155 research outputs found

    The utility of MAS5 expression summary and detection call algorithms

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Used alone, the MAS5.0 algorithm for generating expression summaries has been criticized for high False Positive rates resulting from exaggerated variance at low intensities.</p> <p>Results</p> <p>Here we show, with replicated cell line data, that, when used alongside detection calls, MAS5 can be both selective and sensitive. A set of differentially expressed transcripts were identified that were found to be changing by MAS5, but unchanging by RMA and GCRMA. Subsequent analysis by real time PCR confirmed these changes. In addition, with the Latin square datasets often used to assess expression summary algorithms, filtered MAS5.0 was found to have performance approaching that of its peers.</p> <p>Conclusion</p> <p>When used alongside detection calls, MAS5 is a sensitive and selective algorithm for identifying differentially expressed genes.</p

    Evaluation of Microarray Preprocessing Algorithms Based on Concordance with RT-PCR in Clinical Samples

    Get PDF
    BACKGROUND Several preprocessing algorithms for Affymetrix gene expression microarrays have been developed, and their performance on spike-in data sets has been evaluated previously. However, a comprehensive comparison of preprocessing algorithms on samples taken under research conditions has not been performed. METHODOLOGY/PRINCIPAL FINDINGS We used TaqMan RT-PCR arrays as a reference to evaluate the accuracy of expression values from Affymetrix microarrays in two experimental data sets: one comprising 84 genes in 36 colon biopsies, and the other comprising 75 genes in 29 cancer cell lines. We evaluated consistency using the Pearson correlation between measurements obtained on the two platforms. Also, we introduce the log-ratio discrepancy as a more relevant measure of discordance between gene expression platforms. Of nine preprocessing algorithms tested, PLIER+16 produced expression values that were most consistent with RT-PCR measurements, although the difference in performance between most of the algorithms was not statistically significant. CONCLUSIONS/SIGNIFICANCE Our results support the choice of PLIER+16 for the preprocessing of clinical Affymetrix microarray data. However, other algorithms performed similarly and are probably also good choices

    Title Very simple high level analysis of Affymetrix data Version 2.40.0

    Get PDF
    Crispin J Miller Description Provides high level functions for reading Affy.CEL files,phenotypic data, and then computing simple things with it, such as t-tests, fold changes and the like. Makes heavy use of the affy library. Also has some basic scatter plot functions and mechanisms for generating high resolution journal figures..

    Empirical validation of the S-Score algorithm in the analysis of gene expression data

    Get PDF
    BACKGROUND: Current methods of analyzing Affymetrix GeneChip(Ā® )microarray data require the estimation of probe set expression summaries, followed by application of statistical tests to determine which genes are differentially expressed. The S-Score algorithm described by Zhang and colleagues is an alternative method that allows tests of hypotheses directly from probe level data. It is based on an error model in which the detected signal is proportional to the probe pair signal for highly expressed genes, but approaches a background level (rather than 0) for genes with low levels of expression. This model is used to calculate relative change in probe pair intensities that converts probe signals into multiple measurements with equalized errors, which are summed over a probe set to form the S-Score. Assuming no expression differences between chips, the S-Score follows a standard normal distribution, allowing direct tests of hypotheses to be made. Using spike-in and dilution datasets, we validated the S-Score method against comparisons of gene expression utilizing the more recently developed methods RMA, dChip, and MAS5. RESULTS: The S-score showed excellent sensitivity and specificity in detecting low-level gene expression changes. Rank ordering of S-Score values more accurately reflected known fold-change values compared to other algorithms. CONCLUSION: The S-score method, utilizing probe level data directly, offers significant advantages over comparisons using only probe set expression summaries

    A high performance test of differential gene expression for oligonucleotide arrays

    Get PDF
    Logit-t employs a logit-transformation for normalization followed by statistical testing at the probe-level. Using four publicly-available datasets, together providing 2,710 known positive incidences of differential expression and 2,913,813 known negative incidences, performance of statistical tests were: Logit-t provided 75% positive-predictive value, compared with 5% for Affymetrix Microarray Suite 5, 6% for dChip perfect match (PM)-only, and 9% for Robust Multi-array Analysis at the p < 0.01 threshold. Logit-t provided 70% sensitivity, Microarray Suite 5 provided 46%, dChip provided 53% and Robust Multi-array Analysis provided 63%

