
High-speed Hardware Implementations of Point Multiplication

for Binary Edwards and Generalized Hessian Curves

Bahram Rashidi1, Reza Rezaeian Farashahi2, Sayed Masoud Sayedi3
1,3Dept. of Elec. & Comp. Eng., Isfahan University of Technology, Isfahan 84156-83111, Iran

2Dept. of Mathematical Sciences, Isfahan University of Technology, Isfahan 84156-83111, Iran
1b.rashidi@ec.iut.ac.ir, 2farashahi@cc.iut.ac.ir, 3m_sayedi@cc.iut.ac.ir,

Abstract— In this paper high-speed hardware architectures of point multiplication based on Montgomery ladder

algorithm for binary Edwards and generalized Hessian curves in Gaussian normal basis are presented. Computations

of the point addition and point doubling in the proposed architecture are concurrently performed by pipelined digit-

serial finite field multipliers. The multipliers in parallel form are scheduled for lower number of clock cycles. The

structure of proposed digit-serial Gaussian normal basis multiplier is constructed based on regular and low-cost

modules of exponentiation by powers of two and multiplication by normal elements. Therefore, the structures are

area efficient and have low critical path delay. Implementation results of the proposed architectures on Virtex-5

XC5VLX110 FPGA show that then execution time of the point multiplication for binary Edwards and generalized

Hessian curves over GF(2163) and GF(2233) are 8.62µs and 11.03µs respectively. The proposed architectures have

high-performance and high-speed compared to other works.

Keywords: Elliptic Curve Cryptosystems, Point multiplication, Finite Fields, Gaussian normal basis, Binary Edwards

curves, generalized Hessian curves, FPGA.

1. Introduction

The elliptic curve cryptosystem (ECC) was presented in mid 1980s independently by Neil Koblitz [1] and

Victor Miler [2]. ECC is a public key (PKC) scheme with a relatively small key size in which elliptic curves

over finite fields (Galois fields (GF)) are applied. The point multiplication or scalar multiplication is the main

operation in this cryptosystem. Therefore, efficient implementation of this operation can lead to high-

performance and high-speed crypto-processors. In recent years, for hardware implementation of ECC mostly

binary finite fields GF(2m) is considered, because addition operation in the binary field is carry free and can be

realized by a simple bit-wise XOR, with a time delay of one XOR gate. In addition, in the normal basis, the

squaring operation is implemented by a simple cyclic shift. It makes the binary finite fields with normal basis

representation a suitable choice for efficient hardware implementation of ECC.

Many different FPGA-based hardware implementations of the point multiplication on binary elliptic curves have

been reported [3-14]. For example, the proposed architecture in [6] is based on a modified Lopez-Dahab elliptic

curve point multiplication algorithm, and uses Gaussian normal basis (GNB) for GF(2163) field arithmetic. In [7]

the structure is implemented in parallel. Also, the critical path of the Lopez-Dahab point multiplication

architecture is reorganized and reordered so that the operations in the critical path are diverted into the

noncritical paths. In [11] a theoretical model is used to approximate the delay of different field operations in

point multiplication architecture implemented on k-input lookup-tables on FPGA. In addition, a suitable

scheduling for performing point addition and doubling operations in the pipelined data path of the architecture is

illustrated. The works presented in [12-14] are based on binary Edwards and generalized Hessian curves. In [12]

the design of an FPGA-based binary Edwards curves processor is explained. In [13] by using parallelization

technique in higher levels full resource utilization is achieved in computing point addition and point doubling

formulas for both binary Edwards and generalized Hessian curves. Here, differential formulations for computing

point multiplication are used through which a LUT-based pipelined and efficient digit-level GNB multiplier is

employed. In [14] to reduce the latency of point multiplication, an analysis of data-flow and maximum number

of parallel multipliers is employed. And the addition and doubling formulations are modified and a new

proposed digit-level hybrid-double GNB multiplier is employed to remove the data dependencies and hence

reduce the latency of point multiplication.

 The present paper focuses on the hardware implementation of a high-speed and high-performance architecture

of Montgomery ladder point multiplication for binary Edwards and generalized binary Hessian curves over

GF(2m). In the proposed structure, to reduce the number of clock cycles, field multipliers are in parallel form for

computations of point addition and point doubling. In addition, our previously proposed efficient pipelined

digit-serial Gaussian normal basis multiplier [15] is used. The multiplier has a highly regular structure with low

critical path delay and low hardware resources. The proposed structures of point multiplication use only three

and four units of field multipliers for the particular and general forms of binary Edwards curves respectively.

Also, three field multipliers is used for generalized Hessian curves. The multipliers are shared and scheduled for

lower number of clock cycles during point multiplication process.

mailto:1b.rashidi@ec.iut.ac.ir
mailto:3m_sayedi@cc.iut.ac.ir

 The rest of the paper is organized as follows. In section 2, a mathematical background on the finite fields and a

brief description of binary generic curves (BGCs), binary Edwards and generalized binary Hessian curves are

presented. The structure of the digit-serial Gaussian normal basis multiplier is presented in section 3. The

proposed structures of Montgomery ladder point multiplication for binary Edwards and generalized Hessian

curves are presented in sections 4 and 5. Next, a comparison between this work and other related works is given

in section 6. The paper is concluded in section 7.

2. Mathematics background

2.1. Gaussian Normal Basis

The binary finite fields are attractive fields for hardware implementation. In these fields the addition operation is

implemented by a simple bit-wise XOR operation. Moreover, the efficiency of the multiplication operation

depends on the method of representing elements of the binary finite field. There are two main applicable

bases called polynomial basis (PB) and normal basis (NB). The multiplication is performed efficiently in

PB, but the squaring is much more efficient in NB in terms of hardware implementation. There are special types

of NB representation where the multiplication is also implemented efficiently. In this paper, we consider the

Gaussian normal basis representation (GNB) for a binary finite field.

In the following a brief discussion on NB representation is presented. Let GF(2m) be the binary finite field of

order 2m. The element 𝛽 is a normal element of GF(2m) if the set {𝛽, 𝛽2, … , 𝛽2
𝑚−1
} is a basis for the vector space

GF(2m) over GF(2). For any binary finite field such a basis exists, and it is called normal basis. Using 𝛽, every

element 𝐴 in GF(2m) can be represented as 𝐴 = ∑ 𝑎𝑖𝛽
2𝑖𝑚−1

𝑖=0 , where 𝑎𝑖 ∈ GF(2). For simplicity, we write 𝐴 =
(𝑎𝑚−1, 𝑎𝑚−2, … , 𝑎1, 𝑎0). The squaring of element 𝐴 is computed as:

𝐴2 = 𝑎𝑚−1𝛽 + ∑ 𝑎𝑖−1𝛽
2𝑖

𝑚−1

𝑖=1

which can be performed by a simple cyclic shift as:

𝐴2 = (𝑎𝑚−2, 𝑎𝑚−3, … , 𝑎0, 𝑎𝑚−1).

Let 𝐶 be the multiplication of elements 𝐴, 𝐵 in GF(2m), as:

𝐶 = 𝐴𝐵 = ∑ 𝑎𝑖𝛽
2𝑖

𝑚−1

𝑖=0

∑ 𝑏𝑗𝛽
2𝑗 = ∑ ∑ 𝑎𝑖𝑏𝑗𝛽

2𝑖+2𝑗
𝑚−1

𝑗=0

𝑚−1

𝑖=0

𝑚−1

𝑗=0

.

The element 𝛽2
𝑖+2𝑗 is represented by

𝛽2
𝑖+2𝑗 = ∑ 𝑀𝑖𝑗

(𝑘)
𝛽2

𝑘

𝑚−1

𝑘=0

, 𝑀𝑖𝑗
(𝑘)
∈ GF(2).

Thus,

𝐶 = ∑ ∑ 𝑎𝑖𝑏𝑗 ∑𝑀𝑖𝑗
(𝑘)
𝛽2

𝑘

𝑚−1

𝑘=0

𝑚−1

𝑗=0

= ∑ 𝑐𝑘𝛽
2𝑘

𝑚−1

𝑘=0

𝑚−1

𝑖=0

, 𝑐𝑘 = ∑ ∑ 𝑎𝑖𝑏𝑗𝑀𝑖𝑗
(𝑘)

𝑚−1

𝑗−0

𝑚−1

𝑖=0

.

Here 𝑀(𝑘) is an 𝑚 by 𝑚 symmetric matrix with entries 𝑀𝑖𝑗
(𝑘)

 in GF(2). The matrix 𝑀(𝑘) is computed by the k-

cyclic right and down shift to entries of matrix 𝑀(0) ; i.e., for the indices 𝑖, 𝑗, 𝑘 = 0,… ,𝑚 − 1, considered

modulo 𝑚, we have 𝑀𝑖+1 𝑗+1
(𝑘+1)

= 𝑀𝑖𝑗
(𝑘)

. Matrix 𝑀(0) is called multiplication matrix that we denote it by 𝑀. The

complexity of the hardware implementation of a normal basis multiplication is related to the number of nonzero

entries of the matrix 𝑀, that is a crucial parameter for the speed of the system. The Gaussian normal basis

representation is a special class of normal basis representation that make multiplication simpler and more

efficient [16-17].

