6 research outputs found

    Hardware Implementation of Efficient Elliptic Curve Scalar Multiplication using Vedic Multiplier

    Get PDF
    This paper presents an area efficient and high-speed FPGA implementation of scalar multiplication using a Vedic multiplier. Scalar multiplication is the most important operation in Elliptic Curve Cryptography(ECC), which used for public key generation and the performance of ECC greatly depends on it. The scalar multiplication is multiplying integer k with scalar P to compute  Q=kP, where k is private key and P is a base point on the Elliptic curve. The Scalar multiplication underlying finite field arithmetic operation i.e. addition multiplication, squaring and inversion to compute Q. From these finite field operations, multiplication is the most time-consuming operation, occupy more device space and it dominates the speed of Scalar multiplication. This paper presents an efficient implementation of finite field multiplication using a Vedic multiplier.  The scalar multiplier is designed over Galois Binary field GF(2233) for field size=233-bit which is secured curve according to NIST.  The performances of the proposed design are evaluated by comparing it with  Karatsuba based scalar multiplier for area and delay. The results show that the proposed scalar multiplication using Vedic multiplier has consumed 22% less area on FPGA and also has 12% less delay, than Karatsuba, based scalar multiplier. The scalar multiplier is coded in Verilog HDL, synthesize and simulated in Xilinx 13.2 ISE on Virtex6 FPGA

    An Area Aware Accelerator for Elliptic Curve Point Multiplication

    Get PDF
    This work presents a hardware accelerator, for the optimization of latency and area at the same time, to improve the performance of point multiplication process in Elliptic Curve Cryptography. In order to reduce the overall computation time in the proposed 2-stage pipelined architecture, a rescheduling of point addition and point doubling instructions is performed along with an efficient use of required memory locations. Furthermore, a 41-bit multiplier is also proposed. Consequently, the FPGA and ASIC implementation results have been provided. The performance comparison with state-of-the-art implementations, in terms of latency and area, proves the significance of the proposed accelerator

    IMPLEMENTATION OF DOUBLE ENCRYPTION USING ELGAMAL AND KNAPSACK ALGORITHM ON FPGA FOR NODES IN WIRELESS SENSOR NETWORKS

    Get PDF
    The primary objective of this proposed work is to implement elliptical curve cryptography with matrix mapping techniques and knapsack algorithm for information encryption and decryption in nodes of Wireless Sensor Networks. In this paper through mapping method there is complication to guess the phrases as it does not show any regularity and knapsack algorithm avoids brute drive attack by growing confusions. The modules are integrated to perform matrix mapping, Knapsack encryption, knapsack decryption and de mapping. Verilog language is used for coding and simulation is completing on Xilinx ISE 13.4 and Spartan 6, Kintex 5 and Artix 7 FPGAs are used as the hardware. The complete crypto process is executed with frequency of 503.702 MHz. No Maximum combinational path delay is found in the implementation of modules. In comparison with previous works the area utilization in this work is very less, thus satisfying the resource constraints‟ of wireless sensor nodes

    High-speed Hardware Implementations of Point Multiplication for Binary Edwards and Generalized Hessian Curves

    Get PDF
    In this paper high-speed hardware architectures of point multiplication based on Montgomery ladder algorithm for binary Edwards and generalized Hessian curves in Gaussian normal basis are presented. Computations of the point addition and point doubling in the proposed architecture are concurrently performed by pipelined digit-serial finite field multipliers. The multipliers in parallel form are scheduled for lower number of clock cycles. The structure of proposed digit-serial Gaussian normal basis multiplier is constructed based on regular and low-cost modules of exponentiation by powers of two and multiplication by normal elements. Therefore, the structures are area efficient and have low critical path delay. Implementation results of the proposed architectures on Virtex-5 XC5VLX110 FPGA show that then execution time of the point multiplication for binary Edwards and generalized Hessian curves over GF(2163) and GF(2233) are 8.62µs and 11.03µs respectively. The proposed architectures have high-performance and high-speed compared to other works

    High Speed and Low Latency ECC Implementation over GF(2m) on FPGA

    Get PDF
    In this paper, a novel high-speed elliptic curve cryptography (ECC) processor implementation for point multiplication (PM) on field-programmable gate array (FPGA) is proposed. A new segmented pipelined full-precision multiplier is used to reduce the latency, and the Lopez-Dahab Montgomery PM algorithm is modified for careful scheduling to avoid data dependency resulting in a drastic reduction in the number of clock cycles (CCs) required. The proposed ECC architecture has been implemented on Xilinx FPGAs' Virtex4, Virtex5, and Virtex7 families. To the best of our knowledge, our single- and three-multiplier-based designs show the fastest performance to date when compared with reported works individually. Our one-multiplier-based ECC processor also achieves the highest reported speed together with the best reported area-time performance on Virtex4 (5.32 μs at 210 MHz), on Virtex5 (4.91 μs at 228 MHz), and on the more advanced Virtex7 (3.18 μs at 352 MHz). Finally, the proposed three-multiplier-based ECC implementation is the first work reporting the lowest number of CCs and the fastest ECC processor design on FPGA (450 CCs to get 2.83 μs on Virtex7)

    Efficient Design and implementation of Elliptic Curve Cryptography on FPGA

    Get PDF
    corecore