition. The obtained takeover time is similar: the expected number of generations
sufficient for any (A, ρ, 5/(5 + c))-takeover (ρ ∈ {ln2 n + 1, . . . , n − 2}) is at most l̂/σ + 25.

In the above analysis, we have analyzed in detail the (A, ρ, 5/(5+ c))-takeover times for any ρ ∈ {1, . . . , n− 2}, which
completes the proof of Theorem 9.2.

Proof of result
The rest of the proof is to estimate the (A, ρ, 5/(5+ c))-upgrade times 1/u(A)ρ,5/(5+c) with respect to the (A, ρ, 5/(5+ c))-

takeover times, and then follows the technique introduced Lemma 4. Concerning the former point, we still consider two
cases as we have done for estimating the (A, ρ, 5/(5+ c))-takeover times. For the first case, where ρ ∈ {1, . . . , ln2 n} holds,
we estimate the (A, ρ, 5/(5+ c))-upgrade time 1/u(A)ρ,5/(5+c) under the condition described in Eq. (13): Once the population

of the EA belongs to E(A)ρ,⌈ϵN⌉
∪ E(A)ρ,⌈ϵN⌉+1 ∪ . . . ∪ E(A)ρ,N , u

(A)
ρ,ϵ can be calculated as follows:

u(A)ρ,ϵ = 1 −


1 −

1
n


1 −

1
n

ρ⌈ϵN⌉

≥ 1 −


1 −

1
e2n

⌈ϵN⌉

= 1 −


1 −

1
e2n

e2n
 ⌈ϵN⌉

e2n

,

where ϵ = 5/(5 + c). Hence we have:

1/u(A)ρ,ϵ ≤
1

1 −


1 −

1
e2n

e2n ⌈ϵN⌉

e2n

≤
e

⌈ϵN⌉

e2n

e
⌈ϵN⌉

e2n − 1
≤ 1 +

e2n
⌈ϵN⌉

.

Similarly, for the second case ρ ∈ {ln2 n + 1, . . . , n − 2}, we can also obtain the corresponding (A, ρ, ϵ)-upgrade time:

1/u(A)ρ,ϵ ≤ 1 +
e2n

⌈ϵN⌉
= O

 n
N


.

The only difference between the two cases is that the proposition for the first case (ρ ∈ {1, . . . , ln2 n}) holds when the
condition described in Eq. (13) holds, while the second case (ρ ∈ {ln2 n + 1, . . . , n − 2}) does not require such a condition.
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As a consequence, by Lemma 4, we can estimate the upper bound of the expected first hitting time (to the population
subset E(A)

ln2 n+1
) of the EA, conditional on the event described in Eq. (13). Formally, let τS∗ be the first hitting time (to the

population subset E(A)
ln2 n+1

), τ̄S∗ be the above conditional expectation. According to Lemma 4 derived from the technique
presented in [2], the asymptotic order of such a conditional expectation is no larger than ln2 n(η̄ϵ + maxρ≤ln2 n{1/u

(A)
ρ,ϵ}) ≤

ln2 n

l̂/σ + 25 + O(n/N)


= ln2 n (O(ln ln n)+ O(n/N)) = O(ln2 n ln ln n + n ln2 n/N). According to Lemma 3 (Markov

inequality), under the condition described in Eq. (13), with the probability of at least 1/2, the first hitting time to the
population subset E(A)

ln2 n+1
(i.e., τS∗ ) is less than 2τ̄S∗ = ω(n ln3 n/N). Combining this result with the proof of Theorem 9.1

(which estimates the probability that the condition described in Eq. (13) holds), we know that with a probability of
(1 − 2 ln3 n/n) · (1/2)/4N , the EA has found an individual belonging to S∗ within 2τ̄S∗ = O(ln2 n ln ln n + n ln2 n/N)
generations.

Afterward, following the same technique, we further bound from above the expected first hitting time to E(A)n−2 (the
population subset consisting of all populations containing the global optimum), with the starting point (initial population)
ξ1 ∈

n−2
j=ln2 n+1 E

(A)
j


. Formally, given the above starting point of the EA, let τ ′ be the first hitting time to E(A)n−2, τ̄

′ be the

expectation of τ ′. According to Lemma 4, the asymptotic order of τ̄ ′ is no larger than (n − ln2 n − 2)(η̄ϵ + 1/u(A)ρ,ϵ) =

(n − ln2 n − 2) (O(ln ln n)+ O(n/N)) = O(n ln ln n + n2/N). By Markov inequality, with a probability of at least 1/2, the
first hitting time τ ′ is less than 2τ̄ ′

= O(n ln ln n + n2/N).
Combining the above results together,we obtain that the first hitting timeof the (N+N) EA (i.e., τS∗+τ ′) is upper bounded

by 2τ̄S∗ + 2τ̄ ′
= O(n2/N) with a probability of (1 − 2 ln3 n/n) · (1/2) · (1/2)/4N

= (1 − 2 ln3 n/n)/4N+1. Noting that the
population size satisfies N = O(ln n), the above probability is 1/Poly(n). Hence, we have proved the whole theorem. �

6. (N + N) EA with N = Ω(n/ ln n)

In this section, we further increase the population size, and study the performance of the EA on the basis of our previous
results. We have the following result:

Theorem 10. Given the polynomial population size N satisfying N = Ω(n/ ln n), the first hitting time τ of the (N + N) EA
on TrapZeros is super-polynomial with an overwhelming probability. In other words, the solvable rate κ of the (N + N) EA on
TrapZeros is super-polynomially close to 0.