For the binary finite field GF(2m) where 𝑚 is not divisible by 8, a Gaussian normal basis representation exists.

More precisely, for GF(2m) and a given positive integer 𝑇, let 𝑝 = 𝑚𝑇 + 1 be a prime number and let 𝑘 be the

multiplicative order of 2 module 𝑝. If gcd(𝑚𝑇/𝑘,𝑚) = 1, then a GNB of type 𝑇 exists. The time and area

complexity of the multiplication operation in GF(2m) depends on the type of the normal basis which is related to

the number of nonzero entries of the multiplication matrix.

The GNB is considered in several standards such as IEEE P1363 [17] and NIST [18]. For example the binary

finite fields GF(2163), GF(2233), GF(2283), GF(2409) and GF(2571) of corresponding types 4,2,6,4 and 10 are

recommended by these two standards. In this work, we consider the GNBs of even types with odd values of 𝑚

which are applicable for cryptographic applications.

2.2. Binary Elliptic Curves

 Elliptic curves defined over GF(2m) are called binary elliptic curves. An ordinary binary elliptic curve is

given by the traditional Weierstrass equation

𝐸 ∶ 𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑎𝑥2 + 𝑏,

where 𝑎, 𝑏 ∈ GF(2m) and 𝑏 ≠ 0. The set of GF(2m)-rational points on 𝐸 including the point at infinity O is

denoted by 𝐸(GF(2𝑚)), i.e., the set

𝐸𝑎,𝑏(GF(2
𝑚)) = {(𝑥, 𝑦): 𝑥, 𝑦 ∈ GF(2𝑚), 𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑎𝑥2 + 𝑏} ∪ {𝑂}.

This set of points by the well know addition law [19] forms an Abelian additive group where O is the neutral

element. The point addition (PA) formulas carry out the addition of two different points, and the point doubling

(PD) formulas output the addition of a point with itself. The addition and doubling formulas are performed in

several coordinate systems such as affine, projective, Jacobian and Lopez-Dahab.

The most important operation of elliptic curve cryptography is point multiplication or scalar multiplication. The

scalar multiplication includes a sequence of point additions and point doublings. One efficient and popular point

multiplication algorithm is the Montgomery ladder point multiplication [20] that is generalized to binary elliptic

curves by Lopez-Dahab [21]. Algorithm 1 shows the Montgomery ladder point multiplication that uses

differential addition and doubling formulas.

Algorithm1: Montgomery ladder point multiplication

Input: 𝒌 = (𝒌𝒎−𝟏, 𝒌𝒎−𝟐, … , 𝒌𝟐, 𝒌𝟏, 𝒌𝟎)𝟐 with 𝒌𝒎−𝟏 = 𝟏.
𝑷 = (𝒙, 𝒚) ∈ 𝑬/GF(2m).

Output: w(𝒌𝑷)
1. Initial values

𝒘𝟎 ≔w(𝑷),𝑾𝟏 ≔ 𝒘𝟎, 𝒁𝟏 ≔1;

(𝑾𝟐, 𝒁𝟐) ≔ Double(𝑾𝟏, 𝒁𝟏);

2. Loop iterations part

For 𝒊 = 𝒎− 𝟐 to 0 do

 If 𝒌𝒊 = 𝟏 then

 (𝑾𝟏, 𝒁𝟏) ≔dAdd (𝑾𝟏, 𝒁𝟏, 𝑾𝟐, 𝒁𝟐, 𝒘𝟎);
 (𝑾𝟐, 𝒁𝟐) ≔ Double (𝑾𝟐, 𝒁𝟐);
 Else

 (𝑾𝟐, 𝒁𝟐) ≔ dAdd (𝑾𝟏, 𝒁𝟏, 𝑾𝟐, 𝒁𝟐, 𝒘𝟎);
 (𝑾𝟏, 𝒁𝟏) ≔Double (𝑾𝟏, 𝒁𝟏);
 End if;

 End for;

Return w(𝒌𝑷)<= (𝑾𝟏, 𝒁𝟏) and w((𝒌 + 𝟏)𝑷)<= (𝑾𝟐, 𝒁𝟐)

Here, we briefly describe the differential coordinate system used in Algorithm 1. Let w be a rational function on

the elliptic curve 𝐸 over GF(2m). So, for 𝑃 in 𝐸(GF(2𝑚)), w(𝑃) belongs to GF(2m). Suppose, for each point 𝑃

in 𝐸, we have w(𝑃) =w(−𝑃), where –𝑃 is the additive inverse of 𝑃. The differential addition formulas compute

w(𝑃 + 𝑄) for a given w(𝑃) and w(𝑄) and w(𝑃 − 𝑄) and the differential doubling formulas output w(2𝑃) for a

given w(𝑃). In Algorithm 1, the differential addition and doubling formulas are performed by the functions

“dAdd” and “Double” respectively. And for a positive integer 𝑘 and a point 𝑃 in 𝐸, w(𝑘𝑃) is computed by

using the Montgomery ladder scalar multiplication. It computes w(𝑘𝑃) in recursive method by computing

w(2𝑖𝑃) , w((2𝑖 + 1)𝑃) from w(𝑖𝑃) , w((𝑖 + 1)𝑃) and w(𝑃) using the differential addition and doubling

formulas. To avoid the costly field inversion operation, the projective coordinate system is applied, that is, for

an affine point 𝑃 in 𝐸 we write w(𝑃) =
𝑊

𝑍
, where 𝑊,𝑍 ∈ GF(2m) and we represent the point 𝑃 as (𝑊: 𝑍) .

Algorithm 1, for the inputs 𝑘 and 𝑤0 =w(𝑃) outputs (𝑊1, 𝑍1) as the projective representation of w(𝑘𝑃) .

Furthermore, in the final step of the algorithm (𝑊2, 𝑍2) represents w((𝑘 + 1)𝑃). This helps to recover the point

𝑘𝑃.

Notice, for the binary elliptic curve 𝐸 in Weierstrass equation, for a point 𝑃 = (𝑥, 𝑦) in 𝐸, the function w is

normally defined by w(𝑃) = 𝑥. Also, Lopez-Dahab formulas are used in Montgomery ladder.

2.3. Binary Edwards Curves

Elliptic curves are traditionally represented by the Weierstrass equations. Moreover, they are represented by

alternative curve shapes to provide further efficiency and speed for cryptographic applications. The binary

Edwards curves (BEC) are elliptic curves over binary fields presented in [22]. These curves provided the first

complete addition formulas for binary elliptic curves, i.e., the formulas that compute the addition of all pairs of

input points, with no exceptional cases. Moreover, the family of complete binary Edwards curves is complete,

which means every ordinary elliptic curve can be represented by a complete binary Edwards curve. A binary

Edwards curve over GF(2m) is given by

𝐸𝑑1,𝑑2: 𝑑1(𝑥 + 𝑦) + 𝑑2(𝑥
2 + 𝑦2) = 𝑥𝑦 + 𝑥𝑦(𝑥 + 𝑦) + 𝑥2𝑦2

where 𝑑1, 𝑑2 ∈ GF(2m) with 𝑑1 ≠ 0 and 𝑑2 ≠ 𝑑1
2 + 𝑑1. The curve has a symmetric equation with a symmetric

addition law. The point (0, 0) is the neutral element of the addition law and the point (1, 1) is of order 2. The

negative of the point (𝑥, 𝑦) is the point (𝑦, 𝑥). The addition law on binary Edwards is unified that means the

doubling of a point on the curve can be computed by the addition of a point with itself. Furthermore, the

addition law on binary Edwards over GF(2m) is complete if 𝐓𝐫(𝑑2) = 1. Here 𝐓𝐫 is denoted the trace function

over GF(2m); where for α in GF(2m), 𝐓𝐫(α) = ∑ α2𝑖𝑚−1
𝑖=0 .

The explicit formulas are presented in [22] for affine addition, projective addition, and mixed addition on binary

Edwards curves. In comparison with the Weierstrass curves, the formulas are not faster but have the properties

of being unified and, for 𝐓𝐫(𝑑2) = 1, complete. The dedicated doubling formulas are also presented in affine

and projective coordinates. The doubling formulas are quite comparatively fast and are also complete for

complete binary Edwards curves. The recently presented formulas for mixed point addition in [23] are not

complete. In this case we have exception points.

The fast explicit formulas for differential addition on binary Edwards curves are presented in [22]. For the

binary Edwards curve 𝐸𝑑1,𝑑2 , for a point 𝑃 = (𝑥, 𝑦) in 𝐸𝑑1,𝑑2 , the function w is defined by w(𝑃) = 𝑥 + 𝑦 .

