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Abstract: Understanding how the brain encodes information and performs computation requires 

statistical and functional analysis.  Given the complexity of the human brain, simple methods 

that facilitate the interpretation of statistical correlations among different brain regions can be 

very useful.  In this report we introduce a numerical correlation measure that may serve the 

interpretation of correlational neuronal data, and may assist in the evaluation of different brain 

states.  The description of the dynamical brain system, through a global numerical measure may 

indicate the presence of an action principle which may facilitate a application of physics 

principles in the study of the human brain and cognition.  

 

 Introduction 

Theoretical analysis of brain dynamics may provide insights into cognitive, psychiatric 

and neurological disorders1 and brain network changes, and may aid the early detection of 

pathophysiology in patients, and therefore it may have a very relevant significance. Different 

brain regions have been identified that relate to different functions and there is a reach literature 

of structural-anatomical and theoretical models that have been proposed to integrate brain areas 

and functions.  It remains however, a very challenging problem to accurately describe the 

dynamics of the brain due to its high anatomical, physiological and functional complexity. for 

example, Cerebrovascular alterations include vascular density, vascular plasticity, and vascular 

reactivity to acute metabolic changes2 with important consequences. Moreover, certain 

anatomical regions such as the Posterior Cingulate Cortex (PCC) that have high rate of 

metabolism (associated with normal conscious state) may play a role in the tuning of 

metastability of intra- and inter- network connectivity3. Alterations in functional properties or 

anatomical disconnection between brain regions may be caused by white matter loss or 
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demyelination (“disconnection” hypothesis”4).  Of course, there exist vast literature related to 

studies that discuss healthy, diseased and aging conditions of the human brain, and modeling of 

such different states is desirable. In general some examples of the functional and anatomical 

changes that would require a non-linear and most likely stochastic modeling may be (a) 

metabolic changes within regions of brain networks, (b) vascular and myelin abnormalities in  

white matter connections, (c) abnormalities in other brain regions with which they interact5, (d) 

alterations in brain cells such as neuroglial cells6, (e) changes in brain volume and 

neurotransmission, (e) network alterations through influences by agent-independent connections 

between environment and observer, (f) functional compensation.  A characteristic example is the 

aging brain where dopaminergic receptors decline, structures volumetrically shrink7,8,9) and 

white matter becomes less dense10,11 which points to a less efficient information transmission 

system.  However, the brain continuously engages in functional reorganization and functional 

repair for self-generated support12 and to meet extrinsically imposed as well as intrinsic 

biochemical and cognitive challenge.  

The brain may be thought of as a biochemical and bioelectric system with neuronal 

chemical, and electrical discharges that form the substrate for the encoding and processing of 

neuronal network information that facilitates sensory as well as motor events.  The brain 

coordinates information crucial to genetic, chemical, and physiological processes largely of a 

nonlocal “entanglement” character that is likely to be operating in a non-algorithmic way. 

Therefore, it may be useful as a first approach to describe the coding and processing of 

information in the brain in terms of a simple parameter. perhaps a single number, a 

“determinant” of the “matrix” of electrophysiological and biochemical processes, that form a 

substrate for semantic processing of neuronal information.  It seems natural that such a numerical 

description of this hyper-complex system should include the memory of previous configurations 

of the system as a dynamic parameter, and from the physics point of view it may be thought of as 

some kind of an action principle.  A selection of attributes describing the brain dynamics may 

lead to practical and applicable conclusions, however the brain as a collection of neurons and 

other cells may require a practically intractable amount of degrees of freedom to fully describe 

its different states, and a global functional numerical measure may be useful as a binding bio 

index of its state.   