Proof. The proof of Theorem 10 contains several steps, in which we focus on different propositions required for proving the
whole theorem:

10.1 After initialization, the probability that all the individuals in the population contain no more than 3 ln2 n/4 1-bits
among the leading ln2 n + 2 bits is super-polynomially close to 1.

10.2 With an overwhelming probability, the EA cannot find any individual belonging to S∗ before the ηth generation, where
η = lnN · ln ln n. With an overwhelming probability, there are still at least ln2 n/16 0-bits between the (ln2 n/8)th and
(ln2 n + 3)th bits of each individual at the end of the ηth generation.

10.3 No later than the ηth generation, the population will be taken over by the individuals belonging to S0 with an
overwhelming probability.

10.4 After the ηth generations, the probability that an individual belonging to S∗ is generated via direct mutation from an
individual belonging to S0 is super-polynomially close to 0.

Proof of Theorem 10.1
The polynomial population size N = Ω(n/ ln n) implies that the initial population contains one or more individuals

belonging toS0 with the probability of 1−(1−1/4)N = 1−(3/4)Ω(n/ ln n), which is an overwhelming probability.Meanwhile,
the probability of generating one ormore individuals belonging to S∗ is 1−(1−(1/2)ln

2 n+2)N ≈ N/2ln2 n+2, which is super-
polynomially close to 0 due to that N is a polynomial function of the problem size n. Hence, after initialization the best
individual in the population belongs to S0 with an overwhelming probability. On the other hand, concerning the number of
1-bits among the leading ln2 n+2 bits for every initial individual, we apply Chernoff bounds, and obtain that the probability
of having no more than 3 ln2 n/4 1-bits is 1 − e− ln2 n/32, which is an overwhelming probability. As a consequence, after
initialization, the probability that all the individuals in the population contain no more than 3 ln2 n/4 1-bits among the
leading ln2 n + 2 bits is also an overwhelming one.

Proof of Theorem 10.2
As mentioned, we define η = lnN · ln ln n = O(ln n · ln ln n) (N = Ω(n/ ln n)), we now prove that within η generations,

the probability of finding individuals belonging to S∗ is super-polynomially close to 0. Denote by C the event ‘‘the first
0-bit among the leading ln2 n + 2 bits of an individual is flipped, while the 1-bits before the flipped 0-bit (i.e., the leading
1-bits) have not been flipped’’. Optimistically, we assume that event C always happens before the ηth generation. Under
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the circumstance, with the overwhelming probability 1 − Θ(1/nln ln n), at most ln ln n 0-bits among the leading ln2 n + 2
bits of an individual can be flipped simultaneously at each generation. Given a polynomial population size N , the above
proposition implies that at every generation, the maximal number of 1-bits among the leading ln2 n + 2 bits of each
individual in the population can increase by at most ln ln n with an overwhelming probability. Combining the above fact
with the result presented in Theorem 10.1, we know that in order to find an individual belonging to S∗, we need at
least (ln2 n + 2 − 3 ln2 n/4)/(ln ln n) > ln2 n/(4 ln ln n) generations with an overwhelming probability, which implies
that η = o(ln2 n/(4 ln ln n)) generations are not enough for the EA to generate an individual belonging to S∗ with an
overwhelming probability.

In the meantime, the fact that (with an overwhelming probability) at most ln ln n 0-bits among the leading ln2 n + 2
bits of an individual can be flipped simultaneously at each generation also implies that (with an overwhelming probability)
there are still at least 7 ln2 n/8+ 2− 3 ln2 n/4− O(η · (ln ln n)) > ln2 n/16 0-bits between the (ln2 n/8)th and (ln2 n+ 3)th
bits of each individual at the end of the ηth generation.