Notice, w(−𝑃) =w(𝑃), since −𝑃 = (𝑦, 𝑥). Assume that for the points 𝑃1 and 𝑃2 on 𝐸𝑑1,𝑑2 , w(𝑃1) and w(𝑃2)

are given as fractions
𝑊1

𝑍1
 and

𝑊2

𝑍2
. Let 𝑃 = 𝑃1 − 𝑃2 with 𝑤0 =w(𝑃), as a field element is given. For the point 𝑃𝑎,

the addition of 𝑃1, 𝑃2, the value w(𝑃𝑎) =
𝑊𝑎

𝑍𝑎
 is computed as follows:

𝐶 = 𝑊1 ⨯ (𝑍1 +𝑊1), 𝐷 = 𝑊2 ⨯ (𝑍2 +𝑊2), 𝐸 = 𝑍1 ⨯ 𝑍2, 𝐹 = 𝑊1 ⨯𝑊2,
𝑉 = 𝐶 ⨯ 𝐷, 𝑍𝑎 = 𝑉 + (𝑒1 ⨯ 𝐸 + 𝑒2 ⨯ 𝐹)

2,𝑊𝑎 = 𝑉 + 𝑤0 ⨯ 𝑍𝑎

where, 𝑒1 = √𝑑1 and 𝑒2 = √
𝑑2

𝑑1
+ 1.

For the point 𝑃𝑑, the doubling of 𝑃1, the value w(𝑃𝑑) =
𝑊𝑑

𝑍𝑑
 is computed as follows:

𝐶 = 𝑊1 ⨯ (𝑍1 +𝑊1),𝑊𝑑 = 𝐶
2,

𝑍𝑑 = 𝑊𝑑 + ((𝑒3 ⨯ 𝑍1 + 𝑒4 ⨯𝑊1)
2)2

where, 𝑒3 = √𝑑1
4

 and 𝑒4 = √
𝑑2

𝑑1
+ 1

4
.

If 𝑑1 = 𝑑2, then the explicit formulas for the point addition are

𝐶 = 𝑊1 ⨯ (𝑍1 +𝑊1), 𝐷 = 𝑊2 ⨯ (𝑍2 +𝑊2), 𝐸 = 𝑍1 ⨯ 𝑍2, 𝑉 = 𝐶 ⨯ 𝐷,
𝑍𝑎 = 𝑉 + 𝑑1 ⨯ 𝐸

2,𝑊𝑎 = 𝑉 + 𝑤0 ⨯ 𝑍𝑎

The explicit formulas for point doubling in this case are

𝐶 = 𝑊1 ⨯ (𝑍1 +𝑊1),𝑊𝑑 = 𝐶
2, 𝑍𝑑 = 𝑑1 ⨯ (𝑍1

2)2 +𝑊𝑑

The scalar multiplication 𝑘𝑃, for the given positive integer 𝑘 and the point 𝑃 = (𝑥, 𝑦) in 𝐸𝑑1,𝑑2 , is performed

using the Montgomery ladder by Algorithm 1. Note that, in the initial values step of the Algorithm 1, the

element 𝑤0 =w(𝑃) equals 𝑥 + 𝑦. The Algorithm 1 outputs (𝑊1, 𝑍1), (𝑊2, 𝑍2) as the projective representations

of w(𝑘𝑃) and w((𝑘 + 1)𝑃).

2.4. Generalized binary Hessian Curves

The Hessian curve is an alternative symmetric curve shape representing an elliptic curve. The use of Hessian

form in cryptography has been studied because of its faster arithmetic compared to that of Weierstrass form.

Over a finite field, the family of generalized Hessian curves [24] covers more isomorphism classes of elliptic

curves and it is equivalent to the family of all elliptic curves with a point of order 3. These curves provide

efficient unified addition formulas which makes them interesting against side-channel attacks. They also have

complete addition formulas with suitably chosen parameters. A generalized Hessian curve over a binary finite

field GF(2m) is defined by a symmetric cubic equation as follows:

𝐻𝑐,𝑑 ∶ 𝑥3 + 𝑦3 + 𝑐 = 𝑑𝑥𝑦.

where 𝑐, 𝑑 ∈ GF(2m), 𝑐≠0 and 𝑑3≠27𝑐 . Clearly, this family covers the Hessian elliptic curves where 𝑐 = 1.

Notice that the Hessian addition formulas, called the Sylvester formulas, work for the family of generalized

Hessian, but these formulas are not unified. A suitable modification of the Sylvester formulas gives fast and

efficient unified addition formulas for generalized Hessian curves [24]. The neutral element of the group of

points on 𝐻𝑐,𝑑 is the point at infinity (1 : 1 : 0). For the point 𝑃 = (𝑥, 𝑦) on 𝐻𝑐,𝑑 the additive inverse is given by

−𝑃 = (𝑦, 𝑥). The explicit formulas are presented [23] for affine addition, projective addition, mixed addition,

doubling and tripling for binary generalized Hessian curves. The unified formulas are one of the fastest known

addition formulas on binary elliptic curves. Furthermore, the addition formulas are complete for generalized

Hessian curves over GF(2m) when c is not a cube in GF(2m). Moreover, very competitive differential addition

and doubling formulas have been presented [24] for generalized binary Hessian curves, where the mixed

differential addition and doubling formulas are also complete. For the binary generalized Hessian curve 𝐻𝑐,𝑑, the

function w is defined on the curve as follow.

For a point 𝑃 = (𝑥, 𝑦) on the curve, w (𝑃) is given by w (𝑃) = 𝑐 + 𝑑𝑥𝑦 , i.e., w (𝑃) = 𝑥3 + 𝑦3 . Clearly

w(−𝑃) =w(𝑃), since −𝑃 = (𝑦, 𝑥). The mixed w-coordinate differential addition and doubling on generalized

binary Hessian curve are given as follows. Assume that, for the points 𝑃1 and 𝑃2 on 𝐻𝑐,𝑑, the values w(𝑃1) and

w(𝑃2) are written as w(𝑃1) =
𝑊1

𝑍1
 and w(𝑃2) =

𝑊2

𝑍2
. Let 𝑤0 =w(𝑃1 − 𝑃2). For the point addition 𝑃𝑎 = 𝑃1 + 𝑃2

and the point doubling 𝑃𝑑 = 2𝑃1, the field elements w(𝑃𝑎) =
𝑊𝑎

𝑍𝑎
 and w(𝑃𝑑) =

𝑊𝑑

𝑍𝑑
 are computed as follows:

𝐴 = 𝑊1 ⨯ 𝑍2, 𝐵 = 𝑊2 ⨯ 𝑍1, 𝐶 = 𝐴 ⨯ 𝐵, 𝑈 = ℎ2 ⨯ 𝐶,
𝑍𝑎 = (𝐴 + 𝐵)

2,𝑊𝑎 = 𝑈 +𝑤0 ⨯ 𝑍𝑎

For doubling, we have

𝐴 = 𝑊1
2, 𝐵 = 𝑍1

2, 𝐶 = 𝐴 + ℎ1 ⨯ 𝐵,𝐷 = ℎ2 ⨯ 𝐵, 𝑊𝑑 = 𝐶
2, 𝑍𝑑 = 𝐴 ⨯ 𝐷

where ℎ1 = √𝑐
3(𝑑3 + 𝑐) and ℎ2 = 𝑑

3.

Now, the Algorithm 1 performs the Montgomery ladder computation of the point multiplication 𝑘𝑃, where 𝑘 is

a positive integer and 𝑃 = (𝑥, 𝑦) is the input point in 𝐻𝑐,𝑑. Notice, the initial value of the Algorithm 1 is the

element 𝑤0 =w(𝑃) = 𝑐 + 𝑑𝑥𝑦 and the outputs are (𝑊1, 𝑍1) and (𝑊2, 𝑍2) as the projective representation of

w(𝑘𝑃) and w(𝑘𝑃 + 𝑃).

3. Structure for Gaussian normal basis multiplier

The multiplication operation in GF(2m) has a high complexity structure compared to addition and squaring

operations. In recent years, several architectures of the normal basis and Gaussian normal basis (GNB)

multipliers are presented in [25-38]. In this section, the structure of the digit-serial Gaussian normal basis

multiplier that presented in [15] is explained.

Let 𝐴 and 𝐵 be two elements in GF(2m) and 𝐵 = [𝑏𝑚−1, 𝑏𝑚−2, … , 𝑏2, 𝑏1, 𝑏0]. Element 𝐵 is divided into 𝑑 words

of 𝑤 bits where 𝑑 = ⌈
𝑚

𝑤
⌉. In other words, we have:

𝐵 = 𝐵1 + 𝐵2 + 𝐵3 +⋯+ 𝐵𝑤 ,
where, for 𝑖 = 1,… , 𝑤,

𝐵𝑖 =∑𝑏𝑚−(𝑘−1)𝑤−𝑖 𝛽
2𝑚−(𝑘−1)𝑤−𝑖

𝑑

𝑘=1

.