 Understanding information encoding and neuronal processing requires study of 

correlations between neurons.  How the populations of neurons encode information and control 

human behavior is major point of interest of today’s neuroscience.  Neurons respond with 

variable strength to stimulation (Tolhurst et al., 1983) and (Shadlen, and Newsome 1998).  This 

variability may be shared among different neurons, indicating a form of correlation.  This 

responsiveness can result to a substantial effect on the amount of information encoded by a 

neuronal population. (Averbeck, 2006).  In computational and cognitive neuroscience, it is 

important to determine how correlations are affected by stimulus drive, experience, learning or 

various changes in behavioral context, as well as how human brain connectivity reflects higher 

level network organization of the human brain (Sporns et al., 2005).  Neuronal interconnections 

cannot be directly observed, and therefore the construction of brain networks is usually an 

inference problem.  Furthermore, there are various different approaches for the construction of 

brain networks.  These methods are usually based upon image modality and the type of 

connectivity.  The connectome to be the comprehensive map of all these connections Sporns et 

al. (2005).  In a recent paper by Prasad et al. (2013) the authors present a method for studying 

brain connectivity by simulating a dynamical evolution of the nodes of the network (Prasad et al. 

2013).  The nodes are treated as particles which are evolved under a simulated force analogous to 

the gravitational acceleration in a well-known N-body problem, where the particle nodes 

correspond to regions of the cortex, and where the locations of particles are defined as the 

centers of respective regions on the cortex and their masses are proportional to each region's 

volume.  Furthermore, the attractive force is modeled on the gravitational force, and is explicitly 

made proportional to the elements of the connectivity matrix derived from imaging data.  The 

authors also present experimental results of simulations on a population of 110 subjects from the 

Alzheimer's Disease Neuroimaging Initiative (ADNI), that consists of healthy elderly controls, 

early mild cognitively impaired (eMCI), late MCI (LMCI), and Alzheimer's disease(AD) 

patients.  In healthy controls, the results demonstrate a significant difference in the dynamical 

properties of connectivity networks when compared to eMCI as well as AD patients.  Inspired by 

the idea that nodes can be treated as particle in an N-body scenario as in (Prasad et al. 2013), 

where the particle nodes correspond to regions of the cortex,  we attempt to calculate neuronal 

correlation, by implementing the ideas of thermodynamic galaxy clustering theory.  In particular, 

galactic clustering theory predicts that a two-particle correlation function contains much 



information about large scale clustering, for it evolves self consistently with all the higher order 

correlation functions (Saslaw 1987).  The problem is to extract information about higher order 

correlations from a two-particle function without having to solve the BBGKY (Bogoliubov–

Born–Green–Kirkwood–Yvon) hierarchy, that sometimes is called Bogoliubov hierarchy 

(Saslaw 1987) (This is a system of coupled equations describing the dynamics of interacting 

particles where a particle distribution function involves with n+1 particle distribution function).  

Assuming that the neurons are non extended structures (REF) the entropy of such a system can 

be written in terms of the temperature of the system T and the correlation parameter b.  Finally, 

considering that brain has measurable physical parameters (such as energy and radius in a 

spherical approximation), we will use Bekenstein entropy bound to calculate the upper entropy 

limit of the brain.  Thus, equating the two entropies (Bekenstein and N-Body) we calculate the 

neuronal correlation parameter b, expressed as a function of the brain parameters, thus providing 

possible a numerical correlation measure of the entire brain network activity, in the form of a 

single number. 

 

 Galactic Cluster Entropy and Bekenstein Bound 

 Thermodynamics and statistical mechanics is the tool for the description of the entropy of 

a system.  The entropy of a system is a non conserved state function that is a very important in 

science and scientific research.  Following (Saslaw 1987) we can write the entropy of an N-body 

system to be: 

  bTbSS ln3 2/3

0          (1) 

where b is the correlation parameter between two particles in the given system, and T is the 

temperature of the system.  Because our system of interest (the brain) has finite dimensions, we 

use the Bekenstein bound in the estimation of entropy S.  This is an upper limit of the entropy S, 

or information N, contained within a given finite region of space, of finite amount of energy 

content E that corresponds to a total amount of mass m  The Bekenstein bound can also be 

thought as the maximum amount of information required to completely describe a given physical 

system down to the quantum level.  Therefore in relation to the brain the Bekenstein bound 

relation for the entropy S can be written as: 
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where S is the entropy, kB is Boltzmann's constant, R is the radius of a sphere that can enclose the 

given system, E = mc2 is the total mass–energy including any rest masses, which in the case of 

the brain is equal to Eb = mbc
2, ħ is the reduced Planck constant, and c is the speed of light.  Note 

that while gravity plays a significant role in its enforcement, the expression for the bound does 

not contain the gravitational constant G.   