Proof Sketch of Theorem 10.3
Next, we need to prove that within η generations, the population will be taken over by the individuals belonging to S0

(i.e., (B, 0, 1)-takeover) with an overwhelming probability. This proposition can be proved by a technique similar to the one
utilized in the proof of Theorem 9, i.e., by applying Chebyshev inequality (Lemma 8) for establishing the probability of ‘‘a
success’’. More specifically, let Yt be the number of LOIBs at the t th generation. For Yt ∈ [5, 5N/(5+ c)], we define the event
‘‘Yt+1 > (1 + c/5)Yt ’’ be a ‘‘success’’. According to Lemma 8, we obtain

P

Yt+1 > (1 + c/5)Yt

Yt ∈ [5, 5N/(5 + c)], S∗
∩ ξt+1 = ∅


> P


Yt+1 > (1 + ch′)Yt

Yt ∈ [5, 5N/(5 + c)], S∗
∩ ξt+1 = ∅


> 1 −

1 − h′

(1 − c)2Yth′

≥ 1 −
4

5(1 − c)2
= σ ′,

where c ∈ (0, 1 −


4
5 ) is a constant, h′

≥ (1 − 1/n)n > 1/5 is the probability that an old LOIB generates a new LOIB, and

σ ′
= 1 − 4/(5(1 − c)2) < 1 is a positive constant. For the sake of brevity, we omit the mathematical details of discussing

the number of successes sufficient for (B, 0, 1)-takeover. One can refer to the proof of Theorem 9.2 for more details. Next we
prove that the number of generations sufficient for (B, 0, 1)-takeover is no larger than ηwith an overwhelming probability.

Assume that we have already proved that the number of successes sufficient for (B, 0, 1)-takeover (using Lemma 8 and
the proof idea of Theorem 9.2), denoted by l̂′, satisfies l̂′ ≤ lnN/ ln(1/ϵ) + 3 (where ϵ = 5/(5 + c), c is a constant),
and the probability of achieving a success at each generation (belonging to the (B, 0, 1)-takeover process) is no less than
a constant σ ′

∈ (0, 1). For the (B, 0, 1)-takeover process, let suc(T ) be the number of successes happened among T
generations. When the number of successes is smaller than l̂′ 2, the evolution at each generation can be considered as a
Bernoulli trial: the probability of having a success is at least σ ′. According to Chernoff bounds, the probability that among T
generations the number of successes suc(T ) is no smaller than (1− δ) · E[suc(T )] ≥ (1− δ) · (Tσ ′) is at least 1− e−Tσ ′δ2/2,
where δ ∈ (0, 1) is a constant. By setting T =

√
ln ln n · l̂′/((1 − δ)σ ′) = Θ(lnN ·

√
ln ln n), we obtain that, the

probability that T = Θ(lnN ·
√
ln ln n) generations are sufficient for obtaining more than l̂′ = Θ(lnN) successes is at least

1 − e−Tσ ′δ2/2
= 1 − e−Θ(lnN·

√
ln ln n)σ ′δ2/2, which is an overwhelming probability. By summarizing the above discussions,

we know that with an overwhelming probability it takes at most Θ(lnN ·
√
ln ln n) generations for the population to be

(B, 0, 1)-taken over. Since η = lnN · ln ln n = ω(lnN ·
√
ln ln n), we have proved Theorem 10.3.

Here, it is worth noting that the above proposition, along with the truncation selection that kills the worst N individuals
among the overall 2N parents and offsprings, is getting very close to the final conclusion of the theorem.More precisely, once
the population has been (B, ρ, 1)-taken over by the individuals belonging to S0 (for any ρ = 0, . . . , n − 2), the truncation
selection operator will no longer accept offsprings that belonging to neither S∗ nor S0, since these offsprings have lower
fitness than all N parents belonging to S0. Hence, the only way to generate individuals belonging to S∗ is via the direct
mutations of those parent individuals belonging to S0. Next, we show that such a probability is super-polynomially small.

Proof of Theorem 10.4
Optimistically, here we can assume that the bits between the (ln2 n/8)th and (ln2 n + 3)th bits of each individual have

become ‘‘free-riders’’ [4] when the population has just been (B, ρ, 1)-taken over (where ρ ∈ {0, . . . , ln2 n/8 − 3}), i.e., the
values of these bits are not influenced by selection pressure, and only genetic drift is considered (though some of them are

2 When the number of successes suc(T ) reaches l̂′ , the population has been (B, 0, 1)-taken over. Afterward, if no individual belonging to S∗ has been
generated (the corresponding duration has been investigated by Theorem 10.2), the event ‘‘success’’ still makes sense except that the population has
entered the (B, ρ, 1)-takeover process, where ρ > 0.
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very likely to be influenced by selection pressure which tends to preserve 0-bits). By dividing the evolutions after the ηth
generation into two stages, we need to prove the following propositions:
10.4.1 No later than the (η+ α)th generation, the population has been (B, ρ, 1)-taken over by individuals with no less than

ln2 n/8 consecutive leading 0-bits, where α = ln5 n.
10.4.2 After the ηth generation but before the population has been taken over by individuals with no less than ln2 n/8

consecutive leading 0-bits3, with an overwhelming probability at least ln2 n/32 free-riders between the (ln2 n/8)th
and (ln2 n + 3)th bits of each individual (in the population) will take the value of 0.