Here we let 𝑏𝑖 = 0 if 𝑖 ≤ 0. Multiplication of elements 𝐴, 𝐵 in GF(2m) is written as:

 𝐶 = 𝐴𝐵 = 𝐴∑𝐵𝑖

𝑤

𝑖=1

 = ∑(∑𝑏𝑚−(𝑘−1)𝑤−𝑖 𝐴
2−(𝑤−𝑖)𝛽2

𝑚−𝑘𝑤

𝑑

𝑘=1

)

2𝑤−𝑖𝑤

𝑖=1

.

or we can rewrite it as following:

𝐶 =∑𝐶𝑖
2𝑤−𝑖 =

𝑤

𝑖=1

((…((𝐶1
2 + 𝐶2)

2
+ 𝐶3)

2

+⋯)
2

+ 𝐶𝑤),

where for 𝑖 = 1,… , 𝑤,

𝐶𝑖 =∑𝑏𝑚−(𝑘−1)𝑤−𝑖 𝐴
2−(𝑤−𝑖)𝛽2

𝑚−𝑘𝑤

𝑑

𝑘=1

To have a low-complexity and regular architecture of multiplication by 𝛽2
(𝑚−𝑘𝑤)

 the computation of 𝑦 =

𝑥𝛽2
(𝑚−𝑘𝑤)

 is performed in three steps. In the first step the exponentiation of the input 𝑥 by 2−(𝑚−𝑘𝑤) is done.

Then in the second step multiplication by 𝛽 is computed. And finally in the third step the exponentiation of the

result by 2(𝑚−𝑘𝑤) is performed. These operations result as follows:

𝑦 = 𝑥𝛽2
(𝑚−𝑘𝑤)

= ((𝑥2
−(𝑚−𝑘𝑤)

) 𝛽)
2(𝑚−𝑘𝑤)

.

Here, the multiplication by 𝛽 is the main part of the implementation, because the two other steps of

exponentiation by 2−(𝑚−𝑖𝑤) and 2(𝑚−𝑖𝑤) are free hardware, implemented only by cyclic shift. The details of

multiplication by 𝛽 are given in [15].

Considering above three mentioned steps, 𝐶𝑖 is rewritten as:

𝐶𝑖 =∑𝑏𝑚−(𝑘−1)𝑤−𝑖 (((𝐴
2−(𝑤−1))

2(𝑖−1)

)

2−(𝑚−𝑘𝑤)

𝛽)

2𝑚−𝑘𝑤

.

𝑑

𝑘=1

In the computation of 𝐶𝑖, the exponentiation by 2−(𝑚−𝑘𝑤) is performed in the following regular form:

((𝐴2
−(𝑤−1)

)
2(𝑖−1)

)

2−(𝑚−𝑘𝑤)

= (…(((𝐴2
−(𝑤−1)

)
2(𝑖−1)

)

2−(𝑚−𝑤)

)

2𝑤

…)

2𝑤

.

in which, first exponentiation by 2−(𝑚−𝑤) is computed, and then for 𝑘 = 2,3, … , 𝑑, exponentiation by 2−(𝑚−𝑘𝑤)
are generated sequentially using 𝑑-1 exponentiation by 2𝑤.

Fig.1 shows the structure for the digit-serial GNB multiplier over GF(2m).

1

0

Load β β β β β

bi

i[m-1:0]

i[m-1:0]

bm-1bm-w . . . bm-w-1bm-2w
. . . bm-2w-1bm-3w . . . bm-3w-1bm-4w . . . bm-(d-1)w-1

XOR Tree

b0. . .

C[m:0]

. . .

. . .

. . .

. . .

A[m:0]

bi

Fig.1. Structure of the digit-serial GNB multiplier over GF(2m)

As seen in the figure, a regular architecture for hardware implementation is provided. In this structure the blocks

of exponentiation by powers of 2 in the normal basis representation are implemented by wired cyclic shift. This

property is an important factor for the efficiency of the structure. In the point multiplication architecture, to

achieve a lower path delay, the structure of digit-serial GNB is pipelined. To apply this technique, the XOR tree

is pipelined by adding two registers behind the last bit-wise XOR operation in the XOR tree.

Fig.2 shows an example of digit-serial GNB multiplier over GF(27) with 𝑇=4, 𝑤=3 and 𝑑 =3. The GNB

multiplication of elements 𝐴 and 𝐵 in GF(27) with 𝐵 = 𝐵1 + 𝐵2 + 𝐵3 , where 𝐵1 = 𝑏6𝛽
26 + 𝑏5𝛽

25 + 𝑏4𝛽
24 ,

𝐵2 = 𝑏3𝛽
23 + 𝑏2𝛽

22 + 𝑏1𝛽
2, and 𝐵3 = 𝑏0𝛽 is expressed as follows:

𝐶 = 𝐴𝐵 = ((𝐶1
2 + 𝐶2)

2
+ 𝐶3),

where,

𝐶1 = ((𝐴
2−2)

2−4

𝛽)
24

𝑏6 + (((𝐴
2−2)

2−4

)
23

𝛽)

2

𝑏3 + ((((𝐴
2−2)

2−4

)
23

)

23

𝛽)

2−2

𝑏0,

𝐶2 = (((𝐴
2−2)

2
)
2−4

𝛽)

24

𝑏5 + ((((𝐴
2−2)

2
)
2−4

)

23

𝛽)

2

𝑏2 + (((((𝐴
2−2)

2
)
2−4

)

23

)

23

𝛽)

2−2

𝑏−1,

𝐶3 = (((𝐴
2−2)

22

)
2−4

𝛽)

24

𝑏4 + ((((𝐴
2−2)

22

)
2−4

)

23

𝛽)

2

𝑏1 + (((((𝐴
2−2)

22

)
2−4

)

23

)

23

𝛽)

2−2

𝑏−2.

where, in computing 𝐶2, 𝐶3, the bits 𝑏−1 and 𝑏−2 are set to zero.

1
0 D

1
0

D

1
0 D

1
0 D

1
0

D

1
0

D

1
0

D b6

b5

b4

Load

b2

b1

b0

Load

Load

a6a5a4
a3
a2a1a0

c6c5c4c3c2c1c0

0
1

i3

i4 0
1

i2

D

Sequential Input Circuit (SIC)

LD

SICi1

i2

i3

LD

DD
0
1

i1

D

i4

SICi1

i2

i3

LD

i4
b3

SICi1

i2

i3

LD

i40

D D D D D D D

Fig.2. Structure of the digit-serial GNB multiplier over GF(27) with 𝑤=3 and 𝑑=3

The critical path of digit-serial GNB multiplier over GF(2m) of type 𝑇 equals TA+ (⌈𝑙𝑜𝑔2
𝑇⌉+⌈𝑙𝑜𝑔2

(𝑑+1)
⌉)TX, where

TX and TA denote the time delays of a 2-input AND gate and a 2-input XOR gate respectively. Also, the

multiplier requires 𝑑𝑚 number of AND gates and at most (𝑑𝑚+(𝑇-1)(𝑚-1)𝑑) XOR gates. In Fig. 2 the critical

path delay is TA + (⌈𝑙𝑜𝑔2
4⌉+⌈𝑙𝑜𝑔2

(3+1)
⌉)TX = TA+5TX.

4. Proposed Hardware Structure of Point Multiplication on BECs

In the binary Edwards curves, the point addition and point doubling formulas are performed in parallel by using

three levels of multiplications. In more details, for example in the case of 𝑑1 ≠ 𝑑2, computation of PA and PD

in mixed w-coordinate requires 10 field multiplications. The parallel PA and PD operations are computed in at

least three steps due to the data dependency of the formulas. And, in each step at most four field multiplier units

are used. In the first step the four multiplications 𝐶 = 𝑊1 ⨯ (𝑍1 +𝑊1), 𝐷 = 𝑊2 ⨯ (𝑍2 +𝑊2), 𝐸 = 𝑍1 ⨯ 𝑍2 and

𝐹 = 𝑊1 ⨯𝑊2 are computed in parallel by multipliers M2,M1, M3 and M4 respectively. In the second step 𝑉 =
𝐶 ⨯ 𝐷, 𝐹 ⨯ 𝑒2 and 𝐸 ⨯ 𝑒1 are performed similarly. Finally in the last step 𝑍1 ⨯ 𝑒3 , 𝑊1 ⨯ 𝑒4 and 𝑤0 ⨯ 𝑍𝑎 are

computed by M1 , M2 and M4 respectively. Fig.3 (a) and (b) show the proposed scheduling of parallel

computation of the PA and PD of binary Edwards curves for two cases of 𝑑1 ≠ 𝑑2 and 𝑑1 = 𝑑2 respectively. In

the proposed scheduling the resource allocation is performed properly to reduce the number of clock cycles.

