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Chapter 1

Introduction

1.1 Microarray technology

More than a decade ago, the first full draft of the human genome sequence has been pub-
lished [1–3]. Since then, molecular biological research has benefited from the availability of those
sequences. Knowledge about the location of protein-coding gene loci and non-protein-coding
transcripts has been augmented and updated on the basis of the given sequence data [4]. While
the genome can be regarded as relatively constant information which is stored in most of the
human cells, transcription of genes varies and is directed by dynamical processes that depend
on the type of cell, tissue and environmental conditions. Therefore, the most promising research
apart from the exploration of the genome has been the analysis of the transcriptome, which is
the total set of all RNA molecules expressed in the cell [5]. One task of transcriptome studies is
the investigation about how mRNA expression leads to cellular function. This connection is of
enormous interest, because it helps to assign function to genes and therefore can lead to a better
understanding of cellular processes and associated disorders [6]. This includes the study of gene
regulation, which aims to investigate the dependencies of genes and how their regulation governs
the activity of those processes.

Due to technological advances made in automatisation and robotic industry, the production
of high-density probe arrays (e.g. glass slides or silicon chips) is possible and is mainly applied in
biological and medical research [7]. Hundred thousands of artificially generated oligonucleotides
(probes) can be fixed to the array’s surface. Probes were designed to specifically match a sub-
sequence of the target transcript and allow for perfect hybridisation between probe and transcript.
Because of the tremendous number of probes, a single microarray can measure transcript concen-
tration on a genome-wide scale. The corresponding experimental procedure is standardised and
typically involves the following steps: RNA extraction, reverse transcription of mRNA, labelling
of the molecules, hybridisation to the microarray, signal detection (e.g. by laser scan) and data
quantification [8]. This leads to an array of measurement values for all genes which are captured
by the microarray. On the basis of such data, gene expression can be explored in an unbiased
manner for all annotated genes of the genome. In the human genome, this includes measure-
ments for more than 20,000 genes. Therefore, cellular researchers have obtained a powerful tool
for various applications, which has become immensely popular and initiated a new era of gene
expression studies and molecular research [9].

1.1.1 Application of microarrays

Besides gene expression analysis, microarray technology allows for other possible applications
in molecular biology including SNP genotyping and transcriptome mapping [10]. Nevertheless,
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expression analysis is the most common task performed by microarrays and applications can be
found in fundamental research as well as in the biomedical field [6, 11]. A typical experimental
strategy is to perturb the cells of interest and to monitor their response on the transcript level.
Cellular perturbations include external stimulation, gene knock-out or knock-down and the over-
expression of specific genes [12–14]. Furthermore, several human diseases have been investigated
by using genome-wide arrays including diverse types of cancer [15,16], rheumatoid arthritis [17]
and osteoporosis [18]. One major aim of those studies is the detection of genes which show
significant expression differences between the diseased state and an appropriate control state.
Moreover, gene expression patterns of patients have been analysed to distinguish disease sub-
types, to predict a clinical outcome (diagnosis) and to personalise therapy [16]. As a result,
medical diagnosis could be improved by assigning more precise and detailed disease character-
istics to the individual patient. Therapy which is tailored to the patients specific characteristics,
is the main objective of personalised medicine [19].

1.1.2 Human genome microarrays from Affymetrix

While this thesis exclusively deals with human data, microarray experiments can be conduc-
ted for a wide range of model organisms, such as Mus musculus, Rattus norvegicus, Drosophila
melanogaster and Arabidopsis thaliana [7]. The following text will outline some facts about the
design and the application of the microarray technology used in this thesis. Gene expression ex-
periments were performed using the Affymetrix GeneChip Human Genome U133A (HG-U133A),
which contains more than 20,000 probe-sets for 14,500 genes of the human genome. Another more
advanced microarray platform of the GeneChip family named Human Genome U133 Plus 2.0
contains more than 47,000 probe-sets and is one of the most widely used arrays (more than
80,000 entries in GEO database). Expression of each gene is measured by a probe-set, which is
a collection of 11-20 probe pairs assigned to the same transcript. Each probe pair consists of
a perfect match probe (PM) and a mismatch probe (MM), which are both oligonucleotides of
length 25. The PM probe is designed to perfectly match a specific sequence within the target
mRNA, while the MM probe carries one mismatch at the 13th base. Originally, this single mis-
match strategy should help to quantify the background signal caused by non-specific binding.
However, some standard microarray pre-processing methods (e.g RMA) do not incorporate the
measurements of MM probes in their gene expression estimate, because they found that the use
of those values is not always appropriate [20].

1.1.3 MicroRNA microarrays

Further advances in microarray technology have enabled the measurement of very short RNAs
such as microRNAs (miRNAs). In this thesis, data of custom microarrays were analysed, which
have been designed to capture the expression of about one thousand miRNAs from the database
miRBase [21]. The main issue of measuring miRNAs on microarrays concerns the design of probes
to measure miRNAs, which have a very short sequence length (around 22 bp) [22]. Therefore,
microarray experiments employed locked nucleic acid (LNA) capture probe-sets from Exiqon
spotted on Schott Nexterion E slides [23]. Compared to DNA probes, LNA-RNA hybrids are
extremely stable, but get destabilised when a single mismatch occurs. Therefore, they have been
found to be very appropriate for measuring miRNA concentration. Moreover, the probe design
aimed at a normalised melting temperature in order to ensure an optimal hybridisation process.
This led to capture probes of varying length. The performance of this platform was tested and the
specificity of the measurements was evaluated on the basis of mismatch probes, reproducibility
tests and quantitative PCR. As a result, almost no cross-hybridisation was observed when using
the developed capture probe-sets [23].
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1.1.4 Microarray data pre-processing

Analysis of microarray data requires adequate processing of the generated values. One reason is
that the measured signal intensities do not only reflect biological quantities, i.e. the true RNA
concentrations in the cell, but can also be affected by measurement error during the microarray
experiment. Such error can arise for different reasons, including variation in sample prepara-
tion and non-specific hybridisation to probes [24]. To ensure that gene expression is reliably
estimated from the data and comparative analysis of microarray samples is feasible, microarray
measurements need to be adjusted for noise effects. Procedures which address this issue are gen-
erally referred to as pre-processing, because they are performed before the actual analysis of gene
expression. Pre-processing methods typically involve three steps including background correc-
tion, normalisation and summarisation [25]. Two of the most commonly applied pre-processing
methods for GeneChips are the Microarray Suite 5.0 (MAS5) from Affymetrix and the robust
multi-array average (RMA) method [20,26].

Both take a raw microarray dataset as input data and compute gene expression estimates for
all annotated probe-sets. The main difference lies in their estimation of the background signal
intensity. While MAS5 relies on the array’s MM probes and their ability to capture non-specific
binding, RMA employs empirical distributions for background and signal intensities by only con-
sidering PM probes. Specifically, each PM probe signal is adjusted by subtracting the modelled
background intensity. By comparing the performance of RMA and MAS5, it could be shown
that RMA can lead to a better precision of expression values and more consistent estimates
of fold-changes [20, 27]. Nevertheless, biological interpretations are reported to remain similar
independent of the chosen pre-processing method [7]. After microarray data pre-processing, the
logarithmic gene expression values are usually analysed in a relative manner, i.e. relative expres-
sion changes are calculated by subtracting expression values from control samples. The resulting
values are often referred to as log2 fold-changes. In fact, relative measures are regarded to be
more reliable compared to absolute measures, because microarrays intensity values can usually
not be interpreted as total RNA concentrations [28].

1.1.5 Candidate gene selection

The selection of genes from a microarray dataset is regarded as an essential task prior to model
construction [29]. In principal, one aims to reduce the large amount of available genes down to a
manageable number of candidate genes, which are associated with the respective biological ques-
tion. Since the main assumption of microarray analysis is that most of genes are not differentially
expressed, it is reasonable to remove those genes before continuing analysis [30]. Potentially inter-
esting genes display variation in their expression profile across the obtained samples. In the case
of time series data, this means that expression dynamics undergo significant changes over time.
To assess the significance of those temporal changes, appropriate statistical tests are employed to
detect differentially expressed genes. However, most microarray datasets have properties which
are not ideal to perform standard statistcal tests, such as the classic t-test [31]. Typical microar-
ray features are the inequality between few replicates and the large number of measured genes
per array. Both issues are considered by methods which perform adapted statistcal tests (e.g.
LIMMA, SAM) [32, 33]. To estimate variance from very few replicates, adapted tests take ac-
count of the global expression variation in the dataset. This approach was found to stabilise the
computation of the p-values [31, 32]. Furthermore, the vast number of statistical tests requires
a multiple testing correction in order to reliably estimate the p-values for all measured genes. A
common approach is the Benjamini Hochberg adjustment, which calculates the estimated pro-
portion of false positives also known as the false discovery rate (FDR) [34]. Additionally, analysis
of time series data requires specific tests (e.g. F-test), to identify genes which are significantly
differentially expressed at any of the measured time points.
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The result of the differential expression analysis is typically a ranked gene list, which is ordered by
their adjusted p-values and/or fold-changes. To choose a certain p-value cutoff for gene selection
is a user-defined task, which depends on the number of genes to be analysed and the proportion
of false positives that is tolerable. Additionally, to eliminate statistically significant genes which
display only a minor average difference to control, a two-fold-change criterion is often employed.
Since small changes in the expression level might be dominated by measurement noise, the addi-
tional fold-change cutoff helps to require a minimum amount of change in concentration. Genes
which double their expression level are typically concerned of biological interest [35], in contrast
to genes which are merely significant according to their p-value. In general, the combination of
p-value and fold-change criteria for gene filtering was reported to enhance the reproducibility of
results from microarray experiments [36].

1.2 Inference of gene regulatory networks

1.2.1 Network inference from microarray data

Gene expression studies on a genome-wide level using microarray technology enables research-
ers to perform analysis in an explorative and data-driven manner. Investigations of molecular
processes benefit from such large-scale gene expression data, because it captures the expression
patterns of all involved genes. To unravel the underlying gene regulation on the basis of such
data is a scientific challenge. The principal aim is to understand how the complex gene regulat-
ory processes are structured in the cell. Particularly, researchers seek to investigate how genes
influence each other in the cellular system and how the sum of those regulatory interactions gives
rise to the phenotype of the cell. Systems biological approaches apply this idea of an integrated
analysis of cellular components. They explain cellular behaviour by the orchestrated regulation
of its components, e.g. genes, proteins or metabolites, instead of focusing on individual com-
ponents. One prevalent objective is to generate a network which describes gene regulation in
the cell. This type of network is composed of genes and connections between the genes, which
reflect observed or predicted relationships in the cellular system. The reconstruction or inference
of such a gene regulatory network (GRN) is a typical system biological approach, which aims
to derive the underlying regulatory network from gene expression data. In this thesis, network
inference is part of a multi-step analysis process, which aims to result in testable experimental
hypotheses (see Figure 1.1).

Various computational approaches have been developed for the purpose of network recon-
struction by applying diverse modelling strategies. One common strategy seeks to learn an
influence network model [14], which describes indirect regulatory relationships among the genes
instead of direct physical interactions. Particularly in eukaryotic cells it is advantageous to model
influences, since gene regulation is complex and controlled by the interplay of various signalling
pathways, whose activity is not always reflected on the transcript level [14]. Those pathways
mediate an external environmental signal (e.g. by a growth factor) to the cell’s nucleus, where
it typically results in the change of target gene expression. On an abstract level, cellular regula-
tion is regarded as a network of regulatory relationships between genes, which represent direct
and indirect dependencies. To unravel the structure of a cellular GRN represents an enormous
challenge due to its complex intertwined nature.