By Lemma 5, we can study the (B, ρ, ϵ)-takeover processes (ρ ≤ ln2 n/8 − 2) and the corresponding (B, ρ, ϵ)-upgrade
probability, and prove that the number of generations sufficient for the population to be (B, ln2 n/8 − 2, 1)-taken
over by individuals with more than ln2 n/8 consecutive leading 0-bits is bounded from above by (ln2 n/8)(η̂(B)ϵ +

maxρ≤ln2 n/8−2{1/u
(B)
ρ,1}) < (ln2 n/8)(η̂(B)ϵ + ln3 n)with an overwhelming probability, where η̂(B)ϵ = o(lnN · ln ln n) = o(ln n ·

ln ln n). The proof follows the proof idea of Theorem 10.3 to study the takeover time η̂(B)ϵ , and then applies Lemma 5
directly. For the sake of brevity, here we do not provide the details. Moreover, the above result, along with the condition
N = Ω(n/ ln n), implies that η + (ln2 n/8)(η̂(B)ϵ + ln3 n) < η + ln5 n = η + α. Hence, we can reach Theorem 10.4.1.

On the other hand, recall that when the population has just been taken over by the individuals belonging to S0 (i.e.,
(B, ln2 n/8 − 2, 1)-takeover), with an overwhelming probability there are still at least ln2 n/16 free-riders, between the
(ln2 n/8)th and (ln2 n + 3)th bits of each individual, taking the value of 0. Within ln5 n generations, each of the free-riders
will receive at most α = ln5 n mutations. Given any individual at the ηth generation, there are at least ln2 n/16 free-riders
(between its (ln2 n/8)th and (ln2 n+3)th bits) taking the value of 0. For each of those free-riders, the probability that its value
does not change within the α mutations is at least (1 − 1/n)α ≈ 1 − O(ln5 n/n). According to Chernoff bounds, among the
aforementioned ln2 n/16 free-riders of each individual, with the overwhelming probability of 1− e−Θ(ln2 n)

= 1− n−Θ(ln n),
there are still ln2 n/32 free-riders consistently taking the value of 0 between the ηth generation and the (η+α)th generation.
As a consequence, the fact that the population size N is a polynomial function of the problem size n yields Theorem 10.4.2.

By summarizing the above discussions on the number of free-riders, we know that before the population has been taken
over by individuals with no less than ln2 n/8 consecutive leading 0-bits (but after the ηth generation), the probability for
each individual to find an offspring belonging to S∗ is at most 1/nln2 n/32. On the other hand, after the population has been
taken over by individuals with no less than ln2 n/8 consecutive leading 0-bits, the probability for each individual to find
an offspring belonging to S∗ is 1/nln2 n/8, since at that time each individual in the population will contain at least ln2 n/8
consecutive leading 0-bits. Further, since the population size N is polynomial, the probability that some individual in the
population generates an offspring belonging to S∗ is still super-polynomially close to 0.

Combining the results presented in Theorems 10.1, 10.2, 10.3 and 10.4 together, we have proved the theorem. �

7. Discussion

So far we have seen three analytical results concerning the performance of a population-based EA with different
population sizes. It is shown that with the increase of population size, the solvable rate of the (N + N) EA will drop to an
extremely low level on the TrapZeros problem. Although the study in this paper is carried out on a specific problem using
a specific type of EAs, it has much wider implications. The analytical results presented in this paper actually demonstrate
an interesting problem characteristic under which the population-based EAs may perform poorly: when a problem has an
attraction basin leading to some local optimum, and the individuals at this basin are with relatively high fitness than most
individuals, a large populationmay not be useful and even becomes harmful, since it will lead to a large probability of finding
individuals at the local basin. The resultant takeover process at the mistaken basin will quickly eliminates other promising
individuals that may lead to the global optimum. After that, only large step sizes can help to find promising individuals
again, resulting in a long runtime of the EA due to the small probability of getting close to the global optimum.

The weakness of the population-based EAs without recombination on the above problem characteristic, shown in this
paper, can partially be tackled by employing larger step sizes. For example, if some appropriate recombination strategy,
which can generate large step sizes, is employed, the EA can probably provide much larger step sizes in comparison
with bitwise mutation (adopting the commonly used mutation rate 1/n). Moreover, some adaptive/self-adaptive mutation
schemes might also be helpful to cope with the situation, since they can provide large step sizes in exploring the correct
attraction basin, and small large sizes in exploiting the correct basin. As a consequence, even if the whole population has
been trapped in a mistaken basin, it is still possible to find promising individuals in other basins of attraction. The related
investigations will be left as our future work.