M2M1

M1

M4

Z1W1Z2W2w0

Za Wa ZdWd

e2 e1

S

S

M3M4

M3M2

M2M1

e3 e4

S

M2M1

M2

M2

Z1W1Z2W2w0

Za Wa ZdWd

M3

S

M3

M3

d1

S

S

(a) (b)
Fig.3. Proposed scheduling of parallel computation of PA and PD on binary Edwards curves for the case 𝑑1 ≠ 𝑑2 (a), and

for the case 𝑑1 = 𝑑2 (b)

The proposed architecture for field multiplier has digit-serial or word-level structure. The result of any

multiplier is completed at 𝑤 clock cycles, where 𝑤 is the number of words of input operands. Moreover, the

structure of field multiplier is pipelined to fine the critical path delay, so each multiplication operation is

computed in 𝑤+1 clock cycles. Thus, the total computation of PA and PD is performed in parallel in three steps

by 3(𝑤+1) clock cycles. For example for the case 𝑑1 ≠ 𝑑2 and 𝑤=4 the total computation requires 15 clock

cycles as follows.

Cycles 1 − 5:

{

 𝐶=𝑊1⨯(𝑍1+𝑊1)

𝑏𝑦
→ M2

𝐷=𝑊2⨯(𝑍2+𝑊2)
𝑏𝑦
→ M1

𝐸=𝑍1⨯𝑍2
𝑏𝑦
→ M3

𝐹=𝑊1⨯𝑊2
𝑏𝑦
→ M4

, Cycles 6 − 10:

{

 𝑉 = 𝐶 ⨯ 𝐷

𝑏𝑦
→ M1

𝐹 ⨯ 𝑒2
𝑏𝑦
→ M2

𝐸 ⨯ 𝑒1
𝑏𝑦
→ M3

, Cycles 11 − 15:

{

 𝑍1 ⨯ 𝑒3

𝑏𝑦
→ M1

𝑊1 ⨯ 𝑒4
𝑏𝑦
→ M2

𝑤0 ⨯ 𝑍𝑎
𝑏𝑦
→ M4

More details of four field multipliers M1, M2, M3 and M4 performance for PA and PD computation are shown in

Table 1.

Table 1: performance of multipliers M1, M2, M3 and M4 for the case 𝑑1 ≠ 𝑑2 and 𝑤=4

Cycles M1 M2 M3 M4

1 Part 1 of 𝑊2(𝑍2 +𝑊2) Part 1 of 𝑊1(𝑍1 +𝑊1) Part 1 of 𝑍1𝑍2 Part 1 of 𝑊1𝑊2

2 Part 2 of 𝑊2(𝑍2 +𝑊2) Part 2 of 𝑊1(𝑍1 +𝑊1) Part 2 of 𝑍1𝑍2 Part 2 of 𝑊1𝑊2

3 Part 3 of 𝑊2(𝑍2 +𝑊2) Part 3 of 𝑊1(𝑍1 +𝑊1) Part 3 of 𝑍1𝑍2 Part 3 of 𝑊1𝑊2

4 Part 4 of 𝑊2(𝑍2 +𝑊2) Part 4 of 𝑊1(𝑍1 +𝑊1) Part 4 of 𝑍1𝑍2 Part 4 of 𝑊1𝑊2

5 Part 5 of 𝑊2(𝑍2 +𝑊2) Part 5 of 𝑊1(𝑍1 +𝑊1) Part 5 of 𝑍1𝑍2 Part 5 of 𝑊1𝑊2

6 Part 1 of 𝐶𝐷 Part 1 of 𝐹𝑒2 Part 1 of 𝐸𝑒1 ---

7 Part 2 of 𝐶𝐷 Part 2 of 𝐹𝑒2 Part 2 of 𝐸𝑒1 ---

8 Part 3 of 𝐶𝐷 Part 3 of 𝐹𝑒2 Part 3 of 𝐸𝑒1 ---

9 Part 4 of 𝐶𝐷 Part 4 of 𝐹𝑒2 Part 4 of 𝐸𝑒1 ---

10 Part 5 of 𝐶𝐷 Part 5 of 𝐹𝑒2 Part 5 of 𝐸𝑒1 ---

11 Part 1 of 𝑍1𝑒3 Part 1 of 𝑊1𝑒4 --- Part 1 of 𝑤0𝑍𝑎

12 Part 2 of 𝑍1𝑒3 Part 2 of 𝑊1𝑒4 --- Part 2 of 𝑤0𝑍𝑎

13 Part 3 of 𝑍1𝑒3 Part 3 of 𝑊1𝑒4 --- Part 3 of 𝑤0𝑍𝑎

14 Part 4 of 𝑍1𝑒3 Part 4 of 𝑊1𝑒4 --- Part 4 of 𝑤0𝑍𝑎

15 Part 5 of 𝑍1𝑒3 Part 5 of 𝑊1𝑒4 --- Part 5 of 𝑤0𝑍𝑎

Computation graphs of the proposed method for the cases 𝑑1 ≠ 𝑑2 and 𝑑1 = 𝑑2 are shown in Fig.4 (a) and Fig.4

(b) respectively. As seen in Fig.4 the multipliers are in parallel and multiplication operations are performed

concurrently. In case 𝑑1 ≠ 𝑑2, the multipliers M1 and M2 are busy in all 15 clock cycles during multiplication

computations of PA and PD. Also, multipliers M3 and M4 are busy for 10 clock cycles. Therefore, the utilization

factor of M1 and M2 is
15

15
× 100 = 100% and of M3 and M4 is

10

15
× 100 = 66.67%. Also for the case 𝑑1 = 𝑑2

the utilization factors of M1, M2 and M3 are 66.67%, 66.67% and 100% respectively.

M11

M12

M13

M14

M11

M12

M13

M14

M11

M12

M13

M14

M15 M15 M15

M21

M22

M23

M24

M21

M22

M23

M24

M21

M22

M23

M24

M25

M25

M25

S

M31

M32

M33

M34

M31

M32

M33

M34

M35

M35

Z2

W2

W1

Z1

Z1

W1

e4

e1

M1

M1

M1

M1

M1 M1

M1

M1

M1

M1 M1

M1

M1

M1

M1

A

M2

M2

M2

M2

M2

M2

M2

M2

M2

M2

M2

M2

M2

M2

M2

A

M3

M3

M3

M3

M3

M3

M3

M3

M3

M3

M11

M12

M13

M14

M11

M12

M13

M14

M15

M15

M21

M22

M23

M24

M21

M22

M23

M24

M25 M25

M31

M32

M33

M34

M31

M32

M33

M34

M31

M32

M33

M34

M35
M35

M35

d1

M1

M1

M1

M1

M1 M1

M1

M1

M1

M1

M2

M2

M2

M2

M2

M2

M2

M2

M2

M2

M3

M3

M3

M3

M3

M3

M3

M3

M3

M3

M3

M3

M3

M3

M3

A

M41

M42

M43

M44

M41

M42

M43

M44

M45
M45

W1

w0

M4

M4

M4

M4

M4

M4

M4

M4

M4

M4

A

A

e2

S
Wd

e3

S

A

A

Za

A

Wa

Wd
Zd

W2

Z1

Z2

Z2

W2

A

W1

Z1

A

S

Z1

Za
Wd

S

Wd
A

Zd

w0

A

Wa

S

Z1

Z2 d1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Cycles
15 Cycles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Cycles 15 Cycles

0

L
o

ad
in

g

0

L
o

ad
in

g

(a) (b)

Fig.4. Computation graph of PA and PD in BEC for the cases (a) 𝑑1 ≠ 𝑑2, and (b) 𝑑1 = 𝑑2

The proposed structures of Montgomery ladder point multiplication for BECs cases 𝑑1 ≠ 𝑑2 and 𝑑1 = 𝑑2 are

shown in Fig.5 and Fig.6 respectively. In these architectures the Montgomery point multiplication is

implemented by using four and three multipliers for 𝑑1 ≠ 𝑑2 and 𝑑1 = 𝑑2 respectively.