Analysis of known GRNs has helped to determine some of their general properties. Their net-
work structure has been found to be sparsely connected and the distribution of node degrees
appeared to follow a power law distribution [37]. Most of the genes are regulated by few central
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Figure 1.1: Network inference as one part of a multi-step process, which includes microarray
data analysis, prior knowledge collection and validation of hypotheses.

regulators, which are also known as hub genes. Various GRN inference methods have trans-
lated the observed property of sparseness into an optimisation principle, which favours minimal
connected network structures during the model reconstruction [38–41]. Various types of com-
putational methods which aim at the reconstruction of GRNs have been proposed, including
methods based on correlation measures, Bayesian probability and Boolean approaches [42–44].
This thesis deals with network models using a system of ordinary linear differential equations
(ODEs) to explain observed changes in gene expression. The network structure of the model is
determined by the model’s parameters, which can be visualised by a directed network in which
connections represent regulatory influences between the components. To infer those parameters,
time series data are required because they indicate the dynamic behaviour of gene regulation.
The resulting dynamic model can be simulated to evaluate the concordance with the measured
time series. There are several studies which implemented ODE-based models and successfully
applied them to reconstruct the GRN for diverse biological contexts, e.g. E.coli [38], murine
hepatocytes [41] and Candida albicance [45]. The tools which were used in those studies to per-
form the network inference are termed ExTILAR and NetGenerator. While ExTILAR is based
on constrained linear regression, NetGenerator applies a heuristic to optimise the GRN structure.

This thesis primarily focuses on an extended version of the NetGenerator tool and its application
for network inference [38,46,47]. The underlying modelling approach is based on the assumption
that the investigated system is initially (at the first time point of the measured time series) in a
steady state. Then, it undergoes a significant external perturbation (e.g. stimulation by a growth
factor), which induces a dynamic response characterised by concentration changes of the system’s
components (mRNAs, miRNAs). Time series measurements capture the dynamic response of
all components at preselected time points. Therefore, most of the variation that occurs in the
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time series data is directly or indirectly due to the applied experimental stimulus. In order to
reconstruct the underyling network NetGenerator optimises a parametrised ODE-based model
by applying a heuristic search strategy to solve the combinatorial network structure optimisa-
tion problem, i.e. to identify the optimal set of regulatory connections between the components.
The interaction parameters of the model are optimised to minimise the deviation between the
simulated data and the measured time series data.

This inference strategy strongly depends on the provided microarray data and therefore one
has to deal with several issues that are connected to this type of experimental data. One issue
concerns the dimensions of the applied microarray data, i.e. measurements for ten thousands of
genes are available for a usually relatively small number of microarray samples. This imbalance
between genes (network components) and samples make it difficult to unambiguously infer the
network structure, due to the existence of multiple solutions which explain the data equally well.
This so-called dimensionality problem can be resolved by various strategies including (1) the se-
lection of an reduced number of genes, (2) the grouping of genes into clusters, (3) the extension
of the amount of data and (4) the integration of prior knowledge. To select a reduced number
of network genes, one typically identifies differentially expressed genes, which are regarded as
the set of genes that are responsible for the investigated cellular phenotype. Another way to
deal with the vast amount of genes is to cluster genes according to their gene expression profiles
and perform network inference for few cluster representatives [38,45]. Instead of further decreas-
ing the number of network nodes, one can also collect further expression data from additional
experiments or public databases to increase the number of samples. The integration of mul-
tiple experimental data is the main focus of this thesis and therefore section 1.2.2 will introduce
already existing approaches which apply this idea.

Another important aspect is the application of adequate prior knowledge, because it constrains
the potential network structures and therefore may facilitate the inference process [14]. The
general idea of prior knowledge and the heterogeneous types of sources used in this thesis will
be outlined in chapter 1.2.3. Furthermore, network inference depends very much on the quality
of the given data. Therefore, it is necessary to cope with the inherent noise of microarray data
to ensure that the resulting model is primarily based on true expression changes rather than on
technical variation in the data and biological variation (e.g. between the individuals included
in a study). One way to address this issue is the application of a resampling approach. Such
methods can help to assess the impact of noise in the input data on the resulting network model
and lead to a more robust model with less dependency on noise and therefore better quality [14].

1.2.2 Inference from multiple experimental data

The particular focus of this thesis is the combination of experimental data in order to increase
the reliability of network inference results. There are various studies which have proposed diverse
approaches to reconstruct a regulatory network on the basis of multiple experimental data. One
of the earliest algorithms was introduced by [12], which requires data from specific gene perturb-
ation experiments in order to gradually reconstruct a Boolean network. A similar algorithm was
introduced by [48], which also applied the concept of systematic perturbations of the investigated
network. However, both studies presented the successful application of their algorithm solely on
artificial data. A more recent modelling approach, which is also based on Boolean networks,
applied a gene expression dataset from synovial fibroblasts which were treated with two different
stimuli. This work included large parts of knowledge curation and manual network improvement
steps [49].

Based on a linear model, the genome-wide scale network published by [50], illustrated network
inference from a large number of published datasets that included Candida albicans expression
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data under approximately 200 different conditions. They applied an extended version of the
LASSO algorithm on a combined dataset which included all available expression data. In the
case of time series data, such merging of data is regarded as inappropriate, because it ignores the
temporal relationships among the datasets [51]. Instead, an approach based on linear differential
equations has been proposed by [51] to model principal components of the different datasets. A
more general framework which allows to integrate distinct types of data including steady-state
as well as time series data was presented by [52]. Their particular focus is the combination of
data from stimulation and knock-out experiments.

Even though some inference approaches have dealt with multiple time series data, there is a
general lack of tools which performs this task in a relatively automatic and time efficient man-
ner. Therefore, this thesis proposes the NetGenerator V2.0 tool which is capable to automatically
infer GRNs from multiple time series data. Such data is typically gained from multiple stim-
ulation experiments of the same biological system. The performance of this tool is evaluated
on artificial benchmark examples and is applied to infer a multiple stimulus network of human
mesenchymal stem cells which undergo chondrogenic differentiation. Furthermore, a second mod-
elling task demonstrates the applicability of NetGenerator V2.0 to a combined dataset of miRNA
and mRNA expression time series to elucidate the involvement of miRNAs in chondrogenesis.
Due to advanced microarray technology and miRNA annotation, such experimental datasets have
become more frequent in the recent years. Those data contributes to the analysis of miRNA tar-
get interactions and understanding of post-transcriptional regulation. There are a number of
network inference approaches which address such questions by an integrated analysis of miRNA
and mRNA data. Tools such as MAGIA [53], MMIA [54] and miRConnX [55] are based on
the integrated analysis of miRNA target gene predictions and correlation between miRNA and
mRNA expression profiles. Although they have particular strengths in the discovery of regulat-
ory motifs, their correlation-based approach does not consider the temporal information of time
series data.

1.2.3 Prior knowledge

Generally, the inference of GRNs benefits from the integration of additional biological data [14].
This includes prior biological knowledge, which summarises all previously collected informa-
tion about regulatory interactions among the network components. Possible sources for prior
knowledge include scientific literature, transcription factor binding site (TFBS) predictions in
promoter regions and potential regulations derived from knock-out experiments. In this context,
predicted interactions are also referred to as knowledge although their reliability is apparently
lower compared to published experimental results. Nonetheless, the additional information con-
tained in accurate predictions is a valuable source for network inference, because this data is
independent of the used time series data.

A collection of heterogeneous knowledge can assist the inference process by providing network
structure proposals. As the inference of the network structure represents a combinatorial prob-
lem, accurate proposals can contribute to the performance of this task. However, the obtained
prior knowledge may not be explainable by the given gene expression measurements, which are
used for network model construction. Such contradictions can occur if the biological context
of both data sources is different, e.g. a different type of tissue or diseased cells. Therefore,
network inference approaches which use prior knowledge have adopted ways to deal with such
inconsistencies. The extended NetGenerator tool is now able to perform flexible integration,
which allows the rejection of contrary prior knowledge to retain a good model adaptation to
the data. Another concept is applied by the inference approach ExTILAR, which is based on
heterogeneous knowledge including TFBS predictions and literature knowledge. Incorporation of
the diverse knowledge is performed on different levels of the GRN inference to result in a model
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of high biological plausibility. A general issue of using prior knowledge for network inference
is the distribution across diverse resources such as databases, literature or additional datasets.
The collection of this information can require a significant amount of manual work, before the
network inference is initiated.

1.3 Differentiation of human mesenchymal stem cells

Human mesenchymal stem cells (hMSCs) are progenitor cells which are characterised by self-
renewal and multipotency. Self-renewing cells maintain a pool of undifferentiated stem cells,
which are capable of differentiating into multiple cell types. Specifically, hMSCs have been
found to give rise to cells of the mesodermal lineage including chondrocytes, osteocytes and
adipocytes [56]. Therefore, they are responsible for the supply of fresh cells to maintain and
replace non-functional (e.g. dead or mutated) cells. For example, human osteoblasts have a
half-life of 8-10 days and get replaced by hMSCs [57]. Regeneration of tissue is often described
as one of the most essential features of hMSC [58]. In this process, they are able to induce a
regenerative microenvironment around the area and thereby support the repair of injured tis-
sue [57].

One of the earliest descriptions of hMSCs were made by [59], who discovered a rare cell type
in the bone marrow, which allowed for generating cell colonies from a single cell [60]. Those
colonies were found to differentiate into cells which display similarities to bone or cartilage. The
discovered stem cells were termed “mesenchymal”, after it became clear that they are typical
precursor cells of mesenchymal tissues [56]. However, it became apparent that their differenti-
ation capacity allows them also to transdifferentiate into other lineages, such as neurons under
appropriate conditions [61]. The traditional source of hMSC is the bone marrow, although they
have also been derived from almost all types of connective tissue, including adipo tissue and
synovial membrane tissue [56, 58]. However, they usually occur in very small amounts and are
heterogeneous in their individual commitment stages [56].

Commitment of hMSCs towards a specific lineage is characterised by subsequent cell fate de-
cisions [62]. This developmental process is organised by differentiation pathways, which are
characterised by mutual dependencies. For example, blocking the adipogenic pathway leads to
hMSCs differentiating towards osteocytes and vice versa [61]. There is a wide range of exist-
ing knowledge about the involved regulatory factors, including growth factors and transcription
factors which have been identified and associated with the differentiation processes. On the ge-
netic level, the transcription factors are responsible for the regulation of target genes which are
required for activation of downstream processes and the cellular commitment [63, 64]. However,
the full extent of the involved regulatory factors as well as their complex interaction network has
not been completely elucidated.

More precise knowledge about the regulatory mechanisms would allow for advances in biomed-
ical applications, such as tissue engineering in regenerative medicine. Experiments and culture
conditions have been designed for the purpose of cell cultivation and production of certain cell
types. Due to their flexible character hMSCs are suitable for application in medical therapies.
Particularly, they can be employed with the objective to repair damaged tissue in the case of a
degenerative disease. Preclinical trials already successfully implemented stem cells to form bone,
cartilage, muscle and other connective tissues. For example, autologous hMSC were applied at
long-bone repair sites and polymeric hMSC scaffolds were used for cartilage repair [57]. Bone
and joint diseases like osteoporosis, osteoarthritis could be treated with artificially generated car-
tilage and bone cells. Therefore, advances in molecular hMSC research are likely to have direct
positive impact on the medical treatment of patients. Particularly, the understanding of stem
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cell regulation and elucidation of regulatory mechanisms can give rise to adapted and improved
stem cell therapies. Furthermore, hMSCs have also been found to modulate immune cells, such
as T-cells. Surprisingly, they appear to have an anti-proliferative and anti-inflammatory effect
on the target cells [56]. This feature is extremely valuable for the therapeutical application of
hMSCs, since their immunosuppressive effects might facilitate the use of donor cells.
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Chapter 2

Overview of manuscripts

Status published in Proc. International Conference on Bioinformatics and Computational
Biology BIOCOMP’11, 2011, Vol.I, pp. 16-22

Summary Microarray technology is based on a vast number of probes which are designed to
hybridise to specific target transcripts. The quality of the microarray’s measurements therefore
depends on the specificity of the probe sequences. This study compared four different chip
definition files, including one novel approach, which all aimed to identify and discard non-specific
probes from the probe-sets. Evaluation was performed on the basis of two datasets which include
microarray data as well as qRT-PCR data for a selection of genes. Since qRT-PCR is regarded
as a reliable method to determine gene expression, it was used to validate the gene expression
estimates from the corresponding microarray data. As a result, one chip definition file was found
to show the best performance, while the original annotation was found to perform worst.