8. Conclusion

In this paper, we have investigated the performance of an (N + N) EA with different population sizes on a multimodal
problem, namely TrapZeros. The theoretical results have revealed a problem characteristic that may lead to poor

3 (B, ln2 n/8 − 2, 1)-takeover, happened no later than the (η + α)th generation with an overwhelming probability.
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performances of population-based EAs, asmentioned in the last section. This is the first time that the influence of population
size on an (N+N) EA is analyzed theoretically. In addition, the proposed solvable rate, which is an intrinsic feature extracted
from the probability distribution of the first hitting time, offers an alternative choice for measuring the performance
of EA.

Deriving from a recently developed approach for analyzing EAs on unimodal problems [2] and following the well-known
building block hypothesis, the utilized takeover-upgrade technique is capable of characterizing the evolutionwithin a single
basin of attraction as repeated takeover-upgrade processes that accumulate enoughpromising individuals and then generate
better individuals by the accumulated individuals. In this paper, the successful application of this technique in modeling
population-based EAs on a multimodal problem has shed some light on analyzing more complicated population-based EAs
using similar techniques. To utilize such techniques, an elaborate procedure, as shown in the proof of Theorem 9, is required
to estimate the takeover times, which is directly related to the selection operator. In the future, we will further study the
EAs with different parent and offspring sizes, i.e., the (µ + λ) EAs. Moreover, we will combine the techniques with other
state-of-the-art analytical tools, so as to gain more insight into the impact of other operators (e.g., recombination) and the
corresponding parameter settings on the performance of EA.
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Appendix. Drift analysis

Drift analysis is a well-known technique for studying the time complexity of EAs [7,9]. Formally, let x∗ be the unique
optimum of the fitness function, let V (X) be the function that measures the distance between the population X and the
optimum x∗, then the one step mean drift at the tth generation of the EA, denoted by∆(X, t), is given by

∆(X, t) = E[V (ξt)− V (ξt+1) | ξt = X]

=


Y∈E

[V (X)− V (Y )] P(X, Y ; t),

where E is the whole population set. The transition probability is not time dependent, if no self-adaptive strategy is utilized
in the EA:

P(X, Y ; t) = P(X, Y ).

Under this circumstance, we simply use the notation∆(X) to represent the one step mean drift. Meanwhile, if

∆(X) = E[V (ξt)− V (ξt+1) | ξt = X] ≥ 0

holds for t = 0, 1, . . ., then {V (ξt) : t = 0, 1, . . .} is called a super-martingale. According to He and Yao [7,9], once we can
estimate the lower bound of the one step mean drift, then we can get the upper bound of the mean first hitting time by the
following lemma:

Lemma 11 (Drift Theorem [7]). Let {V (ξt) : t = 0, 1, . . .} be a super-martingale describing an EA, if for any time t = 1, 2, . . .,
if V (ξt) > 0 and

E[V (ξt)− V (ξt+1) | ξt ] ≥ cl > 0,

then the mean first hitting time satisfies

E[τ | ξ1] ≤
V (ξ1)
cl

,

where ξ1 is the initial population of the EA.

One of the key stepswhen applying drift analysis is to specify an appropriate distance function V (·). The following lemma
tells us thatwhen the expected first hitting time of a homogeneous absorbingMarkov chain, conditional on the starting state
X , is defined as the distance function for the population state X , the one step mean drift equals 1:

Lemma 12 ([9]). Let L : {Lt , t = 0, 1, . . .} be a homogeneous absorbing Markov chain defined on the space M, H ⊂ M be its
absorbing subspace. For L, its first hitting time to H, which is formally defined by

τ = min{t ≥ 0; Lt ∈ H},
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satisfiesE[τ |L0 = X] = 0, X ∈ H;

E[τ |L0 = X] −


Y∈M

P(X, Y )E[τ |L0 = Y ] = 1, X /∈ H,

where E[τ |L0 = X] is the expected first hitting time of the absorbing Markov chain L starting with the initial state L0 = X.

The proof of Lemma 4 will utilize the above lemmas.

Proof of Lemma 4

We offer the detailed proof for Eq. (8) in Lemma 4. Before bounding the mean of the first hitting time τ (A)ρ1,ρ2
, we have to

study the (A, k, ϵ)-takeover process (ρ1 ≤ k ≤ ρ2 ≤ ln2 n) by restricting the Markov chain on E(A)k under the condition ‘‘no
individual belonging to S0 has ever been generated before the first time the EA reaches E(A)ρ2 ’’. Formally, the above condition is
represented by

τ
(A)
ρ1,ρ2
t=1

(S0 ∩ ξt+1 = ∅).

The rest of the proof will be presented in the context of the above condition (for the sake of brevity we omit it when
presenting mathematical details).