1
0

M1

0
1

1
0

M2

0
1

0
1

M3

0
1

1
0 D Q

Reg8

1
0 D Q

Reg70
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

D Q

Reg1

D Q

Reg2

D Q

Reg3

D Q

Reg4

w0

1

Za

Wa

Zd

Wd

w0

0
1

M4

0
1

S

1
0

1
0

1
0

Q D

Reg6

1
0

Q D

Reg5

S

1
0 D Q

Reg9

1
0

0
1

0
1

e3

e2

e4

e1

ki

ki

Start

c0

c1

c2

c3

c4

c5

c6

c7

c8

c8

c9

c10

c11

W1

Z1

W2

Z2

1

0
ki

S

Fig.5. Proposed structure for implementation of the Montgomery ladder point multiplication for BECs case 𝑑1 ≠ 𝑑2

1

0
M1

0

1

1

0
M2

1
0

0

1
M3

0

1

1

0 D Q

Reg7

S

1

0 D Q

Reg6

S

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

D Q

Reg1

D Q

Reg2

D Q

Reg3

D Q

Reg4

w0

1

Za

Wa

Zd

Wd

1
0

w0

d1

S

1

0

Q D

Reg8

c0

c1

c2

c4

ki

Start

c6

c7

c8

c3

0

1 1

0

Q D

Reg5

ki c5

1

0

ki

W1

Z1

W2

Z2

Fig.6. Proposed structure for implementation of the Montgomery ladder point multiplication for BECs case 𝑑1 = 𝑑2

As shown in Algorithm 1, in the first step of the algorithm, the initial values of 𝑊1, 𝑍1 are set by the input point

𝑃, and the values 𝑊2 and 𝑍2 are computed by the point doubling (𝑊2, 𝑍2) = Double(𝑊1, 𝑍1). The point doubling

for the binary Edwards curve for the cases 𝑑1 ≠ 𝑑2 and 𝑑1 = 𝑑2 is performed by three and one multiplication

respectively. In Fig.5 and Fig.6 the Start signal is considered to compute the initial values in step 1 of the

algorithm. In the first clock cycle Start is set to ‘1’, and 𝑊1=𝑤0 and 𝑍1=1 are initialized and stored in Reg1 and

Reg2 respectively. Then Start is set to ‘0’ and the doubling operation is performed by multipliers M1 and M2 to

compute 𝑊2 and 𝑍2. After completion of doubling operations, the coordinates 𝑊2 = 𝑊𝑑 and 𝑍2 = 𝑍𝑑 are ready

for loop iteration. At this time, Start is set again to ‘1’ and the computed initial values of 𝑊1, 𝑍1, 𝑊2, and 𝑍2 are

stored in Reg1, Reg2, Reg3 and Reg4 respectively.

In the second step of the algorithm, loop iterations are computed based on bits 𝑘𝑖, the ith bit of the scalar number

𝑘. The two multiplexers with control signal 𝑘𝑖 are to select the input arguments of the point doubling. For 𝑘𝑖 =
′1′ the values 𝑊2 and 𝑍2 are set as the input arguments of the doubling computation. Otherwise 𝑊1 and 𝑍1 are

selected. Registers Reg5 and Reg6 are used to store the input values of point doubling, which are required in the

loop iterations. The multiplexer with control signal 𝑘𝑖 at the outputs of M1 and M2 is to select of doubling

computations. In addition, the four multiplexers with control signal 𝑘𝑖 are used to determine the target registers

of PD and PA outputs.

In the proposed implementation of Algorithm 1 for BECs the initial values computations take 2(𝑤+1) and (𝑤+1)

clock cycles in the cases 𝑑1 ≠ 𝑑2 and 𝑑1 = 𝑑2 respectively. In addition, each loop process takes 3(𝑤+1)+1

clock cycles. In the first cycle, the values 𝑊1, 𝑍1, 𝑊2, and 𝑍2 are loaded into the registers Reg1, Reg2, Reg3 and

Reg4 respectively. And then, three levels of the multiplication operations are performed in 3(𝑤+1) clock cycles.

Therefore the total clock cycles of Algorithm 1 for BEC over GF(2m) are (𝑚-1)(3(𝑤+1)+1)+2(𝑤+1)+1 and (𝑚-

1)(3(𝑤+1)+1)+(𝑤+1)+1 in the cases of 𝑑1 ≠ 𝑑2 and 𝑑1 = 𝑑2 respectively.

5. Proposed Hardware Structure of Point Multiplication on GBHCs

The structure of generalized Hessian curves is designed similarly to that of binary Edwards curves. The point

addition and doubling computations of the GBHCs are performed in three levels of multiplication shown in

Fig.7. The proposed scheduling is designed properly to have the lowest number of clock cycles due to data

dependency of the operation. For example where the number of words 𝑤 equals 4 the total PA and PD

computations are performed in 15 clock cycles. In more details, the output of each pipelined multiplier is ready

at 5 clock cycles, so each step of the scheduling is performed at 5 clock cycles as follows:

Cycles 1 − 5: {
𝐴 = 𝑊1 ⨯ 𝑍2

𝑏𝑦
→ M1

𝐵 = 𝑊2 ⨯ 𝑍1
𝑏𝑦
→ M2

, Cycles 6 − 10:

{

 𝑙 = (𝐴 + 𝐵)2 ⨯ 𝑤0

𝑏𝑦
→ M1

𝐶 = 𝐴 ⨯ 𝐵
𝑏𝑦
→ M2

𝑈 = ℎ2 ⨯ 𝑍1
2
𝑏𝑦
→ M3

, Cycles 11 − 15:

{

 ℎ1 ⨯ 𝑍1

2
𝑏𝑦
→ M1

ℎ2 ⨯ 𝐶
𝑏𝑦
→ M2

𝑊1
2 ⨯ 𝑈

𝑏𝑦
→ M3

M2

S

M1

S

S

S

M2

M2

M1

M1

M3

M3

Z1W2Z2W1w0

ZaWaZd Wd

h2 h1

Fig.7. Proposed scheduling of PA and PD computation for GBHCs

Fig.8 shows the computation graph of a loop process of Algorithm 1 for GBHCs. As shown in the figure, in

each loop iteration multipliers M1, M2 and M3 operate in parallel. M1 and M2 are busy in all 15 clock cycles of

PA and PD computation and M3 is busy for 10 clock cycles. So, the utilization factor of M1, M2 and M3 are

100%, 100% and 66.67% respectively.

M11

M12

M13

M14

M11

M12

M13

M14

Zd

M11

M12

M13

M14

M15 M15 M15

M21

M22

M23

M24

M21

M22

M23

M24

M21

M21

M22

M23

M24

M25 M25 M25

S

S

M31

M32

M33

M34

M31

M32

M33

M34

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Cycles

M35 M35

15 Cycles

W1

Z2

Za

w0

h2

h2

M1

M1

M1

M1

M1 M1

M1

M1

M1

M1 M1

M1

M1

M1

M1

A

M2

M2

M2

M2

M2

M2

M2

M2

M2

M2

M2

M2

M2

M2

M2

M3

M3

M3

M3

M3

M3

M3

M3

M3

M3

A

S

Z1

f1

f1

S

W1

f2

f2

A
Wa

Wd

Saved

W2

Z1

0

L
o

ad
in

g

h1

Fig.8. Computation graph of PA and PD for GBHCs

The proposed architecture of Montgomery ladder point multiplication on GBHCs is shown in Fig.9. The values

of input coordinates 𝑊𝑖, 𝑍𝑖 , for i=1,2, are fixed during point doubling computation. These input coordinates are

stored in registers Reg5 and Reg6. The outputs of PA and PD should be ready simultaneously at the end of each

loop iteration. The output 𝑍𝑎 is computed at the end of cycle 5 and stored in Reg7 until other coordinates 𝑍𝑑,

𝑊𝑑 and 𝑊𝑎 are calculated for the next loop iteration. For computation of 𝑊𝑎, register Reg8 is used to store the

output of M1 at cycle 10 and to add it to the output of M2 at cycle 15.

The initial values computation of Algorithm 1 for GBHCs which is implemented by M1 and M3 takes 2(𝑤+1)

clock cycles. Also, each loop process takes 3(𝑤+1)+1 clock cycles. At first cycle inputs 𝑊1, 𝑍1, 𝑊2, and 𝑍2 are

loaded in registers Reg1, Reg2, Reg3 and Reg4 respectively. And then the three levels of multiplication

operation take 3(𝑤+1) cycles. Therefore, the total clock cycles of Algorithm 1 for GBHCs over GF(2m) is (𝑚-

1)(3(𝑤+1)+1)+2(𝑤+1)+1.