Authors’ contributions CH and FM performed the analysis and developed the annotation
files. MW carried out the statistical evaluation of the files. SD and UG provided some of the
applied experimental data. RG supervised the study and contributed to the manuscript. CH,
FM and FH wrote the manuscript. All authors read and approved the final manuscript.
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Status: published in Daskalaki A: Medical Advancements in Aging and Regenerative Techno-
logies: Clinical Tools and Applications. IGI Global, Vol. 1, pp. 76-94. Posted by permission of
the publisher.

Summary: Human mesenchymal stem cells can be found in various adult tissues and are char-
acterised by their multipotent state, which enables them to differentiate into multiple cell types
including cartilage, bone and fat cells. The task of this study was the further examination of
the differentiation process with a focus on gene regulation. Diverse experimental conditions were
applied and found to induce differentiation with distinct efficacy. A comprehensive microarray
dataset was analysed to investigate the underlying gene expression levels. Differentially expressed
genes were identified which are potentially involved in the differentiation process. Furthermore,
some lineage-specific genes were found to show an increased or accelerated upregulation, which
reflects the observed differentiation performance. Taken together, this study provided a com-
prehensive overview about differentiation conditions as well as the behaviour and function of
regulated genes.

Authors’ contributions: AS and MW wrote the manuscript. AS and EJvZ contributed to
the design of the experiments and the biological interpretation of the results. MW peformed the
data pre-processing and the bioinformatic analysis. EJvZ supervised the study. All authors read
and approved the final manuscript.
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Status: published in BMC Systems Biology; 2013; 7:1

Summary: Inference of gene regulatory networks is a common task to investigate the behaviour
of regulatory processes. Typically, gene expression data from microarrays is employed to model
the effects on the transcript level. This study proposes the extended NetGenerator V2.0 tool
which is capable of inferring networks from multiple time series data investigating the effect of
multiple stimuli. Data integration into a single network inference is beneficial, because it increases
interpretability and reliability of the model. Successful inference of three benchmark examples
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Creation and Comparison of Different Chip Definition Files for
Affymetrix Microarrays
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1Research Group: Systems Biology / Bioinformatics, Hans Knöll Institute Jena
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Abstract— Microarrays are broadly used for high-
throughput gene expression analyses in molecular biology
and medicine. Nevertheless, the quality of the technology
is still capable for further improvements. One of the
main problems is cross-hybridization of the transcripts
to non-corresponding probes on the array by unspecific
binding.

Four different Affymetrix GeneChip arrays are analyzed,
namely the Human Genome arrays HG-U133A, HG-U133B,
HG-U133 Plus 2.0 and the Mouse Genome 430 2.0 array. It
is shown that putative cross-hybridizations are common for
the examined arrays (e.g., 45 % of all probes for the U133A).
Furthermore, a considerable amount of probes does not
match the annotated transcript correctly. A new set of CDFs
is created avoiding putative cross-hybridization completely.
It is compared with three other CDFs (Affymetrix, Dai et al.,
Ferrari et al.) with the help of correlation between microar-
ray and qRT-PCR results for two datasets. The newly created
and the Ferrari CDFs perform significantly better than the
original Affymetrix CDFs. The new CDFs are available as R-
packages at http://www.sysbio.hki-jena.de/software and have
been submitted to BioConductor.

Keywords: microarrays, unspecific binding, cross-hybridization,

Chip Definition Files

1. Background
Microarrays are broadly used for high-throughput gene

expression analyses in molecular biology and medicine.

They are applied to measure changes in expression levels for

thousands of genes simultaneously. Until 2011, more than

20,000 measurement series based on microarray technology

have been published in public repositories like NCBI’s Gene

Expression Omnibus.

Nevertheless, the quality of the technology is still capable

for further improvements [1], [2]. Several studies tried to

compare data derived from different types of arrays and

showed a rather poor consistency [3], [4]. Although mi-

croarrays are commonly used, this is a daunting problem.

In addition, although there has been extended work on this

field [5], there is still a lack of standardized experimental

protocols among different laboratories [6].

The main problem of microarray analysis is unspecific

binding of transcripts by cross-hybridization. This means

that RNA fragments hybridize to a probe which is not

designed for this gene. It was shown that fragments longer

than 8 nucleotides are able to hybridize and that cross-

hybridization can emerge from alignments ranging from 10

to 16 nucleotides. Further, the 5’-ends were found to cross-

hybridize more likely than the 3’-ends [7].

Unspecific binding may lead to false-positive and false-

negative results following in incorrect hypotheses about

gene expression [8], [9]. Affymetrix, a technology widely

used [10], accounts for the influence of cross-hybridization

by introducing internal controls: each probepair comprises a

Perfect Match (PM) and a Mismatch (MM) probe which

are statistically evaluated [11]. Unfortunately, this proce-

dure cannot solve the problem of cross-hybridization com-

pletely [12] and further refinements are suggested [13]. For

example, Wu et al. [7] stated that the MM probes can also

cross-hybridize, even though by another mechanism as the

PM probes. Therefore, they recommended ignoring the MM

probes.

Generally, expressed transcripts are represented on the

array by a series of probepairs called probesets. The signal

intensities are summarized to a single value per probeset. A

large number of single transcripts are represented by multiple

probesets. Multiple probesets representing the same gene are

expected to show similar fold changes calculated from the

signal intensities of the hybridized samples. However, this

is in fact not the case [14], [15], [16]. This problem arises

from single probes in the probeset which are capable of

cross-hybridization. Ways to deal with this problem is either

a probe-based analysis, leaving out the probe-to-probeset

summarization step [17], [18], or the composition of the

probesets could be improved by setting up alternative Chip

Definition Files (CDFs) based on information contained in

different sequence databases. For example, the group of

Ferrari et al. [19] created a set of custom CDFs based on

the GeneAnnot database [20]. In these CDFs the probesets

that match the same gene were merged into one probeset.

Hence, the existence of more than one probeset per gene

was eliminated, avoiding discordant expression signals for

the same transcript.

Another set of custom CDFs relying on a broad repertoire
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of databases like RefSeq or Unigene has been created by

the group of Dai et al. [21]. Probesets matching the same

gene were merged, but remained divided if they were able

to discriminate different isoforms of a gene. Probes causing

cross-hybridizations were removed from the new probesets,

but the filter had been not very strict.

Several groups dealt with the question of the minimum

probeset size [19], [21]. For example, the group of Lu et
al. [22] sets the minimum probeset size to 4 probes because

smaller probesets result in high error rates. In this study the

minimum probeset size was set to 4 [19], [21]. From these

new probesets custom CDFs and the corresponding Biocon-

ductor libraries for Affymetrix GeneChips were created.

In the work presented here, a new set of CDFs is in-

troduced avoiding putative cross-hybridization completely.

These CDFs are compared with those from Affymetrix,

Ferrari, and Dai by validation of the respective microarray

results using qRT-PCR for two different datasets.

2. Results
Four different Affymetrix GeneChip arrays are analyzed,

namely the HG-U133A, HG-U133B, HG-U133 Plus 2.0

designed for human samples, and the Mouse Genome 430

2.0 array. For the detection of putative cross-hybridizations,

the sequences of all Affymetrix probes (only the PM probes,

the MM probes are discarded) are aligned against the RefSeq

database using blastn [23] as described in the methods

section.

The GeneChip HG-U133A consists of 22,283 probesets,

each of 11–20 probepairs and 247,937 probepairs in total.

Additional 1,155 probepairs are controls and are furthermore

ignored. About 44 % of the PM probes (109,245) match

exactly one single gene. 11 % of the probes (26,159) do not

match any annotated gene. 45 % of the probes (112,533)

match more than one gene and thus have cross-hybridization

potential.

Furthermore, the direction of the probes was analyzed.

Normally, sense strand RNA fragments are expected, al-

though there are some loci in the human genome [24], as

well as in the mouse genome [25], where both sense and

antisense strands are transcribed. However, mixing up probes

detecting sense or antisense strands in one single probeset

could cause wrong expression results. Here, only probes

matching the sense strand are considered as correct. For the

U133A microarray all probes match the sense strand.

The GeneChip HG-U133B consists of 22,645 probesets,

each of 11–20 probepairs and 249,491 probepairs in total.

Again, there are additional probesets containing more than

11 probes as controls and are ignored (1,100). About 35 %

of the probes (87,067) are found to match exactly one gene.

2 % of the probes (5,453) match more than one gene, so

they possibly cross-hybridize, 5 % of the probes (12,805)

match at least one gene but in the wrong direction (antisense

direction) and no gene in the sense direction, and 58 % of

the probes (144,166) do not match any annotated gene.

The GeneChip HG-U133 Plus 2.0 consists of 54,675

probesets and 604,247 probepairs. Like in the other arrays,

additional probesets containing more than 11 probes are

controls and are discarded. Here, 37 % of the remaining

probes (221,821) match exactly one gene, 23 % of the probes

(141,146) match more than one gene, 11 % of the probes

(65,327) match at least one gene but in the wrong direction

(antisense direction) and no gene in the sense direction, and

29 % of the probes (175,953) do not match any annotated

gene.

The Mouse Genome 430 2.0 array consists of 45,036

probesets and 496,457 probepairs. About 52 % of the

counted probes (257,331) match exactly one gene and 5 %

of the probes (27,112) match more than one gene. About

1 % of the probes (4,661) match genes only in the wrong

direction and 42 % of the probes (207,353) do not match

any annotated gene.

Nearly all Affymetrix probesets contain at least one probe

which has cross-hybridization potential. In fact, for the HG-

U133 Plus 2.0 Chip about 65 % of all probesets include

more cross-hybridizing probes than non-ambiguous ones.

All probes matching exactly one single gene are classified

as good and all probes matching more than one gene are

classified as problematic. Those probes, that match in the

wrong direction or do not match any RefSeq sequence are

also classified as problematic. Only the good probes are

used to create the new CDFs as described in the methods

chapter. Accordingly, for the HG-U133A microarray origi-

nally measuring 14,500 genes by 22,283 probesets the newly

created CDF contains 12,400 probesets representing 12,400

genes. For the HG-U133 Plus 2.0 the number of probesets is

reduced from 54,675 (representing 38,500 genes) to 18,800

(representing 18,800 genes). The HG-U133B comprises

22,645 probesets measuring the expression of 18,400 genes.

Here, the number of probesets is reduced to 6,500 matching

6,500 transcripts. The Mouse 430 2.0 microarray consists

of 45,036 probesets for 39,000 genes. With the new CDF

there are 16,400 probesets matching 16,400 genes. Hence,

the number of identifiable genes is reduced in order to

achieve a higher specificity of the probesets. The result for

the HG-U133 Plus 2.0 is in good agreement to the results

of Barnes et al. [26], who used BLAT and the Golden Path

database and achieved a number of 17,143 genes that can

be measured.