The analysis follows a pessimistic style, which is quite similar to the proof of Proposition 1 in [2]. If the number of the
LOIAs of a population Z is smaller than ϵN , we ignore all potential emergences of advanced LOIAs. Once some advanced LOIA
is generated before the number of the LOIAs reaches ϵN , we assume pessimistically that each advanced LOIA is only a LOIA,
i.e., it is replaced by some LOIA that is randomly selected from the LOIAs in the current population. In response to this step,
the population Z is transformed to Y (Y ∈ E(A)k,i ). Afterward, according to the number of LOIAs, we consider two different
cases: ⌈ϵN⌉ ≤ i ≤ N and 1 ≤ i < ⌈ϵN⌉, and use the notation ‘‘→k’’ to represent the mapping from

n−2
j=k+1 E

(A)
j to E(A)k :

• If ⌈ϵN⌉ ≤ i ≤ N , then Z →k Y . (an advanced LOIA is mapped to a LOIA.)
• If 1 ≤ i < ⌈ϵN⌉, then Z →k Y ′, where Y ′ is obtained by replacing the best ⌈ϵN⌉ individuals of Y with ⌈ϵN⌉ randomly

selected LOIAs, Y ′
∈ E(A)k,⌈ϵN⌉

(advanced LOIAs are ignored, and the population is considered to be (A, k, ϵ)-taken over by
⌈ϵN⌉ LOIAs).

The aim of the above transformations is to restrict the whole (A, k, ϵ)-takeover process on the subspace E(A)k . The
consequence is that we can utilize an auxiliary homogeneous absorbing Markov chain (ζ (k)t , t = 0, 1, . . .) on E(A)k to study
the whole (A, k, ϵ)-takeover process. The transition probabilities of the auxiliary Markov chain are given by

P̄(X, Y ) =



P(X, Y ), X ≠ Y , X /∈

N
i=⌈ϵN⌉

E(A)k,i , Y /∈

N
i=⌈ϵN⌉

E(A)k,i ;

P(X, Y )+


Z∈
n−2

j=k+1 E(A)j ,Z→kY

P(X, Z), X ≠ Y , X /∈

N
i=⌈ϵN⌉

E(A)k,i , Y ∈

N
i=⌈ϵN⌉

E(A)k,i ;

0, X ≠ Y , X ∈

N
i=⌈ϵN⌉

E(A)k,i , Y ∈

N
i=⌈ϵN⌉

E(A)k,i ;

0, X ≠ Y , X ∈

N
i=⌈ϵN⌉

E(A)k,i , Y /∈

N
i=⌈ϵN⌉

E(A)k,i ;

1 −


Y ≠X

P̄(X, Y ), X = Y ,

(15)

where X, Y ∈ E(A)k . According to the definitions of transition probabilities presented in Eq. (15), we have
Y∈E(A)k

P̄(X, Y ) = 1.

Obviously,
N

i=⌈ϵN⌉
E(A)k,i


∪

n−2
j=k+1 E

(A)
j


is absorbing in ζ (k). The other subspaces are E(A)k,1 , . . . , E

(A)
k,⌈ϵN⌉−1. According to

Lemma 12, we know that for X ∈
⌈ϵN⌉−1

i=1 E(A)k,i ,
Y∈E(A)k


η̄
(A)
k,ϵ(X)− η̄

(A)
k,ϵ(Y )


P̄(X, Y ) = 1. (16)
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On the other hand, let ξtk be the population of the t thk generation. For ξtk ∈ E(A)k , we define its first hitting time to the
population set

n−2
j=k+1 E

(A)
j , starting from ξtk :

τ
(A)
k,k+1 = min


t ′k − tk ≥ 0; ξt ′k ∈

n−2
j=k+1

E(A)j , ξtk ∈ E(A)k


.

Themean first hitting time (to the set
n−2

j=k+1 E
(A)
j ) of the EA starting with the population ξtk = X , denoted by τ (A)k,k+1, is given

by

E

τ
(A)
k,k+1 | ξtk = X


=

∞
t=0

tP

τ
(A)
k,k+1 = t | ξtk = X


.

Let µtk(·) specify the probability distribution of the population at the t thk generation (note that we have assumed that
ξtk ∈ E(A)k ), then

E

τ
(A)
k,k+1


=


Y∈E(A)k

µtk(Y )E

τ
(A)
k,k+1 | ξtk = Y



is called themean first hitting time to population set
n−2

j=k+1 E
(A)
j . Nowwe utilize drift analysis to bound E


τ
(A)
k,k+1


. First, we

define a distance function V (k)(X) for X ∈ E(A)k ∪

n−2
j=k+1 E

(A)
j


(ρ1 ≤ k ≤ ρ2 ≤ ln2 n):

V (k)(X) =


0, ∀X ∈

n−2
j=k+1 E

(A)
j ;

1/u(A)k,ϵ + η̄
(A)
k,ϵ(X), ∀X ∈ E(A)k .

For each population set E(A)k (k = 1, . . . , n), we show that the one step mean drift of the populations is no less than some
positive constant. Given a population X ∈ E(A)k , let ∆(X) be its one step mean drift. The estimation of one step mean drift
involves two different cases (Eq. (17) and Eq. (19)).