1
0

M1

1
0

1
0

M2

1
0

1
0

M3

0
1

S

1
0 D Q

Reg8

S

S

1
0 D Q

Reg7

S

0
1

0
1

1
0

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

D Q

Reg1

D Q

Reg2

D Q

Reg3

D Q

Reg4

0
1

0
1

w0

1

w0
h1

h2

Za

Wa

Zd

Wd

1
0

Q D

Reg6

1
0

Q D

Reg5

h2

ki

Start

c0

ki

c1

c2

c3

c4

c5

c6

c6

c7

c8

W1

Z1

W2

Z2

Fig.9: Proposed architecture for implementation of the Montgomery ladder point multiplication for GBHCs

6. Comparison and Results

In this section a comparison between the presented works and other FPGA-based hardware implementations of

the point multiplication on binary elliptic curves is presented. The comparison is based on hardware resources,

maximum frequency, execution time and efficiency. Parameters of several well-known point multiplication

architectures on binary curves are summarized in Table 2. In the table, the efficiency is computed by the

following formula:

Efficiency =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑡𝑠

𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 × 𝑆𝑙𝑖𝑐𝑒𝑠

All the structures are implemented over fields GF(2163) and GF(2233) that are recommended by NIST for ECC

applications. The proposed method for BECs (𝑑1 ≠ 𝑑2) over GF(2233) has better hardware consumption and

timing performance than that of work [12]. For implemented BECs (𝑑1 ≠ 𝑑2) over GF(2163) on Virtex-5 FPGA,

the computation time and maximum operation frequency of present work are 67% and 25% better than those of

work in [13], but hardware resources in [13] are less than present work. However, the proposed work has better

efficiency than that of method presented in [13]. Also, there are similar comparison results for BECs (𝑑1 = 𝑑2)

and GBHCs over GF(2163) . The proposed method for BECs (𝑑1 ≠ 𝑑2) over GF(2233) and GF(2163) implemented

on Virtex-4 FPGA have, respectively, 40% and 30% less computation time compared to that of [14]. Moreover,

efficiency and hardware resources in the proposed method are improved. The work presented in [14], for

GBHCs over GF(2163) and GF(2233) have 24% and 35% computation time more compared to that of this work

for the same digit size.

Table 2: Comparison of the proposed structures and other works on binary curves

Works Field
size

Device Area Fmax
(MHz)

Latency
(Cycle)

Time(µs) Efficiency

[3] BGCs d=41 163 EP2S180F1020C3 18489 ALMs 144.74 --- 51.67 171

[4] BGCs d=41 163 Virtex-4 XC4VLX200 19604 Slices 251.054 --- 11.92 698

[5] BGCs 163 Virtex-4 XC4VLX200 16209 Slices 153.9 --- 19.55 514

[6] BGCs d=55 163 Virtex-4 XC4VLX80 24363 Slices 143 --- 10 669

[7] BGCs d=55 163 Virtex-4 XC4VLX200 17929 Slices 250 --- 9.6 947

[8] BGCs 163 Virtex-4 XC4VLX80 20807 Slices 185 --- 7.72 1015

[9] BGCs 163 Virtex-4 XC4VFX100 3568 Slices 253 --- 34 1344

[9] BGCs 283 Virtex-4 XC4VFX100 6128 Slices 157 --- 94 491

[10] BGCs 163 Virtex-5 XC5VLX110 7978 Slices 154.35 --- 59.15 345

[10] BGCs 233 Virtex-5 XC5VLX110 7978 Slices 154.35 --- 84.19 347

[11] BGCs 163 Virtex-4 XC4VLX200 8095 Slices 131 --- 10.7 1882

[11] BGCs 163 Virtex-5 XC5VSX240 3513 Slices 147 --- 9.5 4884

[12] BECs (𝑑1 ≠ 𝑑2) 233 Virtex-4 XC4VLX140 21816 Slices 47.384 9008 190 56

[13] BECs (𝑑1 ≠ 𝑑2) d=33

163

Virtex-5 XC5VLX110 4681 Slices 265.8 7542 28.3 1230

[13] BECs (𝑑1 ≠ 𝑑2) d=41 Virtex-5 XC5VLX110 5788 Slices 264.5 6709 25.3 1113

[13] BECs (𝑑1 = 𝑑2) d=33 Virtex-5 XC5VLX110 4681 Slices 265.8 5911 22.2 1569

[13] BECs (𝑑1 = 𝑑2) d=41 Virtex-5 XC5VLX110 5788 Slices 264.5 5243 19.8 1422

[13] GBHCs d=33 Virtex-5 XC5VLX110 4681 Slices 268.2 5415 20.1 1732

[13] GBHCs d=41 Virtex-5 XC5VLX110 5788 Slices 267.1 4747 17.7 1591

[13] BECs (𝑑1 ≠ 𝑑2) d=55 Virtex-4 XC4VLX100 12834 Slices --- --- 22.9 555

[13] BECs (𝑑1 = 𝑑2) d=55 Virtex-4 XC4VLX100 12834 Slices --- --- 23.3 545

[13] BHCs (c=1) d=55 Virtex-4 XC4VLX100 12834 Slices --- --- 20.8 610

[14] BECs (𝑑1 ≠ 𝑑2) d=33 163 Virtex-4 XC4VLX160 27778 Slices 217.2 3808 17.5 335

[14] BECs (𝑑1 ≠ 𝑑2) d=26 233 Virtex-4 XC4VLX160 29252 Slices 198.4 7212 36.3 219

[14] GBHCs d=33 163 Virtex-4 XC4VLX160 15992 Slices 218.2 3471 15.9 641

[14] GBHCs d=26 233 Virtex-4 XC4VLX160 16940 Slices 205.1 6791 33.1 416

Proposed BECs (𝒅𝟏 ≠ 𝒅𝟐) d=33

163

Virtex-4 XC4VLX100 22957 Slices 253.873 3091 12.18 583

Proposed BECs (𝒅𝟏 ≠ 𝒅𝟐) d=41 Virtex-4 XC4VLX100 27365 Slices 247.396 2603 10.52 566

Proposed BECs (𝒅𝟏 = 𝒅𝟐) d=33 Virtex-4 XC4VLX100 17125 Slices 254.996 3085 12.1 787

Proposed BECs (𝒅𝟏 = 𝒅𝟐) d=41 Virtex-4 XC4VLX100 20853 Slices 247.750 2598 10.49 745

Proposed GBHCs d=33 Virtex-4 XC4VLX100 17052 Slices 254.808 3091 12.13 788

Proposed GBHCs d=41 Virtex-4 XC4VLX100 20752 Slices 247.037 2603 10.54 745

Proposed BECs (𝒅𝟏 ≠ 𝒅𝟐) d=33 Virtex-5 XC5VLX110 9624 Slices 331.363 3091 9.33 1815

Proposed BECs (𝒅𝟏 ≠ 𝒅𝟐) d=41 Virtex-5 XC5VLX110 11397 Slices 302.081 2603 8.62 1659

Proposed BECs (𝒅𝟏 = 𝒅𝟐) d=33 Virtex-5 XC5VLX110 7314 Slices 331.363 3085 9.31 2394

Proposed BECs (𝒅𝟏 = 𝒅𝟐) d=41 Virtex-5 XC5VLX110 8645 Slices 302.093 2598 8.6 2192

Proposed GBHCs d=33 Virtex-5 XC5VLX110 7313 Slices 331.363 3091 9.33 2389

Proposed GBHCs d=41 Virtex-5 XC5VLX110 8645 Slices 302.093 2603 8.62 2187

Proposed BECs (𝒅𝟏 ≠ 𝒅𝟐) d=26

233

Virtex-4 XC4VLX100 18278 Slices 333.970 7213 21.6 590

Proposed BECs (𝒅𝟏 ≠ 𝒅𝟐) d=59 Virtex-4 XC4VLX100 37053 Slices 277.691 3723 13.41 467

Proposed BECs (𝒅𝟏 = 𝒅𝟐) d=26 Virtex-4 XC4VLX100 13786 Slices 333.970 7203 21.57 784

Proposed BECs (𝒅𝟏 = 𝒅𝟐) d=59 Virtex-4 XC4VLX100 31702 Slices 277.681 3718 13.39 549

Proposed GBHCs d=26 Virtex-4 XC4VLX100 14052 Slices 333.970 7213 21.6 768

Proposed GBHCs d=59 Virtex-4 XC4VLX100 27933 Slices 277.681 3723 13.41 622

Proposed BECs (𝒅𝟏 ≠ 𝒅𝟐) d=26 Virtex-5 XC5VLX110 6547 Slices 391.932 7213 18.40 1934

Proposed BECs (𝒅𝟏 ≠ 𝒅𝟐) d=59 Virtex-5 XC5VLX110 14343 Slices 337.603 3723 11.03 1473

Proposed BECs (𝒅𝟏 = 𝒅𝟐) d=26 Virtex-5 XC5VLX110 4987 Slices 391.932 7203 18.38 2542

Proposed BECs (𝒅𝟏 = 𝒅𝟐) d=59 Virtex-5 XC5VLX110 11494 Slices 337.603 3718 11.01 1841

Proposed GBHCs d=26 Virtex-5 XC5VLX110 5045 Slices 391.932 7213 18.40 2510

Proposed GBHCs d=59 Virtex-5 XC5VLX110 8875 Slices 337.603 3723 11.03 2380

7. Conclusions

In this paper, hardware architectures of high-speed Montgomery ladder point multiplication for binary Edwards

and generalized Hessian curves over GF(2m) are presented. To reduce the number of clock cycles, the proposed

structures are designed based on concurrent computation of the point addition and point doubling by using

parallel digit-serial Gaussian normal basis multipliers. The multipliers have highly regular structures with low

hardware resources and low critical path delays. The results show an overall improvement in terms of execution

time, hardware resources, and efficiency in comparison with previously reported works.

References

[1] Koblitz, N. (1987) Elliptic curve cryptosystems. in Mathematics of Computation, 203-209.

