62 research outputs found

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Recent Advances in Wireless Communications and Networks

    Get PDF
    This book focuses on the current hottest issues from the lowest layers to the upper layers of wireless communication networks and provides "real-time" research progress on these issues. The authors have made every effort to systematically organize the information on these topics to make it easily accessible to readers of any level. This book also maintains the balance between current research results and their theoretical support. In this book, a variety of novel techniques in wireless communications and networks are investigated. The authors attempt to present these topics in detail. Insightful and reader-friendly descriptions are presented to nourish readers of any level, from practicing and knowledgeable communication engineers to beginning or professional researchers. All interested readers can easily find noteworthy materials in much greater detail than in previous publications and in the references cited in these chapters

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modied our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the eld of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    COGNITIVE MULTI-USER FREE SPACE OPTICAL COMMUNICATION

    Get PDF
    Increasing deployment of terrestrial, aerial, and space-based assets designed with more demanding services and applications is dramatically escalating the need for high capacity, high data-rate, adaptive, and flexible communication networks. Cognitive, multi-user Free Space Optical Communication (FSOC) networks provide a solution to address these challenges. Such FSOC networks can potentially merge automation and intelligence, as well as offer the benefits of optical communication with enhanced bandwidth and data-rate over long communication networks. Extensive research has investigated various designs, techniques, and methods to enable desired FSOC systems. This dissertation reports the investigation and analysis of novel, state-of-the-art methodologies and algorithms for supporting cognitive, multi-user FSOC. This work details an investigation of the ability of diverse Optical-Multiple Access Control (O-MAC) techniques for performing multi-point communication. Independent Component Analysis (ICA) and Non-Orthogonal Multiple Access (NOMA) techniques were experimentally validated, both singularly and in a combined approach, in a high-speed FSOC link. These methods proved to successfully support multi-user FSOC when users share allocation resources (e.g., time, bandwidth, and space, among others). Additionally, transmission and channel parameters that can affect signal reconstruction performance were identified. To introduce cognition and flexibility into the network, the research reported herein details the use of several Machine Learning (ML) algorithms for estimating crucial parameters at the Physical Layer (PHY) of FSOC networks (e.g., number of transmitting users, modulation format, and quality of transmission [QoT]) for automatically supporting and decoding multiple users. In particular, a novel methodology based on a weighted clustering analysis for automatic and blind user discovery is presented in this work. Extensive experimental analysis was conducted under multiple communication scenarios to identify system performance and limitations. Experimental results demonstrated the ability of the proposed techniques to successfully estimate parameters of interest with high accuracy. Finally, this dissertation presents the design and testing of a modular, multiple node, high-speed, real-time Optical Wireless Communication (OWC) testbed, which provides a hardware and software platform for testing proposed methods and for further research development. This dissertation successfully proves the feasibility of cognitive, multi-user FSOC through the developed and presented methodologies, as well as extensive experimental analyses. The main strength of the research outcomes of this work consists of exploiting software solutions (e.g., O-MAC, signal processing, and ML techniques) to intelligently support multiple users into a single optical channel (i.e., same allocation resources). Accordingly, Size, Weight and Power (SWaP) requirement can be reduced while achieving an increased network capacity

    Advanced Trends in Wireless Communications

    Get PDF
    Physical limitations on wireless communication channels impose huge challenges to reliable communication. Bandwidth limitations, propagation loss, noise and interference make the wireless channel a narrow pipe that does not readily accommodate rapid flow of data. Thus, researches aim to design systems that are suitable to operate in such channels, in order to have high performance quality of service. Also, the mobility of the communication systems requires further investigations to reduce the complexity and the power consumption of the receiver. This book aims to provide highlights of the current research in the field of wireless communications. The subjects discussed are very valuable to communication researchers rather than researchers in the wireless related areas. The book chapters cover a wide range of wireless communication topics

    Architectures and synchronization techniques for distributed satellite systems: a survey

    Get PDF
    Cohesive Distributed Satellite Systems (CDSSs) is a key enabling technology for the future of remote sensing and communication missions. However, they have to meet strict synchronization requirements before their use is generalized. When clock or local oscillator signals are generated locally at each of the distributed nodes, achieving exact synchronization in absolute phase, frequency, and time is a complex problem. In addition, satellite systems have significant resource constraints, especially for small satellites, which are envisioned to be part of the future CDSSs. Thus, the development of precise, robust, and resource-efficient synchronization techniques is essential for the advancement of future CDSSs. In this context, this survey aims to summarize and categorize the most relevant results on synchronization techniques for Distributed Satellite Systems (DSSs). First, some important architecture and system concepts are defined. Then, the synchronization methods reported in the literature are reviewed and categorized. This article also provides an extensive list of applications and examples of synchronization techniques for DSSs in addition to the most significant advances in other operations closely related to synchronization, such as inter-satellite ranging and relative position. The survey also provides a discussion on emerging data-driven synchronization techniques based on Machine Learning (ML). Finally, a compilation of current research activities and potential research topics is proposed, identifying problems and open challenges that can be useful for researchers in the field.This work was supported by the Luxembourg National Research Fund (FNR), through the CORE Project COHEsive SATellite (COHESAT): Cognitive Cohesive Networks of Distributed Units for Active and Passive Space Applications, under Grant FNR11689919.Award-winningPostprint (published version

    Intelligent Circuits and Systems

    Get PDF
    ICICS-2020 is the third conference initiated by the School of Electronics and Electrical Engineering at Lovely Professional University that explored recent innovations of researchers working for the development of smart and green technologies in the fields of Energy, Electronics, Communications, Computers, and Control. ICICS provides innovators to identify new opportunities for the social and economic benefits of society.  This conference bridges the gap between academics and R&D institutions, social visionaries, and experts from all strata of society to present their ongoing research activities and foster research relations between them. It provides opportunities for the exchange of new ideas, applications, and experiences in the field of smart technologies and finding global partners for future collaboration. The ICICS-2020 was conducted in two broad categories, Intelligent Circuits & Intelligent Systems and Emerging Technologies in Electrical Engineering

    A Dual Sampling Communication Method in Wireless Networks.

    Get PDF
    PhD ThesisAs mobile wireless data traffic is increasing significantly, the development direction for wireless networks is focusing on very high data rates, extremely low latency, with a large number of connected devices and a reduction in energy usage. To satisfy the rapid rise in user and traffic capacity, raises challenges given the limited bandwidth resource. The main purpose for this research is to find ways to improve spectral efficiency, data transmission rate, and reduce latency. Simultaneous wireless transmissions happening in the same frequency band can help alleviate demand on transmission slots, with methods like network coding to support decoding at the end terminals. However, in general, signal asynchrony harms the transmission performance significantly. The main contribution of this research is the proposal of a Dual Sampling (DS) method, which aims to relieve the impact of signal asynchrony on simultaneous transmissions. The key concept behind the DS method is sampling twice within each symbol period to handle overlapping signals for successful decoding. Simulation results confirm that it manages to support simultaneous transmissions. Moreover, the DS method is implemented in both Information-Centric Networks (ICN) and Unmanned Aerial Vehicles (UAVs) aided wireless networks. Additionally, for ICN, a Cache Migration Protocol (CMP) is proposed to support simultaneous transmissions which reduces the transmission latency. While for UAV-aided wireless networks, by exploiting the DS method, simultaneous transmissions are supported resulting in better optimal max-min throughput along supported by suitableUAV flight trajectory planning. By demonstrating the performance gain in the application scenarios of ICN and UAV-aided wireless networks, the DS method can be regarded as an optional promising transmission mechanism when communicating with multiple users simultaneously
    • …
    corecore