For X ∈

N
i=⌈ϵN⌉

E(A)k,i


, Y ∈ E(A)k ∪

n−2
j=k+1 E

(A)
j


,

∆(X) =


Y∈
n−2

j=k+1 E(A)j


V (k)(X)− V (k)(Y )


P(X, Y )+


Y∈E(A)k


V (k)(X)− V (k)(Y )


P(X, Y )

≥ 1 −


Y∈
⌈ϵN⌉−1

i=1 E(A)k,i

η̄
(A)
k,ϵ (Y )P(X, Y ) (17)

≥ 1 − max
Y∈
⌈ϵN⌉−1

i=1 E(A)k,i

{P(X, Y )} ·


Y∈
⌈ϵN⌉−1

i=1 E(A)k,i

η̄
(A)
k,ϵ (Y ) = 1 (18)

holds since the truncation selection operator always preserves the bestN individuals among the 2N individuals in the parent
and offspring populations of each generation.

For X ∈

⌈ϵN⌉−1
i=1 E(A)k,i


, Y ∈ E(A)k ∪

n−2
j=k+1 E

(A)
j


,

∆(X) =


Y∈
n−2

j=k+1 E(A)j


V (k)(X)− V (k)(Y )


P(X, Y )+


Y∈E(A)k


V (k)(X)− V (k)(Y )


P(X, Y )

≥

 
Y∈
n−2

j=k+1 E(A)j

+


Y∈
N

i=⌈ϵN⌉
E(A)k,i

 η̄(A)k,ϵ (X)P(X, Y )+


Y∈
⌈ϵN⌉−1

i=1 E(A)k,i


η̄
(A)
k,ϵ (X)− η̄

(A)
k,ϵ (Y )


P(X, Y )

=


Y∈
N

i=⌈ϵN⌉
E(A)k,i

η̄
(A)
k,ϵ (X)P̄(X, Y )+


Y∈
⌈ϵN⌉−1

i=1 E(A)k,i


η̄
(A)
k,ϵ (X)− η̄

(A)
k,ϵ (Y )


P(X, Y )

=


Y∈E(A)k


η̄
(A)
k,ϵ (X)− η̄

(A)
k,ϵ (Y )


P̄(X, Y ) = 1, (19)

where Eq. (19) holds because of Eq. (16). The results presented in Eq. (17) and Eq. (19) show that the one step mean drift of
X (X ∈ E(A)k ) is always no less than 1. According to Lemma 11 and Eq. (5), we further have

E

τ
(A)
k,k+1 | ξtk = X


= 1/u(A)k,ϵ + η̄

(A)
k,ϵ(X) = O


1/u(A)k,ϵ + η̄(A)ϵ


.
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Then the first hitting time from E(A)k to E−

k satisfies:

E

τ
(A)
k,k+1


=


X∈E(A)k

µtk(X)E

τ
(A)
k,k+1 | ξtk = X


= O


1/u(A)k,ϵ + η̄(A)ϵ

 
X∈E(A)k

µtk(X)

= O

1/u(A)k,ϵ + η̄(A)ϵ


.

For X ∈ E(A)k′ (k′
≠ k, ρ1 ≤ k′

≤ ρ2 ≤ ln2 n), we can obtain the same upper bound by the same techniques. In the meantime,
the truncation selection operator of the EA always preserves the best individual in every generation (ESS), thus once the
population of the EA has reached

n−2
j=k+1 E

(A)
j , it will never return to E(A)k again. Hence, combining the conditional means of

τ
(A)
k,k+1 with respect to different k, we have proved the first part of Lemma 4:

E

τ (A)ρ1,ρ2

 τ
(A)
ρ1,ρ2
t=1

(S0 ∩ ξt+1 = ∅)

 = O


ρ2

k=ρ1+1


η̄(A)ϵ + 1/u(A)k,ϵ


;

The second part of Lemma 4 (Eq. (8)) can be proved in a similar way, except that the condition ‘‘no individual belonging
to S0 has ever been generated before the first time the EA reaches E(A)ρ2 ’’ is no longer required. �

Proof of Lemma 5

Proof. The idea of the proof is straightforward: in the worst case, the (N + N) EA should spend ρ2 − ρ1 repeated takeover-
upgrade processes in which no individual belonging to S∗ has ever been generated before the first time the EA reaches
E(B)ρ2 . Instead of considering the mean of the first hitting time from E(B)ρ1 to E(B)ρ2 , we consider the upper bound of the first
hitting time which holds with an overwhelming probability, i.e., a probability that is super-polynomially close to 1. Since
the truncation selection is adopted by the EA, such an upper bound can be obtained by combining directly the upper bounds
of the takeover and upgrade times together. As it is defined, with an overwhelming probability, η̂(B)ϵ is an upper bound of
the (B, i, ϵ)-takeover time η(B)i,ϵ (ξti) for any population ξti ∈ E(B)i , where i ∈ {0, . . . , n − 2} holds.