[2] Miller , V. S. (1986) Use of elliptic curve in cryptography. in Advances in Cryptology, Crypto’85 Proceedings, 417-426.
[3] Järvinen, K., and Skytta, J. (2008) On Parallelization of High-Speed Processors for Elliptic Curve Cryptography. IEEE Trans. on

Very Large Scale Integration (VLSI) Systems, Vol. 16, No. 9, 1162-1175.

[4] Masoumi, M., Mahdizadeh, H. (2012) Efficient Hardware Implementation of an Elliptic Curve Cryptographic Processor over GF
(2163). World Academy of Science, Engineering and Technology 65, 1223-1230.

[5] Chelton, W. N. and Benaissa, M. (2008) Fast elliptic curve cryptography on FPGA. IEEE Transactions on Very Large Scale

Integration (VLSI) Systems,Vol. 16, No. 2, 198-205.
[6] Choi, H. M., Hong, C. P., Kim, C. H. (2008) High Performance Elliptic Curve Cryptographic Processor Over GF(2163). 4th IEEE

International Symposium on Electronic Design, Test & Application, pp. 290-295.

[7] Mahdizadeh, H. and Masoumi, M. (2013) Novel Architecture for Efficient FPGA Implementation of Elliptic Curve Cryptographic
Processor Over GF(2163). IEEE Trans. on VLSI Systems, Vol. 21, Iss. 12, 2330-2333.

[8] Zhang, Y., Chen, D., Choi, Y., Chen, L., and Ko, S.-B. (2010) A high performance ECC hardware implementation with instruction-

level parallelism over GF (2163). Microprocess. Microsyst., Vol. 34, No. 6, 228-236.
[9] Fayed, M. A., Watheq, El-Kharashi, M., Gebali, F. (2007) A High-Speed, High-Radix, Processor Array Architecture for Real-Time

Elliptic Curve Cryptography over GF(2m). IEEE International Symposium on Signal Processing and Information Technology, 56-61.

[10] Cinnati Loi, K. C., Sen A., and Ko, S.B. (2014) FPGA Implementation of Low Latency Scalable Elliptic Curve Cryptosystem
Processor in GF(2m). IEEE international Symposium on Circuits and Systems (ISCAS), 822-825.

[11] Roy, S.S., Rebeiro, C., and Mukhopadhyay, D. (2013) Theoretical Modeling of Elliptic Curve Scalar Multiplier on LUT-Based

FPGAs for Area and Speed. IEEE Trans. on VLSI Systems, Vol. 21, No. 5, 901-909.
[12] Chatterjee, A., Sengupta I. (2012) Design of a high performance Binary Edwards Curve based processor secured against side

channel analysis”, Integration, the VLSI Journal, Vol. 45, No. 3, 331-340.

[13] Azarderakhsh, R. and Reyhani-Masoleh, A. (2012) Efficient FPGA Implementations of Point Multiplication on Binary Edwards and
Generalized Hessian Curves Using Gaussian Normal Basis. IEEE Trans. on VLSI Systems, Vol. 20, No. 8, 1453-1466.

[14] Azarderakhsh, R. and Reyhani-Masoleh, A. (2015) Parallel and High-Speed Computations of Elliptic Curve Cryptography Using

Hybrid-Double Multipliers. IEEE Trans. on VLSI Systems, Vol. 26, Iss. 6, 1668-1677.
[15] Rashidi, B., Sayedi, S.M., Rezaeian Farashahi, R. (2016) Efficient and Low-complexity Hardware Architecture of Gaussian Normal

Basis Multiplication over GF(2m) for Elliptic Curve Cryptosystems. IET Circuits Devices Syst., Vol. 10, 1-10.

[16] Ash, D.W., Blake, I.F., and Vanstone, S.A. (1989) Low Complexity Normal Bases. Discrete Applied Math., 25, 191-210.
[17] IEEE P1363: Editorial Contribution to standard for Public Key Cryptography, 2003.

[18] Federal Information Processing Standards Publications (FIPS) 186-2, U.S. Department of Commerce/NIST: Digital Signature

Standard (DSS), 2000.
[19] Hankerson, D., Menezes, A., Vanstone, S. (2004) Guide to Elliptic Curve Cryptography. Springer-Verlag, New York, Edition 1.

[20] Montgomery, P.L. (1987) Speeding the Pollard and elliptic curve methods of factorization. Mathematics of Computation 48, 243-

264.
[21] Lopez, J. Dahab, R. (1999) Fast multiplication on elliptic curves over GF(2m) without precomputation. in Proc. of First International

Workshop Cryptographic Hardware and Embedded Systems (CHES’99), (Springer-Verlag), 316-327.

[22] Bernstein, D. Lange, T. and Rezaeian Farashahi, R. (2008) Binary Edwards curves. in Proc. Workshop Cryptograph. Hardware
Embedded Syst., Vol. 5154, 244–265.

[23] Kim, K., Lee, C., Negre, C. (2014) Binary edwards curves revisited. INDOCRYPT 2014. LNCS, vol. 8885, 393-408.

[24] Rezaeian Farashahi, R. and Joye, M. (2010) Efficient arithmetic on Hessian curves. in Proc. 13th Int. Conf. Practice Theory of
Public Key Cryptography, 243–260.

[25] suk cho, Y., Yeon Choi, J. (2013) A new Word-parallel bit-serial Normal basis multiplier over GF(2m). International Journal of

control and Automation, Vol. 6, No. 3, 209-216.
[26] Reyhani-Masoleh, A. (2006) Efficient Algorithms and Architectures for Field Multiplication Using Gaussian Normal Bases. IEEE

Trans. Computers, Vol. 55, Iss. 1, 34-47.

[27] Chiou, C.W., Chang, H.W., Liang, W.-Y., Lee, C.-Y., Lin,, J.-M., Yeh,Y.-C. (2012) Low-complexity Gaussian normal basis
multiplier over GF(2m). IET Inf. Secur., Vol. 6, Iss. 4, 310-317.

[28] Lee, C.-Y., Wun Chiou, C. (2012) Scalable Gaussian Normal Basis Multipliers over GF(2m) Using Hankel Matrix-Vector

Representation. J Sign Process Syst. Vol 69, Iss. 2, 197-211.
[29] Azarderakhsh, R. and Reyhani-Masoleh, A. (2010) A Modified Low Complexity Digit-Level Gaussian Normal Basis Multiplier.

Proc. Third Int’l Workshop Arithmetic of Finite Fields (WAIFI), 25-40.
[30] Azarderakhsh, R. and Reyhani-Masoleh, A. (2013) Low-Complexity Multiplier Architectures for Single and Hybrid-Double

Multiplications in Gaussian Normal Bases. IEEE Trans. Comput., Vol. 62, Iss. 4, 744-757.

[31] Chuang, T.-P., Wun Chiou, C., Lin, S.-S., Lee, C.-Y. (2012) Fault-tolerant Gaussian normal basis multiplier over GF(2m). IET Inf.
Secur., Vol. 6, Iss. 3, 157-170.

[32] Lee, C.-Y. (2010) Concurrent error detection architectures for Gaussian normal basis multiplication over GF(2m). Integration, the

VLSI journal, Vol. 43, Iss. 1, 113-123.
[33] Wang, Z., Wang, X., and Fan, S. (2010) Concurrent Error Detection Architectures for Field Multiplication Using Gaussian Normal

Basis. Proc. of Information Security, Practice and Experience (ISPEC), LNCS 6047, 96-109.

[34] Wun Chiou, C. Lin, J.M., Li, Y.K., Lee, C.-Y., Chuang, T.P., and Yeh, Y.C. (2014) Pipeline Design of Bit-Parallel Gaussian Normal
Basis Multiplier over GF(2m). Advances in Intelligent Systems and Computing, Springer, Vol. 238, 369-377.

[35] Chiou, C. W., Chang, C. C., Lee, C. Y., Lin, J. M., & Hou, T. W. (2009) Concurrent error detection and correction in Gaussian

normal basis multiplier over GF(2m)”, IEEE Trans. Comput., Vol. 58, Iss. 6, 851-857.
[36] Lee, C. and Chang, P. (2009) Digit-Serial Gaussian Normal Basis Multiplier over GF(2m) Using Toeplitz Matrix-Approach. Proc.

Int’l Conf. Computational Intelligence and Software Eng. (CiSE), 1-4.

[37] Azarderakhsh, R., Mozaffari Kermani, M., Bayat-Sarmadi, S, Lee, C.-Y. (2014) Systolic Gaussian Normal Basis Multiplier
Architectures Suitable for High-Performance Applications. IEEE Trans. on VLSI Systems, Vol. 99, 1-4.

[38] Wang, Z., Fan, S. (2012) Efficient montgomery-based semi-systolic multiplier for even-type GNB of GF(2m). IEEE Trans. Comput.,

Vol. 61, Iss. 3, 415-419.