Small probesets lead to higher error rates and result in

lower statistical significance. In the Affymetrix CDFs the

size is 11 for nearly all probesets, but in the newly created

probesets the size is not fixed. Some probesets are smaller

than those from Affymetrix due to the removal of the

problematic probes. However, many probesets increase in

size due to useful probes on the array that have not been

used for the matching gene before and probesets measuring
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the same gene beeing merged. For example, for the HG-

U133 Plus 2.0 the mean probeset size increases from 11 to

17.

For the validation of all CDFs two test datasets are chosen:

(i) the Etanercept (ETC) and (ii) the MAQC dataset. The first

of the two datasets is derived from a study analyzing the ef-

fect of the TNF-α blocker Etanercept, a rheumatoid arthritis

drug, using data from 17 patients at three time points [27]. It

is a typical dataset that arises in medical studies and is rather

representative. One Affymetrix HG-U133A array experiment

was performed for each time point. The second dataset is the

Microarray Quality Control (MAQC) reference dataset [28].

It contains data from more than 1,300 microarrays and qRT-

PCR data for more than 1,000 genes. The subset of the 120

Affymetrix U133 Plus 2.0 expression results and all the qRT-

PCRs are selected for the analysis presented here.

qRT-PCR results are considered to reflect the real tran-

script concentrations with higher reliability than those de-

termined by microarrays. Therefore, qRT-PCR experiments

are regarded as a ’gold standard’ for chip analyses [29], [30].

The Pearson correlation coefficient (PCC) of the microarray

and the qRT-PCR data is computed for each gene using the

different CDFs.

For the Etanercept dataset we performed qRT-PCR ex-

periments for 16 genes. In total, this dataset now contains

results from 51 microarrays and 816 qRT-PCR experiments.

In addition, the genes with qRT-PCR data in both records

are analyzed in more detail.

The perfomance of these CDFs were compared: the orig-

inal Affymetrix CDFs (A), the two alternative CDFs of

Ferrari et al. (F) [19] and Dai et al. (D) [21], and the

new CDFs (H) presented here. The CDFs from Ferrari,

using the GeneAnnot database, contain merged probesests

(see background chapter), and cross-hybridization was not

considered. The group of Dai offers a broad spectrum of

different CDFs based on different databases. The one using

RefSeq is chosen for comparison because it corresponds best

to the new CDFs, using RefSeq as well. In the Dai CDFs

different probesets matching a single gene are combined,

although there are exceptions for genes comprising different

isoforms. A check for cross-hybridization is also included.

However, it applies a different algorithm than the new CDFs

and the filter is much less strict.

For the probe to probeset summarization step two algo-

rithms are used as described in the methods section: (i)

the Robust Multi-array Analysis Algorithm (RMA) [13],

[31] and (ii) the Affymetrix Microarray Suite MAS5 [32].

These were compared repeatedly, but it is difficult or even

impossible to decide which of the both algorithms performs

better in any case [33], [34], [35].

For the Etanercept dataset, the mean correlation coef-

ficient of all 16 genes for the Affymetrix CDF is 0.61

using the robust multi-array analysis algorithm (RMA) and

0.60 using the Affymetrix Microarray Suite MAS5. These

values include 31 probesets in total matching these 16 genes

according to the Affymetrix annotation file. If only the best

correlating probeset for each gene is considered, the average

correlation coefficient increases to 0.73 for RMA and 0.71

for MAS5. However, this value is more of theoretical interest

because the knowledge which probeset will perform best is

gained not until the qRT-PCR experiments and correlation

analysis is finished. On average, the incorporated probe-

sets contain 5.58 putative cross-hybridizations calculated by

BLAST (4.47 including only the best performing probesets).

The Dai CDF contains 23 probesets for the 16 genes of

the Etanercept dataset. Their mean correlation coefficient

increases to 0.67 for both RMA and MAS5 compared to

the 0.60 using the Affymetrix CDF. Considering the best

correlating Dai probesets only, the values further increase

to 0.73 for RMA and 0.69 using MAS5. The mean size of

the Dai probesets increases to 20.59 probes containing 8.82

putative cross-hybridizations. This number changes to 4.71

if normalized to a probeset size of 11. Here, normalization

means the number of putative cross-hybridizations calculated

for a hypothetical Dai probeset size of 11. Considering

only the best Dai probesets, the number of putative cross-

hybridizations decreases to 7.88 on average.

For the Ferrari CDF, the mean correlation coefficient

equals 0.73 for RMA and 0.69 using MAS5 on average.

The mean probeset size increases to 19.56, harboring 10.81

possible cross-hybridizations (6.07 if normalized).

Using the new CDF the mean correlation coefficient

amounts to 0.72 for RMA and 0.68 for MAS5. The mean

probeset size decreases to 10.25 with no cross-hybridizations

at all. The detailed results are shown in the table below:

PCC PCC PCC Number of Probeset-

Gene Probeset ETC ETC MAQC ambiguous size

(RMA) (MAS5) (RMA) probes

TNF A: 207113_s_at 0.88 0.85 N/A 8 11

D: NM_000594_at 0.88 0.85 N/A 8 11

F: GC06P031652_at 0.88 0.85 N/A 8 11

H: gi_25952110 0.86 0.81 N/A 0 3

IL1B A: 205067_at 0.95 0.90 0.37 6 11

A: 39402_at 0.95 0.87 0.82 6 16

D: NM_000576_at 0.96 0.89 0.74 12 27

F: GC02M113303_at 0.96 0.89 0.74 12 27

H: gi_27894305 0.95 0.88 0.86 0 15

IL6 A: 205207_at 0.69 0.71 0.81 3 11

D: NM_000600_at 0.69 0.71 0.81 3 11

F: GC07P022732_at 0.69 0.71 0.81 3 11

H: gi_10834983 0.65 0.72 0.71 0 8

IL8 A: 202859_x_at 0.88 0.81 0.90 6 11

A: 211506_s_at 0.86 0.73 0.98 6 11

D: NM_000584_at 0.88 0.73 0.96 12 22

F: GC04P074845_at 0.88 0.73 0.96 12 22

H: gi_28610153 0.89 0.73 0.95 0 10

IL1RN A: 212657_s_at 0.75 0.87 N/A 2 11

A: 212659_s_at 0.77 0.84 N/A 4 11

A: 216243_s_at 0.75 0.86 N/A 6 11

A: 216244_s_at 0.13 0.07 N/A 4 11

A: 216245_at 0.21 0.11 N/A 10 11

D: NM_173841_at 0.80 0.88 N/A 12 33

D: NM_000577_at 0.80 0.88 N/A 12 33

D: NM_173842_at 0.80 0.88 N/A 12 33

D: NM_173843_at 0.84 0.86 N/A 15 42

F: GC02P113591_at 0.83 0.86 N/A 16 44

H: gi_27894315 0.78 0.88 N/A 0 23

ICAM1 A: 202637_s_at 0.63 0.73 0.97 7 11

A: 202638_s_at 0.62 0.72 0.98 4 11

A: 215485_s_at 0.71 0.73 0.94 3 11

D: NM_000201_at 0.70 0.76 0.99 14 33

F: GC19P010247_at 0.70 0.77 0.99 14 33

H: gi_4557877 0.72 0.74 0.97 0 20

SOD2 A: 215078_at 0.25 0.35 N/A 10 11

Continued on next page
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PCC PCC PCC Number of Probeset-

Gene Probeset ETC ETC MAQC ambiguous size

(RMA) (MAS5) (RMA) probes

A: 215223_s_at 0.15 0.28 N/A 7 11

A: 216841_s_at 0.18 0.39 N/A 3 11

A: 221477_s_at 0.32 0.44 N/A 10 11

D: NM_001024466_at 0.16 0.33 N/A 6 12

D: NM_000636_at 0.19 0.37 N/A 10 22

D: NM_001024465_at 0.16 0.33 N/A 6 13

F: GC06M160020_at 0.20 0.36 N/A 20 33

H: gi_67782304 0.20 0.39 N/A 0 12

TRAF1 A: 205599_at 0.61 0.50 0.88 6 11

D: NM_005658_at 0.61 0.50 0.88 6 11

F: GC09M122704_at 0.61 0.50 0.88 6 11

H: gi_53759116 0.59 0.47 0.89 0 5

ZFP36 A: 201531_at 0.84 0.86 N/A 5 11

A: 213890_x_at -0.01 -0.46 N/A 8 11

D: NM_003407_at 0.84 0.86 N/A 5 11

F: GC19P044589_at 0.84 0.86 N/A 5 11

H: gi_141802261 0.85 0.82 N/A 0 6

PTGS2 A: 204748_at 0.91 0.71 0.97 4 11

D: NM_000963_at 0.91 0.71 0.97 4 11

F: GC01M184907_at 0.91 0.71 0.97 4 11

H: gi_4506264 0.89 0.72 0.95 0 9

TNFAIP3 A: 202643_s_at 0.78 0.82 0.97 4 11

A: 202644_s_at 0.87 0.85 0.93 6 11

D: NM_006290_at 0.82 0.83 0.96 10 22

F: GC06P138230_at 0.82 0.83 0.96 10 22

H: gi_26051241 0.80 0.82 0.98 0 13

DUSP2 A: 204794_at 0.75 0.66 N/A 5 11

D: NM_004418_at 0.75 0.66 N/A 5 11

F: GC02M096230_at 0.75 0.66 N/A 5 11

H: gi_12707563 0.74 0.60 N/A 0 6

ADM A: 202912_at 0.80 0.67 0.92 5 11

D: NM_001124_at 0.80 0.67 0.92 5 11

F: GC11P010283_at 0.80 0.67 0.92 5 11

H: gi_4501944 0.82 0.67 0.94 0 6

CROP A: 203804_s_at 0.44 0.56 N/A 5 11

A: 208835_s_at 0.43 0.36 N/A 5 11

A: 220044_x_at 0.43 0.44 N/A 4 11

D: NM_016424_at 0.49 0.50 N/A 13 32

D: NM_006107_at 0.49 0.45 N/A 13 30

F: GC17P046151_at 0.48 0.48 N/A 14 33

H: gi_52426741 0.46 0.47 N/A 0 17

NFκBIA A: 201502_s_at 0.81 0.73 N/A 4 11

D: NM_020529_at 0.81 0.73 N/A 4 11

F: GC14M034940_at 0.81 0.73 N/A 4 11

H: gi_10092618 0.82 0.77 N/A 0 7

JUNB A: 201473_at 0.44 0.44 0.94 7 11

D: NM_002229_at 0.44 0.44 0.94 7 11

F: GC19P012763_at 0.44 0.44 0.94 7 11

H: gi_44921611 0.54 0.44 0.73 0 4

Ø all Affymetrix 0.61 0.59 0.88 5.58 11.16

best Affymetrix 0.73 0.71 0.92 4.47 11.00

Dai 0.67 0.67 0.91 8.82 20.59

best Dai 0.73 0.69 0.91 7.88 18.69

Ferrari 0.73 0.69 0.91 10.81 19.56

Hummert 0.72 0.68 0.89 0.00 10.25

Evaluating the PM and MM probes statistically, the MAS5

software assigns ’present’, ’absent’ or ’marginal’ to each

expression value, and Affymetrix recommends to use only

the ’present’ detection call for further analysis. Following

this recommendation and using only those results for the

correlation analysis that are marked as ’present’ the mean

correlation coefficient increases from 0.59 to 0.66 (0.74

including only the best performing probesets). Hence, incor-

porating the Affymetrix detection call indeed improves the

correlation, but using alternative CDFs is still better than

using the Affymetrix probesets and the detection call.