 To clarify our approach, we simply state that in this paper we will treat neurons as an N-

body particle scenario in which clustering capabilities are possible.  Thus we can say that 

correlation coefficient b, measures the influence of the "gravitational correlation energy W" 

between neurons.  In an N-body scenario the correlation coefficient b depends in principle on the 

form of the two-particle correlation function  as it is given in Saslaw (1987).  Moreover, and in 

relation to neurons we can say that the correlation coefficient b is a parameter that contains 

information about their clustering on all scales through the dependence of .  If we treat the brain 

as theoretically infinite (involving various length scales and large brain size relative to the 

neurons), as well as a thermodynamic homogeneous system, the only characteristic length scale 

that enters the potential energy is the average neuron separation given by the relation 
3/1 nr .  

So b should depend just on the ratio of the potential and kinetic energies of two typical neurons.  

Our main assumption is that b is the same for each level of any possible clustering hierarchy on 

scales larger than the two-particle correlation at that level (Our understanding is that this implies 

more randomness in speed and direction of information transmission among clusters of low 

hierarchies.  And b may be a binding parameter that may provide a link between 

neurophysiology and cognition.).  We also assume that the entropy of the neuron system in the 

brain is in equilibrium and does not depend on the path via which the system reaches it's state.  

Equating equations (1) and (2) and solving for the neuron correlation coefficient b we find that: 
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where W is the Lambert function of the indicated argument.  So we have obtained an expression 

for the correlation coefficient between two neurons in an N-body scenario equating the upper 

entropy limit as it is calculated via the Bekenstein relation to that predicted by N-body 

correlation scenario as given in Shaslaw (1987) and also (Iqbal et al. 2011).  We have found that 

the correlation coefficient b can be written as the Lambert function of three measurable brain 

https://en.wikipedia.org/wiki/Entropy
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parameters indicated namely: temperature Tb , radius Rb and mass mb.  Similarly, we calculate 

that the rate of change of the correlation coefficient w.r.t the brain temperature Tb, mass mb and 

radius Rb, are given by: 
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and where  is given by: 
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Discussion and Numerical Results 

Before we numerically evaluate our results let us look at the at the exponential term within the 

Lambert function W().  The exponential involves the terms:  
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Looking at the numerator, the term bbRcm has units of kg m2 s-1 =J.s.  Therefore, we conclude 

that this term represents some form of action, that reads: 

 bbb Rcm ,          (9) 

as a brain quantum of action b .  Using the following values for the mass of a male and female 

brains i.e. mb= 1.3 kg, female mb= 1.5 kg, (Shoshani, 2006) to a spherical approximation and 

using a volume brain Vb = 1350 cm3 (Cosgrove, et al., 2007) we find that Rb = 0.0686 m.  

Substituting in Eq. (13) we obtain a first estimate for the brain quantum of action n  to be: 

 
710675.2  bbb Rcm

female
  Js,       (10) 

 
710087.3  bbb Rcm

male
 Js .       (11) 



Therefore Eq. (7) can be written as follows: 
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We now find that the neuron correlation coefficient b appears to be related to the brain 

temperature 
2/3

bT and the ratio of the brain defined action b over   i.e. the one defined by 

quantum mechanics.  Numerically the correlation coefficient between neurons falls in the range 

0 1b  .  If b =1 neuron sub-clusters formed are in virial equilibrium, and nb =0 no correlation 

exists.  As   b  then b where is a number less than 1.  In the case where the correlation 

coefficient b  is equal to   the correlation coefficient obtained is the limiting value given by the 

equation: 
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In this case the rate of the neuron correlation coefficient b w.r.t the brain temperature Tb 
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 .  Using equation (17) and a brain temperature Tb =36.9 C (Wang et al., 2014) 

and converting it to an absolute temperature we find the following numerical value of the 

correlation coefficient to be 999450.0b .  In the table 1 below we give correlation coefficient 

values for a range of brain temperatures 

 

 

 

 

 

 

 

 



 

 

 

Absolute Brain Temperature 

                Tb [K] 

Neuron Correlation Coefficient  

                     bn 

      308.25         0.999446 

      308.65         0.999447 

      309.05         0.999448 

      309.15         0.999449 

     309.75          0.999450 

     310.05        0.999451 

     310.85         0.999453 

 

    

  Fig. 1 Plot of brain correlation coefficient as a function of brain temperature 

  in the case where the brain quantum of action is equal to the Planck’s  . 

