356,339 research outputs found

    Different Approaches to Proof Systems

    Get PDF
    The classical approach to proof complexity perceives proof systems as deterministic, uniform, surjective, polynomial-time computable functions that map strings to (propositional) tautologies. This approach has been intensively studied since the late 70’s and a lot of progress has been made. During the last years research was started investigating alternative notions of proof systems. There are interesting results stemming from dropping the uniformity requirement, allowing oracle access, using quantum computations, or employing probabilism. These lead to different notions of proof systems for which we survey recent results in this paper

    Route Planning in Transportation Networks

    Full text link
    We survey recent advances in algorithms for route planning in transportation networks. For road networks, we show that one can compute driving directions in milliseconds or less even at continental scale. A variety of techniques provide different trade-offs between preprocessing effort, space requirements, and query time. Some algorithms can answer queries in a fraction of a microsecond, while others can deal efficiently with real-time traffic. Journey planning on public transportation systems, although conceptually similar, is a significantly harder problem due to its inherent time-dependent and multicriteria nature. Although exact algorithms are fast enough for interactive queries on metropolitan transit systems, dealing with continent-sized instances requires simplifications or heavy preprocessing. The multimodal route planning problem, which seeks journeys combining schedule-based transportation (buses, trains) with unrestricted modes (walking, driving), is even harder, relying on approximate solutions even for metropolitan inputs.Comment: This is an updated version of the technical report MSR-TR-2014-4, previously published by Microsoft Research. This work was mostly done while the authors Daniel Delling, Andrew Goldberg, and Renato F. Werneck were at Microsoft Research Silicon Valle

    Recent advances on simulation and theory of hydrogen storage in metal–organic frameworks and covalent organic frameworks

    Get PDF
    This critical review covers the application of computer simulations, including quantum calculations (ab initio and DFT), grand canonical Monte-Carlo simulations, and molecular dynamics simulations, to the burgeoning area of the hydrogen storage by metal–organic frameworks and covalent-organic frameworks. This review begins with an overview of the theoretical methods obtained from previous studies. Then strategies for the improvement of hydrogen storage in the porous materials are discussed in detail. The strategies include appropriate pore size, impregnation, catenation, open metal sites in metal oxide parts and within organic linker parts, doping of alkali elements onto organic linkers, substitution of metal oxide with lighter metals, functionalized organic linkers, and hydrogen spillover (186 references)

    Computability and analysis: the legacy of Alan Turing

    Full text link
    We discuss the legacy of Alan Turing and his impact on computability and analysis.Comment: 49 page

    Nondeterministic functions and the existence of optimal proof systems

    Get PDF
    We provide new characterizations of two previously studied questions on nondeterministic function classes: Q1: Do nondeterministic functions admit efficient deterministic refinements? Q2: Do nondeterministic function classes contain complete functions? We show that Q1 for the class is equivalent to the question whether the standard proof system for SAT is p-optimal, and to the assumption that every optimal proof system is p-optimal. Assuming only the existence of a p-optimal proof system for SAT, we show that every set with an optimal proof system has a p-optimal proof system. Under the latter assumption, we also obtain a positive answer to Q2 for the class . An alternative view on nondeterministic functions is provided by disjoint sets and tuples. We pursue this approach for disjoint -pairs and its generalizations to tuples of sets from and with disjointness conditions of varying strength. In this way, we obtain new characterizations of Q2 for the class . Question Q1 for is equivalent to the question of whether every disjoint -pair is easy to separate. In addition, we characterize this problem by the question of whether every propositional proof system has the effective interpolation property. Again, these interpolation properties are intimately connected to disjoint -pairs, and we show how different interpolation properties can be modeled by -pairs associated with the underlying proof system

    Flux Analysis in Process Models via Causality

    Full text link
    We present an approach for flux analysis in process algebra models of biological systems. We perceive flux as the flow of resources in stochastic simulations. We resort to an established correspondence between event structures, a broadly recognised model of concurrency, and state transitions of process models, seen as Petri nets. We show that we can this way extract the causal resource dependencies in simulations between individual state transitions as partial orders of events. We propose transformations on the partial orders that provide means for further analysis, and introduce a software tool, which implements these ideas. By means of an example of a published model of the Rho GTP-binding proteins, we argue that this approach can provide the substitute for flux analysis techniques on ordinary differential equation models within the stochastic setting of process algebras

    Computer simulation of shear flows of granular material

    Get PDF
    The purpose of this paper is to present results from computer simulations of Couette flows of granular materials and to examine the detailed rheological behavior inherent in these simulations. Comparison is made with the experimental results of Bagnold (1954) and Savage and Sayed (1980, 1982) as well as with the various theoretical constitutive models

    Neuronal Correlation Parameter in the Idea of Thermodynamic Entropy of an N-Body Gravitationally Bounded System

    Get PDF
    Understanding how the brain encodes information and performs computation requires statistical and functional analysis. Given the complexity of the human brain, simple methods that facilitate the interpretation of statistical correlations among different brain regions can be very useful. In this report we introduce a numerical correlation measure that may serve the interpretation of correlational neuronal data, and may assist in the evaluation of different brain states. The description of the dynamical brain system, through a global numerical measure may indicate the presence of an action principle which may facilitate a application of physics principles in the study of the human brain and cognition
    corecore