Analyzing the MAQC reference dataset using the RMA

suite, the results are almost in accordance with those of

the Etanercept data described above. The mean correlation

coefficient for all 1,000 genes is 0.47 for the Affymetrix CDF

(0.71 incorporating only the best probeset for each gene).

Using the Dai CDF, the mean correlation increases to 0.63

(0.64 for the best probesets). With the Ferrari and the new

CDF the mean correlations are 0.63 and 0.58, respectively.

The detailed results for all MAQC genes can be downloaded.

Discussion
Results from microarray experiments contain considerably

high error rates [36]. Due to error propagation, it is of

particular importance to minimize errors in the beginning

of the analysis chain [37]. Therefore, especially the pre-

processing of the chip data has to be done as accurate

as possible. Many efforts were spent on these problems

before [38], such as the notable results of the ’Golden Spike

Project’ [6]. The question which statistical method should be

adequately chosen is even more complicated if experimental

data from different laboratories are incorporated in one

single analysis [39].

For microarray analyses algorithms are essential which

combine the 11-20 probepair intensities for a given gene and

define a measure of expression that represents the amount

of the corresponding mRNA species. In this study, two of

these algorithms are compared, the robust multi-array anal-

ysis algorithm (RMA) and the Affymetrix Microarray Suite

MAS5. Applying both algorithms to the Etanercept dataset

RMA outperforms MAS5 on average. Other studies revealed

similar results. However, their performance is assumed to be

dependent on the actual dataset [40]. In fact, normalisation

steps are applied after the probe to probeset summarization.

Some of these steps depend on global parameters (e.g. mean

of total gene expression) which depend on the total set

of probesets. Therefore, identical probesets within different

CDFs vary slightly in the final gene expression values.

Analyzing the probes of the Affymetrix microarrays dis-

closes many inaccuracies. A large number of problematic

probes are based on the fact that Affymetrix had to rely

on genome annotation available at the time the chips were

designed (U133A and U133B: 2001; U133 Plus 2.0 and

Mouse 430 2.0: 2003). Because genome annotation improves

permanently, the chip design does not properly match the

present annotations anymore. Due to compatibility reasons,

Affymetrix is not able to keep the design of their microarrays

up to date.

The problem of cross-hybridization is well known. The

first work on custom CDFs examining this error source was

published by the group of Dai in 2005 [21]. They created

a large amount of high quality custom CDFs related to

different reference databases. Some probes, causing cross-

hybridizations, are deleted from the probesets, but the filter is

quite loose, so the number of problematic probes decreased

but did not vanish. The use of the new CDFs can avoid full

length, i.e., 25 mer long, cross-hybridizations completely.

Cross-hybridization of shorter fragments are very difficult to

handle due to the fact that the number of putative bindings

grows exponentially the shorter the considered fragments

are. Hence, if all putatively cross-hybridizing probes are

excluded the amount of measurable genes will be reduced

extremely.

The underlying gene annotation which is used for se-

quence alignment has a big impact on the number of cross-

hybridizations. Manually curated mRNA sequences have a

high chance of missing transcripts. Therefore, the inclusion

of computational proposed gene annotations decreases the
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number of false negative predicted cross-hybridizations. The

drawback is that a number of false positive hybridizations in-

creases. A more strict approach should be preferred, because

it does not significantly decrease the number of covered

transcripts as there is a high amount of availabe probes. In

this study, the exclusion of XM-RefSeq-accessions results in

smaller differences between the different CDFs in the num-

ber of putative cross-hybridzing transcripts. Interestingly, the

correlation coeefficents of the newly created probesets do not

change significantly.

Evaluating the four different CDFs, we figured out that

the usage of the original Affymetrix CDFs leads to poorer

results than the usage of the custom CDFs, although the best

Affymetrix probesets give equally good or even better results

than the other CDFs. However, as already mentioned, this

cannot be taken into account, because it is not known which

probeset will perform best before the correlation analysis

is completed. The Dai probesets perform better, but the

problem of several probesets representing a single gene had

not been solved. Although multiple probesets representing

the same gene are expected to show similar signal intensities,

this is in fact not the case [14], [15]. Thus, it is difficult to

decide which of the probesets matching the same gene is

the most reliable. The Ferrari and the new CDFs comprise

only one probeset per gene, which is of great advantage.

The Ferrari CDFs perform slightly better on the Etanercept

dataset and both CDFs perform equally well on the MAQC

data.

The analysis of the genes for which qRT-PCR results are

available in the Etanercept dataset as well as in the MAQC

dataset clearly shows higher correlation coefficients in the

MAQC dataset. This is most likely due to the fact that the

U133 Plus 2.0 arrays which were used in the MAQC dataset

outperform the older U133A microarrays.

The results show that probesets consisting of more probes,

i.e., larger probesets, lead to better correlation results in gen-

eral, whereas smaller probesets perform poorer. This finding

correlates to the results of the study of Cui et al. [14] that

merges probesets matching the same transcript. Interestingly,

probesets containing many putative cross-hybridizations do

not considerably perform poorer than probesets containing

only a few. This result is very surprising, because it is obvi-

ous that cross-hybridization is one of the main error sources

in microarray experiments [8], [9]. The normalization step

in the two summarizing algorithms RMA and MAS5 may

explain for that because they possibly eliminate some cross-

hybridization effects. Another explanation is that leaving out

the problematic probes does not compensate the influence of

cross-hybridization. Unspecific binding leads to two types

of error: (i) false-positives because RNA fragments bind to

problematic probes of the probeset, and (ii) gene expression

events are missed or underestimated, leading to a false-

negative error if the RNA fragments are already bound to

problematic probes of other probesets (competitive binding).

Custom CDFs can only account for the first type of error by

leaving out the problematic probes, the second effect could

only be overcome by better array design.

The newly created CDFs perform slightly poorer than the

Ferrari probesets (0.72 vs. 0.73) on the Etanercept dataset

and equally well on the much larger MAQC dataset. On

the one hand, the Ferrari CDFs can obviously countervail

the negative effect by their much larger probesets in com-

parison to the new CDFs. On the other hand, using the

new CDFs, putative cross-hybridizations are systematically

excluded whereas using the Ferrari CDFs, the negative effect

vanishes for statistical reasons due to the larger probesets.

For exact studies, it is better to avoid a putative error source

instead of averaging the cross-hybridization effects out as

the Ferrari CDFs do. In addition, it has to be mentioned

that the new CDFs provide as good or better results as the

other CDFs using only about half the amount of probes (HG-

U133A: 44 %, HG-U133B: 35 %, HG-U133 Plus 2.0: 37 %,

Mouse Genome 430 2.0 Array: 52 %). Hence, designing new

microarrays without the problematic probes, the dimension

can be reduced by half without loosing any information

and minimize the costs of the technology tremendously.

Future microarray design using only the good probes and

incorporating probesets of large sizes like in the Ferrari

CDFs will certainly provide optimal solutions.

Methods
Probe Analysis

For the detection of putative cross-hybridizations by

sequence alignment, the sequences of all Affymetrix probes

(only the PM probes, the MM probes are discarded) are

aligned against the RefSeq database using blastn [23]. For

the U133A and the U133 Plus 2.0 the RefSeq release from

05/14/07 was used (download from ftp://ftp.ncbi.nih.gov/-

refseq/H_sapiens/mRNA_Prot/human.rna.fna.gz), for

the U133B the realease from 01/10/08, and for the

Mouse 430 2.0 microarray the release from 05/09/08

(∼M_musculus/mRNA_Prot/mouse.rna.fna.gz) was used.

These parameters were applied: ValW = 7, ValE = 1000,

ValHspmax = 1.

In this work all those RefSeq accession numbers be-

ginning with XM or NM are used. The XM-identifiers

indicate mRNA-RefSeq-accessions which are produced by

computationally annotated genome submissions. The NM-

identifier show that the RefSeq records are subsequently

curated. Using both accessions in our model leads to more

predicted cross-hybridizations which increases the reliability

of the specificity of the probes.

The strand direction of the probes is analyzed. For each

probe it is counted how many genes match and checked

whether the match has the correct direction, i.e., the sense

direction.
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All BLAST hits for different transcript isoforms are

merged, i.e., if the probe hybridizes to alternative splice

variants of one gene but not to another gene, it is considered

as unambiguous. Different gene isoforms of one gene are

identified by screening the gene descriptions of the RefSeq

database.

All probes matching only one single gene are classified

as good and all probes matching more than one gene are

classified as problematic. Those probes that match in the

wrong direction or do not match any RefSeq sequence

are also classified as problematic. For the creation of the

new CDFs only the good probes are used. The probe

sequences are annotated with GeneIDs derived from RefSeq.

The GeneID is a database cross-reference qualifier, which

supports access to the Entrez Gene database and provides

a distinct tracking identifier for a gene or locus. Probes

sharing the same GeneID are grouped together into a new

probeset. The intersection between two different probesets

is therefore always empty for all probesets. The size of the

newly created probesets is variable and not fixed to 11 like

in the Affymetrix CDFs.

Datasets
Two datasets were chosen for the validation of the differ-

ent CDFs. The first of the two datasets chosen is derived

from a study published by Koczan et al. [27] analyzing

the effect of the TNF-α blocker Etanercept, a rheumatoid

arthritis drug, using data from 17 patients at three time

points. One Affymetrix HG-U133A array was performed for

each time point. The data are available at the Array Express

archive [41] with the accession number E-MTAB-11.

Expression levels of 16 genes were measured by

quantitative real-time RT-PCR (qRT-PCR) performed with

TaqMan assay reagents according to the manufacturer’s

instructions on a 7900 High Throughput Sequence Detection

System (Applied Biosystems, Foster City, CA, USA) using

predesigned primers and probes (GAPDH Hs99999905_m1,

ICAM1 Hs00164932_m1, TNFAIP3 Hs00234713_m1,

IL1B Hs00174097_m1, NFκBIA Hs00153283_m1,

IL8 Hs00174103_m1, ADM Hs00181605_m1, TNF

Hs00174128_m1, IL6 Hs00174131_m1, IL1RN

Hs00277299_m1, SOD2 Hs00167309_m1, TRAF1

Hs00194638_m1, ZFP36 Hs00185658_m1, PTGS2

Hs00153133_m1, DUSP2 Hs00358879_m1, CROP

Hs00538879_s1, JUNB HS00357891_s1).

The threshold cycle values (CT ) for specific mRNA

expression in each sample were normalized to the CT values

of GAPDH mRNA in the same sample. This provides ΔCT

values that were used for the correlation analysis. In total,

816 qRT-PCR experiments were performed and complement

the 51 microarray experiments (17 patients, 3 time points)

described in [27]. The results of the qRT-PCR experiments

can be downloaded.

The second dataset is the Microarray Quality Control

(MAQC) reference dataset [28]. It contains data from more

than 1,300 microarrays and qRT-PCR data for more than

1,000 genes. All available 120 Affymetrix U133 Plus 2.0

expression results and all the qRT-PCRs are selected for

the analysis presented here. The MAQC data discussed in

this publication are available in NCBI’s Gene Expression

Omnibus with accession number GSE5350. In addition, the

nine genes for which qRT-PCR results are available in both

datasets, are analyzed in more detail.

Comparison of the CDFs
For the comparison of different CDFs, the correlation

between the microarray and the qRT-PCR experiments is

used [29], [30]. As a performance index the Pearson cor-

relation coefficient of the microarray results and the qRT-

PCR experiments is calculated. Calculation of the Spearman

correlation coefficient showed very similar results (data

available at http://sysbio.hki-jena.de/software).

The raw chip data (CEL Files) are analyzed using the Ro-

bust Multi-array Analysis Algorithm (RMA) [13], [31] and

the Affymetrix Microarray Suite MAS5 [32] in combination

with the different CDFs.