 

Conclusions 

Network estimation through functional connectivity between network nodes is believed to have 

profound clinical implications, and the fusion of network analytical and statistical methods may 

revolutionize the understanding of brain function1.  Multiple network metrics have been used in 

                                                           
1 Sean L. Simpson, F. DuBois Bowman, Paul J. Laurienti, Analyzing complex functional brain networks: fusing 
statistics and network science to understand the brain,  Statist. Surv. Volume 7 (2013), 1-36. DOI: 10.1214/13-
SS103 



an effort to understand network structure mainly describing complex topologies, multiple 

variables of interest (disease status, age, race) and local network features (nodal clustering, nodal 

centrality, etc.).  The application of statistical and network science tools for analyzing brain 

network data leads to the development of complexity theory.  Network estimation proceeds 

through linear association measures (Sean et al., 2013) that include correlation and coherence, 

nonlinear measures including mutual information, generalized synchronization, functional 

segregation and integration is estimated by measures such as clustering coefficient and 

transitivity, characteristic path length, global efficiency, etc. However, the development of 

informative descriptive metrics and the resolution of computational issues due to dimensionality 

remain important problems requiring statistical input in network analysis, and propagation of 

error from network estimation may lead to divergence between the brain activity and statistical 

interpretation.  

At the same time, computational neuroscience converges to an imitation of theoretical 

physics, to discover mathematical laws that capture the fundamental laws that govern the 

operation of neural systems2 and to understand the brain to a similar degree as we now 

understand the material world. An ultimate goal of such an approach is to quantitatively predict 

complicated cognitive behaviours and provide insights into cognitive and affective, psychiatric 

and neurological disorders, network changes that may relate to early detection of 

pathophysiology.  However, higher level brain functions involve processing of information by a 

variety of specialized brain areas.  Simple elements and complex architectures used to investigate 

the richness of the brain, results in an incredible complexity in the modeling brain neuronal 

hardware due to neuronal phenomena such as neuromodulation, synaptic adaptation on various 

spatial and time scales, diversity of neuron types, and the role of glia cells, etc3. Therefore, the 

existing challenges may be either resolved or avoided by the use of simple methods.  The highly 

complex structure of the brain involves many distinct neurotransmitters and receptors, cell types, 

and a variety of wiring patterns4, based on small-scale dynamics that may not be successfully 

mathematically modeled and should also not be ignored.  Ideally, one would look for one 

                                                           
2 Tsodyks M. Computational Neuroscience Grand Challenges - A Humble Attempt at Future Forecast. Frontiers in 
Neuroscience. 2008;2(1):17-18. doi:10.3389/neuro.01.021.2008. 
3 same 
4 John Beggs, Phys. Rev. Lett. 114, 220001 – Published 1 June 2015, Can There Be a Physics of the Brain? Phys. Rev. 
Lett. 114, 220001, http://dx.doi.org/10.1103/PhysRevLett.114.220001  

http://dx.doi.org/10.1103/PhysRevLett.114.220001


variable, a control parameter that would govern the macroscopic phase of the system5.  This 

seems to be compatible and in parallel with the anatomical and functional brain approach that 

large numbers of neurons collectively interact to produce emergent properties like cognition and 

consciousness.  Our work is an effort to describe the dynamics of the human brain through a 

single parameter such as the entropy of the brain or the correlation parameter that encodes 

information about the brain as a dynamical system.  The clinical significance of this theoretical 

approach would require an elaborate experimentation that would classify the different numerical 

values of these parameters with brain states and health conditions of human subjects.  However, 

the approach in this report indicates a simple unifying binding principle of all scales of events in 

the brain that we conjecture that maybe a link between neurobiology and cognition  
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