    Rank of Correlation Coefficient as a Comparable Measure for Biological Significance of Gene Coexpression

    Get PDF
    Information regarding gene coexpression is useful to predict gene function. Several databases have been constructed for gene coexpression in model organisms based on a large amount of publicly available gene expression data measured by GeneChip platforms. In these databases, Pearson's correlation coefficients (PCCs) of gene expression patterns are widely used as a measure of gene coexpression. Although the coexpression measure or GeneChip summarization method affects the performance of the gene coexpression database, previous studies for these calculation procedures were tested with only a small number of samples and a particular species. To evaluate the effectiveness of coexpression measures, assessments with large-scale microarray data are required. We first examined characteristics of PCC and found that the optimal PCC threshold to retrieve functionally related genes was affected by the method of gene expression database construction and the target gene function. In addition, we found that this problem could be overcome when we used correlation ranks instead of correlation values. This observation was evaluated by large-scale gene expression data for four species: Arabidopsis, human, mouse and rat

    Integrative methods for reconstruction of dynamic networks in chondrogenesis

    Get PDF
    Application of human mesenchymal stem cells represents a promising approach in the field of regenerative medicine. Specific stimulation can give rise to chondrocytes, osteocytes or adipocytes. Investigation of the underlying biological processes which induce the observed cellular differentiation is essential to efficiently generate specific tissues for therapeutic purposes. Upon treatment with diverse stimuli, gene expression levels of cultivated human mesenchymal stem cells were monitored using time series microarray experiments for the three lineages. Application of gene network inference is a common approach to identify the regulatory dependencies among a set of investigated genes. This thesis applies the NetGenerator V2.0 tool, which is capable to deal with multiple time series data, which investigates the effect of multiple external stimuli. The applied model is based on a system of linear ordinary differential equations, whose parameters are optimised to reproduce the given time series datasets. Several procedures in the inference process were adapted in this new version in order to allow for the integration of multiple datasets. Network inference was applied on in silico network examples as well as on multi-experiment microarray data of mesenchymal stem cells. The resulting chondrogenesis model was evaluated on the basis of several features including the model adaptation to the data, total number of connections, proportion of connections associated with prior knowledge and the model stability in a resampling procedure. Altogether, NetGenerator V2.0 has provided an automatic and efficient way to integrate experimental datasets and to enhance the interpretability and reliability of the resulting network. In a second chondrogenesis model, the miRNA and mRNA time series data were integrated for the purpose of network inference. One hypothesis of the model was verified by experiments, which demonstrated the negative effect of miR-524-5p on downstream genes

    Why Is There a Lack of Consensus on Molecular Subgroups of Glioblastoma? Understanding the Nature of Biological and Statistical Variability in Glioblastoma Expression Data

    Get PDF
    Gene expression patterns characterizing clinically-relevant molecular subgroups of glioblastoma are difficult to reproduce. We suspect a combination of biological and analytic factors confounds interpretation of glioblastoma expression data. We seek to clarify the nature and relative contributions of these factors, to focus additional investigations, and to improve the accuracy and consistency of translational glioblastoma analyses.We analyzed gene expression and clinical data for 340 glioblastomas in The Cancer Genome Atlas (TCGA). We developed a logic model to analyze potential sources of biological, technical, and analytic variability and used standard linear classifiers and linear dimensional reduction algorithms to investigate the nature and relative contributions of each factor.Commonly-described sources of classification error, including individual sample characteristics, batch effects, and analytic and technical noise make measurable but proportionally minor contributions to inconsistent molecular classification. Our analysis suggests that three, previously underappreciated factors may account for a larger fraction of classification errors: inherent non-linear/non-orthogonal relationships among the genes used in conjunction with classification algorithms that assume linearity; skewed data distributions assumed to be Gaussian; and biologic variability (noise) among tumors, of which we propose three types.Our analysis of the TCGA data demonstrates a contributory role for technical factors in molecular classification inconsistencies in glioblastoma but also suggests that biological variability, abnormal data distribution, and non-linear relationships among genes may be responsible for a proportionally larger component of classification error. These findings may have important implications for both glioblastoma research and for translational application of other large-volume biological databases
    • ā€¦
    corecore