The MAS5 software assigns ’present’, ’absent’ or

’marginal’ to each expression value, and Affymetrix recom-

mends to use only the ’present’ detection call for further

analysis [32]. For an additional correlation analysis only

the ’present’ probesets are used to check if the calculated

detection call from MAS5 gives a good prediction for the

probeset quality.

Availability
The newly created CDFs as R-packages and additional

files are available for download at http://www.sysbio.hki-

jena.de/software. Using the CDFs does not interfere with

all further steps of microarray analysis.
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multi-experiment data applying NetGenerator
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Abstract

Background: Inference of gene-regulatory networks (GRNs) is important for understanding behaviour and potential

treatment of biological systems. Knowledge about GRNs gained from transcriptome analysis can be increased by

multiple experiments and/or multiple stimuli. Since GRNs are complex and dynamical, appropriate methods and

algorithms are needed for constructing models describing these dynamics. Algorithms based on heuristic approaches

reduce the effort in parameter identification and computation time.

Results: The NetGenerator V2.0 algorithm, a heuristic for network inference, is proposed and described. It

automatically generates a system of differential equations modelling structure and dynamics of the network based on

time-resolved gene expression data. In contrast to a previous version, the inference considers multi-stimuli

multi-experiment data and contains different methods for integrating prior knowledge. The resulting significant

changes in the algorithmic procedures are explained in detail. NetGenerator is applied to relevant benchmark

examples evaluating the inference for data from experiments with different stimuli. Also, the underlying GRN of

chondrogenic differentiation, a real-world multi-stimulus problem, is inferred and analysed.

Conclusions: NetGenerator is able to determine the structure and parameters of GRNs and their dynamics. The new

features of the algorithm extend the range of possible experimental set-ups, results and biological interpretations.

Based upon benchmarks, the algorithm provides good results in terms of specificity, sensitivity, efficiency andmodel fit.

Keywords: Gene-regulatory networks, Network inference, Heuristic algorithm, ODE, NetGenerator

Background
For the adaptation of biological systems towards external

and environmental stimuli usually a complex interaction

network of intracellular biochemical components is trig-

gered. That includes changes in the gene expression at

both the mRNA and protein level. Considering a certain

stimulus as an input signal to the system and mRNA or

protein levels as outputs, the connecting network may

include interactions between signal transduction interme-

diates: transcription factors and target genes. Generally,

*Correspondence: sebastian.henkel@biocontrol-jena.com
2BioControl Jena GmbH, Wildenbruchstr. 15, 07745 Jena, Germany,

www.biocontrol-jena.com

Full list of author information is available at the end of the article

the term “gene-regulatory network” (GRN) summarises

genetic dependencies, which describe the influence of

gene expression by transcriptional regulation, [1].

The inference (elucidation) of GRNs is important for

understanding intracellular processes and for potential

manipulation of the system either by specific gene muta-

tions, knock-downs or by treatment of the cells with

drugs, e.g. for medical purposes. Towards a full under-

standing in terms of a complete network, partial models

of the network give intermediate results which help to

refine the knowledge and to design new experiments.

Still, many gene-regulated cellular functions, e.g. stem

cell differentiation, depend on more than one stimulus

and the cross-talk within the GRN, e.g. [2]. On the other

© 2013 Weber et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative

Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and

reproduction in any medium, provided the original work is properly cited.
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hand, the stimuli might influence distinct components of

a GRN. Such biologically relevant dependencies can be

investigated by applying two or more stimuli and mea-

suring the influenced genes. This approach can be called

multi-stimuli experiment. If this is carried out in two

or more separate experiments, one derives multi-stimuli

multi-experiment data. Only algorithms with the ability to

consider those data can infer such dependencies.

As shown in review articles, e.g. [1,3,4], there are dif-

ferent inference methods using various sources of infor-

mation thus leading to different results. Amongst the

typically mathematical models the application of differ-

ential equations describing time-resolved gene expression

data (“time series”) has been proven successful. Unfortu-

nately the potential complexity of the networks leads to

a high number of structural connections and parameters

in contrast to the comparably small number of available

measurement data. Apart from the problem of identifi-

ability, the number of possible parameter combinations

is very large, thus resulting in high computational costs.

Therefore, appropriate heuristic approaches can reduce

this amount while providing comparably good inference

results. NetGenerator is a heuristic algorithm, which con-

siders time series data to automatically infer GRNs influ-

enced by an external stimulus, [5] and [6]. The approach

combines a structure (network topology) and parame-

ter optimisation. The final result in form of a differential

equations model can be simulated and displayed graphi-

cally. An earlier version with less functionality was applied

successfully to biological problems, e.g. the regulatory net-

work of iron acquisition in Candida albicans and the

analysis of the Aspergillus fumigatus infection process, [7]

and [8].

In the present article, we propose NetGenerator V2.0,

an extended version of the algorithm which enables the

use of multi-stimuli multi-experiment data, thus increas-

ing the number of addressable biological questions. This

causes significant changes in the algorithmic procedures,

especially the processing of this kind of data as well as the

structure and parameter optimisation. Also, some other

updated features will be outlined, for example the different

modes of prior knowledge integration, further knowledge-

based procedures, options of graphical outputs, changed

non-linear modelling and re-implementation in the pro-

gramming language / statistical computing environment

R, [9]. Further, in comparison to the previous version,

some of the algorithmic procedures will be explained in

more detail, because they are important for understanding

the overall method.

The successful application of the novel NetGenera-

tor will be shown by inference of relevant multi-stimuli

multi-experiment benchmark examples, namely systems

with a different degree of cross-talk. Two aspects will be

assessed: (i) reproduction of the benchmark systems (data

and structure) and (ii) refinement / extension of a net-

work structure by combination of different experimental

data. Furthermore, the applicability of NetGenerator to

a real-world problem is presented: after describing nec-

essary data pre-processing steps, the underlying GRN

of chondrogenic differentiation of human mesenchymal

stem cells, a process influenced by the two stimuli TGF-

beta1 and BMP2, is inferred.

Methods
In the following subsections the necessary background

knowledge and methodology of the NetGenerator algo-

rithm is described. In comparison to previous publi-

cations this includes new, updated and more detailed

algorithmic procedures. First, the motivation and the

goals are defined by considering the biological data. Nec-

essary steps of data pre-processing are also explained

within this subsection. Subsequently, ordinary differential

equations and some of their properties are presented as

a means for modelling the dynamics of gene regulatory

networks. Then the heuristic approach of the algorithm

is explained including the structure and parameter iden-

tification (here: optimisation-based determination). The

next important topic will be the consideration of prior

knowledge, followed by a subsection about the numeri-

cal simulation as well as the representation of modelling

and graphical results. Finally, some important options and

their influence to the algorithm are presented.

Time series data and pre-processing

Gene expression time series data as required by Net-

Generator are typically derived from microarray mea-

surements. Before starting the network inference, raw

microarray data have to be processed comprising a series

of steps. The three main steps are displayed in Figure 1:

(i) microarray pre-processing, (ii) gene selection and

(iii) time series scaling.

Microarray pre-processing applies multiple procedures

to remove non-biological noise from the data and to

estimate gene expression levels. Custom probe-sets,

as assembled by [10], reduce the number of cross-

hybridising probes. This initial reduction accomplishes a

one-to-one correspondence between probe-set and gene.

Background correction, normalisation and summarisa-

tion are provided by the RMA package, [11], resulting

in logarithmised gene expression estimates, which can be

used for the next processing step.

Gene selection (“filtering”) is the important second

step of processing, since reliable network inference is

only feasible for a sufficient number of measurements

per gene [1]. This number is often limited and therefore

a selection of genes for modelling is inevitable. Candi-

date genes should show pronounced temporal dynam-

ics and significant differences compared to the control
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Microarray Pre-Processing
(1) Custom Probe Sets (2) Background Correction
(3) Normalisation (4) Summarisation

Gene Selection (Gene Filtering)

NetGenerator
Inference

Time Series Standardisation
(1) Centering (2) Scaling

Time Series Data

Model Network and Simulations

Prior
Knowledge

Figure 1 Data pre-processing work flow. This work flow illustrates

inputs and outputs of NetGenerator as well as recommended data

pre-processing steps: pre-processing of microarray data, selection of

genes, standardisation of gene expression time series.

group. Statistical methods for identification of differen-

tially expressed genes are widely used for gene selection.

We use the LIMMA tool, which can operate on time

series data determining significance of gene expression

changes over time [12]. The statistical test (moderated

t-statistics) operates on contrast terms, defined by sub-

tracting the control group at each time point. LIMMA

returns a ranked table for all genes containing columns

for gene name, fold-change and adjusted p-values. Differ-

entially expressed genes are selected by a combination of

adjusted p-value cut-off and fold-change criterion.

Time series standardisation is the last processing step

including centering and scaling of each time series. The

centering procedure subtracts the original initial value at

the starting time point from all values such that the trans-

formed time series starts from zero. In the subsequent

scaling procedure each time series is divided by its max-

imum (absolute value) across all provided experimental

data. This leads to gene-wise scaled data and gene expres-

sion time series varying within −1 and 1. The resulting

data provided to the NetGenerator algorithm are stored

in X
e
and U

e
, i.e. matrices for the time series (output)

and stimuli (input) data, respectively, for all experiments

e = 1, . . . , E. Therefore, the dimensions are X
e
: Te × N

and U
e

: Te × M with Te being the number of experi-

mental time points,N being the number of time series and

M being the number of inputs. Furthermore, NetGenera-

tor provides the option of introducing additional artificial

data points by cubic spline interpolation.

GRNs considered as linear time-invariant systems

The NetGenerator algorithm infers dynamical models

of GRNs. Their general non-linear dynamics can be

described by a set of first-order time-invariant ordinary

differential equations (ODEs), initial conditions, and time

range (validity period)

ẋ(t) = f
(
x(t), u(t), θ

)
x0 = x(t0)

t ≥ t0

(1)

with the vector of state variables x and their changes ẋ as

a function f of state variables, input vector u and param-

eter vector θ . The state variables and inputs depend on

time t, the independent variable, that is dropped in fur-

ther equations. The description is valid for a certain time

range starting at t0 from the initial conditions for the state

variables x0. If not stated otherwise each of the state vari-

ables corresponds to one specific output variable, i.e. one

time series. The dimensions of the variables are x : N ×1,

u : M × 1, and θ : P × 1, with N being the number of

state variables,M the number of inputs and P the number

of parameters.

Even though NetGenerator has a non-linear modelling

option, the core mechanisms are based on linear mod-

elling. Under the assumption that most networks can

be considered linear and time-invariant, the differential

equation system in (1) can be modified resulting in the

linear state-space equation system

ẋ = Ax + Bu (2)

with the system or interaction matrix A : N × N and

the input matrix B : N × M. Most important for the

understanding of the biological systems properties and the

heuristic approach of the NetGenerator algorithm is the

systemmatrixA and its elements ai,j, i, j ∈ N , because they

describe the dynamics and the coupling of state variables.

Under the assumption, that the behaviour of a GRN

is described sufficiently by indirect transcriptional events

and not by a conversion of material, activation (ai,j > 0)

or inhibition (ai,j < 0) of state variable xi is not changing

the value of the originating state variable xj .

Without any further assumptions all elements of A and

B, adding up toN2+M·N , had to be determined. Typically,
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in GRNs there are far less connections than theoretically

possible leading to a sparse matrixA. Regarding this prop-

erty and avoiding problems occurring by the number of

usually available measurement data (parameter identifia-

bility, local or unique solutions, computational effort) the

NetGenerator algorithm applies a heuristic approach as

described in the next subsection.