In addition, to prove the lemma,we have to prove that ln3 n is an upper bound of the upgrade timewith an overwhelming
probability. Linking the above proposition to a variable X obeying the geometric distribution with parameter u(B)i,ϵ , the
probability that X is bounded from above by ln3 n can be calculated as follows:

P

X ≤ ln3 n


=

ln3 n
k=1

P[X = k] = 1 −

+∞
ln3 n+1

P[X = k]

= 1 −

+∞
k=ln3 n+1


1 − u(B)i,ϵ

k−1
u(B)i,ϵ = 1 −


1 − u(B)i,ϵ

ln3 n
. (20)

Concerning the upgrade probability u(B)i,ϵ , we can estimate its lower bound under the condition N = Ω(n/ ln n). Given the

population ξtρ ∈


∪

N
i=ϵNE

(A)
ρ,i


containing at least ϵN LOIBs, u(B)i,ϵ is bounded from below:

u(B)i,ϵ ≥ 1 −


1 −

1
n


1 −

1
n

n−1
ϵN

≥ 1 −


1 −

1
e2n

ϵN
≥ 1 − e−

ϵN
e2n .

Noting that the population size N satisfies N = Ω(n/ ln n), the above inequality implies

u(B)i,ϵ ≥ 1 − e−
ϵN
e2n = 1 − e−Ω(1/ ln n)

= Ω


1

ln n


.

By inserting the above inequality into Eq. (20), we obtain

P

X ≤ ln3 n


= 1 −


1 − u(B)i,ϵ

ln3 n
= 1 −


1 −Ω


1

ln n

ln3 n

≥ 1 − e−Ω(ln2 n), (21)

which is super-polynomially close to 1. Given the population ξti ∈


∪

N
k=ϵNE

(A)
i,k


at the t thi generation (ρ1 ≤ i ≤ ρ2), the

(B, i, ϵ)-upgrade time be φ(B)i,ϵ (ξtρ ) obeys the geometric distribution with parameter u(B)i,ϵ . Hence, by replacing the variable X
with φ(B)i,ϵ (ξti) in Eq. (21), we know that φ(B)i,ϵ (ξtρ ) is bounded from above by ln3 n with an overwhelming probability. Noting
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that ∀i ∈ {0, . . . , n − 2},∀ξti ∈ E(B)i : P

η
(B)
i,ϵ (ξti) ≤ η̂(B)ϵ


≻ 1 − 1/SuperPoly(n) (condition of Lemma 5), following the

proof idea presented at the beginning of the proof, we have proved that the upper bound of the first hitting time, shown in
Eq. (10), holds with an overwhelming probability, i.e., a probability that is super-polynomially close to 1. �

Proof of Lemma 7

Let Zt+1 be the number of generated LOIAs at the (t + 1)th generation. Given that c ∈ (0, 1) is a constant, for
Xt < N/(1 + ch)we have

P

Zt+1 > c · E[Zt+1|Xt , S0 ∩ ξt+1 = ∅]

Xt <
N

1 + ch


= P


E[Zt+1|Xt , S0 ∩ ξt+1 = ∅] − Zt+1 < (1 − c) · E[Zt+1|Xt , S0 ∩ ξt+1 = ∅]

Xt <
N

1 + ch


> P

E[Zt+1|Xt , S0 ∩ ξt+1 = ∅] − Zt+1

 < (1 − c) · E[Zt+1|Xt , S0 ∩ ξt+1 = ∅]

Xt <
N

1 + ch


= 1 − P

Zt+1 − E[Zt+1|Xt , S0 ∩ ξt+1 = ∅]

 ≥ (1 − c) · E[Zt+1|Xt , S0 ∩ ξt+1 = ∅]

Xt <
N

1 + ch


≥ 1 −

Var[Zt+1|Xt <
N

1+ch , S0 ∩ ξt+1 = ∅]

(1 − c)2E2[Zt+1|Xt <
N

1+ch , S0 ∩ ξt+1 = ∅]
= 1 −

Xth(1 − h)
(1 − c)2X2

t h2
= 1 −

1 − h
(1 − c)2Xth

, (22)

where in Eq. (22) we utilize the fact that the newly generated LOIAs can all be accepted4 (where Xt < N/(1+ ch) holds), the
number of newly generated LOIAs obeys the binomial distribution [15]. Hence, by considering the total number of LOIAs at
the end of the (t + 1)th generation, we know that

P

Xt+1 > (1 + ch)Xt

Xt <
N

1 + ch
, S0 ∩ ξt+1 = ∅


> 1 −

1 − h
(1 − c)2Xth

(23)

holds, where c ∈ (0, 1) is a constant. �
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