Heuristicmulti-stimuli multi-experiment approach

The novel NetGenerator algorithm is a heuristic multi-

stimuli and multi-experiment approach. The heuristic

is based on the observation that in GRNs the number

of connections is much lower than all possible connec-

tions. Further, since the applied stimulus is the cause

of the observed dynamical changes, the network can be

considered as a hierarchical structure originating from

the input. The NetGenerator algorithm implements both

observations by an iterative development of the state-

space system (2) by including coupled sub-models for each

time series based on a structure optimisation iteratively

increasing the number of connections. Structural changes

are taking place only if they result in a better adaptation

of simulated to measured behaviour. The terms multi-

stimuli and multi-experiment mean that the extended

algorithm can handle more than one changed input and

data of several experiments, respectively.

In Figure 2 (A) the main work flow of the algorithm

is displayed. One outer loop, starting with empty A and

B, iterates over all sub-models (state variables) to which

the measured time series should be linked. At the ith

iteration step of the outer loop already i − 1 time series

have been included in the model as sub-models. There are

N − i + 1 remaining time series to be included. The ith

state equation (sub-model) would be described by

ẋi =
∑
n∈Ni

ai,nxn +
∑
m∈Mi

bi,mum (3)

containing connections from state variables, Ni being

the indices of state-state connections including the self-

regulatory term ai,ixi, and connections from inputs with

Mi being the indices of input-state connections for the

considered state variable xi. That means that only the

parameters of sub-models have to be identified.

Iterative Development
of ODE-System
(Coupled Sub-models)

Start

Basic Identification
of Remaining
Time Series

All Time
Series Tested?

Improvement of 
Best Time Series

All Time
Series Included?

Inner Loop

Outer Loop

Yes

Yes

No

No

“Pruning”
=

Remove Connections

“Growing”
=

Add Connections

“Higher Order”
=

Increase
Sub-model Order

“Pruning”
=

Remove Connections

A B

Improvement of
Best Time Series

Figure 2 NetGenerator work flow. NetGenerator work flow displaying the main steps of the algorithm (A) and the improvement of best time

series (B). In the main work flow, the outer loop iterates over all state variables (sub-models), while in the inner loop the remaining time series are

tested, i.e. a basic structure and parameters are identified. The best time series is improved further (“Growing”, “Higher Order”, “Pruning”) and

included into the model as a state variable.
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Since the algorithm aims at a low number of parameters,

i.e. small |Ni| ≤ N and |Mi| ≤ M, the inner loop starts

with basicmodels for the remaining time series containing

only self-regulation, one input term as well as connections

from “fix” prior knowledge if available, see respective sub-

section. Those basic structures can be extended by further

incoming connections (“growing”) from already included

sub-models and further inputs. Every structural change

requires a parameter identification of the active connec-

tions with respect to the considered time series, as will be

explained later in the corresponding subsection. For every

different set of parameters the resulting model needs to

be simulated, that is the numerical solution of an initial

value problem has to be found, as will be described later

in another subsection.

The basic sub-model which reproduces one of the

remaining time series best, is chosen for further improve-

ment, for details see Figure 2 (B), and included into the

model as a state variable. The most important structural

improvements are

• “Growing”: further connections added
• “Higher Order”: increase sub-model order
• “Pruning”: connections removed

In the improvement step “growing” is not restricted to

connections from time series that are already included

in the model. For describing the influence of time series

that have not yet been included as sub-models, the cor-

responding measured and interpolated data are used as

inputs. Those connections form global feedbacks in the

final model.

The increase of the dynamical order within the descrip-

tion of a time series is realised by r − 1 additional

equations or intermediate state variables leading to the

following form:

ẋi = ai,ixi +
∑

n∈Ni\{i}
ai,nxn +

∑
m∈Mi\{i}

bi,mum

ẋi+1 = ai,ixi+1 + xi

...

ẋi+r−1 = ai,ixi+r−1 + xi+r−2

(4)

In this way the dynamics of a certain sub-model are

described by an rth order integrator chain allowing

for reproduction of processes with more complex time

courses. It should be emphasised that by applying this

approach the number of parameters is not increased but

on the other hand the number of state variables becomes

larger than the number of time series data. In that case

only the state variable with the highest order in such a sub-

model is to be compared to time series data. Still, for the

sake of simplicity all following algorithmic procedures are

described for first-order sub-models.

In terms of the iterative process of including sub-models

the different elements of the final system matrix

A =

⎡
⎢⎢⎢⎢⎢⎣

a1,1 a1,2 · · · a1,Ns

a2,1 a2,2

...
. . .

aNs ,1 aNs ,Ns

⎤
⎥⎥⎥⎥⎥⎦

(5)

describe forward, local feedback and global feed-

back connections. Elements below the main diagonal

become forward connections, whereas the main diagonal

elements a1,1, . . . , aNs,Ns describe local feedbacks or self-

regulations, while the elements above the main diagonal

represent global feedbacks. From a biological point of

view the local feedbacks describe different mechanisms

including not only feedback regulation, but also the

important process of mRNA-degradation.

All the previously described structural procedures and

the corresponding parameter identification are controlled

by a-priori defined settings and options of the algorithm.

Some of them are balancing network complexity and

error between measurement and simulation. For example,

additional connections are rejected if they are not improv-

ing the objective function value to a significant extent

while on the other hand connections are removed only

if they are not worsening the result significantly. Further

important options of the algorithm are explained in the

respective subsection.

Parameter identification

The parameter values of an active sub-model are iden-

tified by a non-linear optimisation, minimising the error

between simulated and measured time series data of mul-

tiple experiments. The initial parameters required for this

optimisation are obtained by a linear regression. For one

specific first order state variable xi equation (3) can be

rewritten as

ẋi = [
u1, . . . , uMi , x1, . . . , xNi

] · θ i,init (6)

with

θ i,init = [
b1, . . . , bMi , a1, . . . , aNi

]T
(7)

being the parameter vector of some of the elements of B

and A, respectively, as determined by structural optimi-

sation using only a subset of inputs and state variables

influencing the considered ith state variable. Satisfying the

measured data in an optimal way the unknown parame-

ters can be determined by the following equation of linear

regression, see e.g. [13],

θ i,init =
([

U X
]T

W
[
U X

])−1

×
([

U X
]T

W ẋi,num

) (8)
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with the weight matrix W and the state variable deriva-

tives ẋi,num. The latter are calculated by numeric differ-

entiation of the respective time series (output) data. This

means the vector ẋi,num is not the vector of state variables

but the vector of time points of the considered time series

derivatives. Its length (T = K + Kinterp) equals the sum of

the number ofmeasurement time points and interpolation

time points, as outlined in the subsection on data pre-

processing. The reason for the use of interpolated data

is the avoidance of over-fitting. The different influence of

measured and interpolated values is considered in the ele-

ments of the weight matrix W possessing the dimensions

T×T . Since themodel must be valid for all E experiments,

the respective input and time series data are concate-

nated, indeed resulting in T = ∑
Te, e = 1, . . . , E. This

becomes possible because the regression approach implic-

itly assumes a “dynamic independence” of data points. The

dimensions of the other variables are U : T × |Mi| and
X : T × |Ni|, with the number of rows of each matrix also

equalling to the total number of time points. Both dimen-

sions of U reflect necessary algorithmic changes due to

the consideration of multi-input multi-experiment data in

this NetGenerator version, because |Mi| > 1 represents

multiple inputs while the concatenated data of length T

considers multiple experiments. For the sake of complete-

ness it should be mentioned that higher-order sub-models

are initialised first by their first-order equation and then

adapted such that total time constant and static gain

remain the same.

The non-linear optimisation of the parameters for the

ith sub-model, initialised by the solution of the linear

regression (8), is based on the minimisation of the objec-

tive function (model error)

Ji,output =
E∑

e=1

Te,i∑
k=1

[
w(tk) · (

xe,i(tk) − x̂e,i(tk , θ i)
)2]

(9)

describing the deviation between measured xe,i and simu-

lated x̂e,i time series at different time points tk depending

on the parameter vector θ i. The minimisation following

(9) is an optimisation problem of the least squares type

featuring a double sum of experiments e = 1, . . . , E and

time points k = 1, . . . ,Te,i. In contrast to the objective

function applied in former NetGenerator versions, now E

multiple experiments are considered. The simulated time

series are compared to measured and also interpolated

data weighed by different w(tk) avoiding over-fitting. A

further weighing based on properties of the data, like for

example the maximal range, is not necessary since the

described pre-processing normalises and scales the data.

For the optimisation problem, the new NetGenerator

implementation applies the “L-BFGS-B” algorithm, [14],

of the optim R-function, which has the ability to solve

bounded non-linear optimisation problems.

Consideration of prior knowledge

For improving the results, prior knowledge about the

network connections can be integrated into the network

inference. This version of NetGenerator provides two

modes for integration of prior knowledge about connec-

tions of stimuli on time series as well as between the

time series: (i) “fix” and (ii) “flexible”. For both modes the

knowledge can be provided in form of connection matri-

ces A
fix|flexible and B

fix|flexible resembling the systemmatrix

and input matrix, respectively, as well as additional matri-

ces containing reliability scores of the connections. The

connection matrices can contain single-valued informa-

tion about connection (1), no connection (0), activation

(10) and inhibition (−10). Fix integration represents rigid

model requirements that cannot be ignored by the heuris-

tic. Therefore fix connections are always included in the

model structure.

Flexible integration allows the inference heuristic to

ignore prior knowledge when the model fit is substantially

worsened. This is represented by an additional term in the

objective function (model error) now resulting in

Ji = Ji,output + λ

⎡
⎣∑
j∈Ni

sAi,jd
A
i,j +

∑
k∈Mi

sBi,kd
B
i,k

⎤
⎦ . (10)

The term Ji,output corresponds to the previously in (9)

defined evaluation of output deviation, while λ weighs

the overall consideration of prior knowledge, s represent

the score values of the respective prior knowledge and d

describe the distances between the prior knowledge and

the modelled structure (incoming connections) evaluated

by comparison of signs. Thatmeans the resulting elements

of A and B are converted into the described notation of

0, 1, 10, and −10, thus permitting a comparison with ele-

ments of flexible prior knowledge connection matrices.

Here we consider two types of prior knowledge origin:

(i) gene interactions automatically extracted from pub-

lished literature and (ii) predicted transcription factor

binding sites (TFBS) in the proximal promoter region of

target genes.

For the extraction from published literature the soft-

ware Pathway Studio V9 provides a gene relation database

termed ResNet Mammalian, which has been compiled

by automatic extraction of interactions from PubMed, as

evaluated by [15]. As shown in the latter publication, gene

relations derived from Pathway Studio V9 can be consid-

ered of high quality, since in general scientific literature is

a reliable resource and the false positive rate is reported to

be about 10 %.
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Further, the tool matrix-scan from the RSAT toolbox

determines putative TFBS in the promoter regions of

target genes, which might be involved in transcriptional

regulation [16]. This approach requires known sequence

motifs of the investigated transcription factors as well

as promoter sequences. Sequence motifs are stored in

form of position weight matrices (PWM), which describe

relative nucleotide frequencies for each motif position,

as can be obtained from the Transfac database (Version

2010) [17]. Gene promoter sequences are available from

Ensembl using biomaRt, [18].

Additional prior knowledge about the regulatory poten-

tial of the individual genes can be obtained by exam-

ining the known molecular functions. For example, the

interaction between genes coding for non-regulatory pro-

teins, such as structural proteins, and target genes can be

assigned “no connection”.

Simulation and graphical output

For every comparison of measurement and simulation as

well as the generation of results the model equations (2)

must be integrated. This corresponds to an initial value

problem that is solved numerically. Since the recent imple-

mentation of the NetGenerator algorithm is in R, repeated

operations of certain types take a long time. Therefore,

the model itself is implemented in C, created iteratively

and simulated applying the implicit method “impAdams”

of the R-package deSolve, [19]. The necessary initial

conditions x0 = x(t0) are either measurement data or

extrapolated measurement data typically at t0 = 0 of the

respective time scale.

The final result of the NetGenerator algorithm is

a parametrised model of the considered GRN. More-

over, the new implementation of the algorithm con-

tains important graphical output facilities which have

been extended to meet the needs of displaying multi-

input multi-experiment data as well as different results

concerning prior knowledge. First, there is a graphical

comparison of measurements and simulations, showing

the single measured data points and the corresponding

simulated trajectory. This can be done either by com-

parison of each component (gene) over all experiments

or by displaying the data for each experiment indepen-

dently. Second the resulting network structure can be

displayed as a directed graph applying the language DOT

and the software collection Graphviz, [20]. Nodes denote

the biochemical components, e.g. genes, and edges dis-

play connections of either activation or inhibition. In

case of applying prior knowledge (see respective subsec-

tion), a comparison between the inferred network and this

knowledge is displayed with a colour code. Black edges

denote inferred connections without prior knowledge,

green edges present an agreement, red edges could either

have a wrong sign (e.g. activation instead of inhibition) or

be connections that do not comply with prior knowledge,

while grey dashed edges stand for prior knowledge not

reproduced in the inferred network.

Further settings and updatedmethods

The NetGenerator algorithm itself can be controlled by

parameters (settings) and also contains further methods

that will be summarised in the following. An important

setting is the “allowedError” that controls the structure

optimisation. If the objective function value of a cer-

tain sub-model structure is worse than this value the

model structure must be extended as described. Therefore

smaller values of “allowedError” are indirectly leading to

more complex structures. Further important settings are

themaximal number of connections and sub-model order.

Additional updated or new methods, not described

extensively here, include non-linear modelling and

knowledge-based methods. The optional non-linear

modelling approach contains an additional sigmoid trans-

formation of the linear combination described in this

publication. This transformation has its biological back-

ground in the saturating behaviour of gene expression.

The additional non-linear parameters of each sub-model

are determined by the described non-linear parame-

ter identification, too. Amongst further knowledge-based

methods, the most important presents the possibility of

retrieving network information from databases and com-

bining this information with the inferred model in a

directed graph. In that way, the biological interpretation

can be extended by introducing unmeasured components

into the network structure.

Availability

The algorithm has been implemented as a package in the

programming language / statistical computing environ-

ment R, [9]. It is available in form of a testing bundle

containing both the algorithm and the examples at

www.biocontrol-jena.com/NetGenerator/NetGeneratorB

undle.zip.

Results
Example networks

We applied the NetGenerator algorithm, which has been

described extensively in the Methods section, to 3 bench-

mark examples and 1 real-world example to examine the

performance of our approach. At first, we consider the

three benchmark systems, their corresponding artificial

data and inferred networks in order to test the reliability

and performance of our algorithm. Particularly, we inves-

tigated whether network inference from multiple data

sets, originating from different stimulation experiments, is

beneficial. Finally, we applied NetGenerator to microarray

time series data gained from human mesenchymal stem

cells. We focussed on the modelling of gene regulation
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that occurs during in vitro stimulation of chondrogenic

differentiation of these cells, with emphasis on the differ-

ent effects triggered by multiple stimuli in the inferred

model.

Benchmark examples

We constructed three fully parametrised benchmark sys-

tems based on linear time-invariant descriptions, i.e. they

are composed of differential equations representing the

time series of genes and two external stimuli (u1 and u2).

The systems are characterised by a different degree of

cross-talk between the components with respect to the

external stimuli, that is “full cross-talk” (FCT): all com-

ponents are influenced by all stimuli, “limited or low

cross-talk” (LCT): some of the components are influ-

enced by more than one stimulus, and “no cross-talk”

(NCT): the stimuli influence distinct components result-

ing in separate networks. They also differ in the number

of genes (FCT: 5, LCT: 4, NCT: 7) and the parameters.

The artificial data were generated exhibiting characteris-

tics of real microarray time series data, i.e. low number of

time points (six), exponentially increasing time intervals,

and additional normally distributed noise N (0, 0.052). In

summary, this procedure led to sample data sets contain-

ing matrices with number of rows equalling number of

genes and six columns (time points).

Evaluation measures. The network inference of bench-

mark systems can be evaluated by determining the final

objective function value (model error) J according to

equation (10), the computation time tC, and statisti-

cal measures that quantify the performance of the net-

work inference by comparing the known structure with

the inferred structure. The indicated computation times

resulted from running the examples on a x86-PC with a

2.33GHz CPU. The measures comprise sensitivity (SE),

specificity (SP), precision (PR) and F-measure (FM). The

definitions of the measures take into account the correctly

integrated edges (true positives, TP), the falsely integrated

edges (false positives, FP), the truly missing edges (true

negatives, TN) and true edges that are not contained in

the model result (FN). False positives (FP) were further

grouped into FPs, connections integrated with wrong sign

and FPn, modelled interactions which are not present in

the real network. This leads to the following definitions:

SE = TP/(TP + FN + FPs)

SP = TN/(TN + FPn)

PR = TP/(TP + FPn + FPs)

FM = 2 · PR · SE/(PR + SE)

For all three benchmark examples, we evaluated the

inference by those statistical measures showing the repro-

duction of the system structure and time series by the

model.

FCT scenarios and network inference evaluation. For

FCT, artificial data generation and subsequent network

inference was performed within three scenarios: (i) “S1”:

single experiment applying only u1, (ii) “S2”: single exper-

iment applying only u2 and (iii) “M”: multiple experiment

integrating experiments “S1” and “S2”. For the special case

of FCT, the scenarios allowed us to directly compare the

inference of multiple stimuli data sets with the inferences

of single stimulus data sets.

We applied the network inference to each of the three

scenarios (“M”, “S1”, “S2”) for a series of 10 different set-

tings varying the previously described “allowedError”=
0.001, 0.002, . . . , 0.01 resulting in 10models, see Figure 3.

Results for all statistical measures are depicted as con-

nected points in individual boxes. The three scenar-

ios are plotted in distinct colours (“M”: blue, “S1”: red,

“S2”: green) in each box. With regard to sensitivity, M

models performs best, showing gradually decreasing val-

ues. Specificity obtains highest values for the first and

secondmodel. F-measure results, which benefit from high

sensitivity values, display good performance for all M

models. The resulting model error increases gradually as

expected, due to the increased “allowedError”, which is

defined per time series. Analysing these results, we found

“M 1” (TP = 18, TN = 15, FPn = 2, FPs = 0, FN = 0)

to be optimal with respect to the evaluation measures

(SE = 1, SP = 0.88, FM = 0.94, J = 0.004). For this

model, the computation time was tC = 92 s.

Dynamics of this model are displayed in Figure 4 show-

ing a good reproduction of all time series for each of the

two experiments. In Figure 5, the corresponding regula-

tory network is presented in form of a directed graph.

Here, the colour code is not denoting a reproduction

of prior knowledge but a graphical means displaying TP

(green), FP (red) and FN (grey/dashed) connections.

LCT and NCT network inference evaluation. In order to

test whether NetGenerator is capable of inferring different

cross-talk structures, we generated benchmark systems

LCT and NCT. Both contain biologically motivated types

of cross-talk, such as cross-talk of downstream compo-

nents or separate sub-networks (no cross-talk). Inference

of both networks was successful, shown by high statis-

tical measures (SELCT = 1, SPLCT = 1, FMLCT = 1,

JLCT = 0.0007, SENCT = 0.9, SPNCT = 0.98, FMNCT =
0.92, JNCT = 0.003), the inferred network structures in

Figure 6 and Figure 7, and the good reproduction of the

time courses (Additional file 1 and Additional file 2). The

computation time for inference of LCT and NCT was

tC = 28 s and tC = 33 s, respectively.

Chondrogenesismodel

Background of chondrogenic data. Human mesenchymal

stem cells (hMSC) are multi-potent adult stem cells that

have the capacity to differentiate into a variety of cell
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Figure 4 “Full cross-talk” example: time courses. Comparison of the “full cross-talk” (FCT) time courses. Each panel displays the results of one

gene: the simulated time course (solid line), interpolated measurements (dashed line) and the measured time series (dots) for both data sets

(Experiment1 and Experiment2).
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Figure 5 “Full cross-talk” example: inferred network. Network

structure of the “full cross-talk” (FCT) model containing two simulated

inputs (Input1, Input2) and five gene nodes. Inferred connections are

highlighted in green (TP=18), red (FPn = 2) and dashed grey

(FN=0).

types depending on the external stimulus, [2]. Regula-

tion of lineage-specific genes is crucial in this temporal

process, [21]. Transforming growth factor (TGF)-beta1 is

essential for induction of chondrocyte differentiation of

hMSC, a process which is strongly enhanced by the addi-

tional presence of bone morphogenetic protein (BMP)2,

[22] and [23]. In this section, we describe the comple-

mentary effects of TGF-beta1 and BMP2 by multi-stimuli

multi-experiment inference applying the NetGenerator

algorithm.

Microarray time series data. hMSC from bone mar-

row were commercially obtained (Lonza) and cultured

as described in [2]. To induce chondrogenic differenti-

ation trypsinised hMSC were pelleted and subsequently

incubated in culture medium supplemented with 100 nM

dexamethasone, 10 ng/mL TGF-beta1 and, if applica-

ble, 50 ng/mL BMP2. Time-dependent gene expres-

sion was studied under three experimental conditions:

(i) following treatment with TGF-beta1 (“T”), (ii) fol-

lowing treatment with TGF-beta1 + BMP2 (“TB”) and

(iii) untreated hMSC as a control. At 10 different time

points (0, 3, 6, 12, 24, 48, 72, 128, 256, 384) h after addi-

tion of the stimuli, RNA was isolated from three technical

replicates per time point and measured on Affymetrix

HG-U133a microarrays.

Pre-processing and filtering. Raw microarray data was

pre-processed as described in the corresponding sub-

section. This included the use of custom chip defini-

tion files provided by [10] and application of the RMA

method [11]. This procedure resulted in logarithmised

gene expression estimates for 12 095 genes.

Modelling a small-scale GRN using microarray data

requires adequate filtering of genes. We tested all genes

for differential expression, used functional annotation and

expert knowledge. Differentially expressed genes were

identified for both experiments (“T”, “TB”) by comput-

ing adjusted p-values using LIMMA. All genes with an

adjusted p-value less than 10−10 and an absolute fold-

change greater than 2 for any time point were consid-

ered significant. Using those criteria, 192 genes were

found to be differentially expressed compared to con-

trol as well as between “T” and “TB”. Subsequently,

we selected from this group 10 annotated transcrip-

tion factors (GO:0003700, sequence-specific DNA bind-

ing transcription factor activity) and associated 5 of them

(SOX9, MEF2C, MSX1, TRPS1, SATB2) with our inves-

tigated process (GO:0051216, cartilage development).

Those genes may be involved in promoter-dependent reg-

ulation, which is important for binding site predictions.

Furthermore, we added COL2A1, ACAN, COL10A1, all

three essential marker genes of chondrocyte differenti-

ation, which encode essential structural proteins of the

extracellular matrix.

Figure 6 “Limited cross-talk” example: inferred network.

Network structure of the “limited cross-talk” (LCT) model containing

two simulated inputs (Input1, Input2) and four gene nodes. Inferred

connections are highlighted in green (TP = 9), red (FPn=0) and

dashed grey (FN = 0).
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Figure 7 “No cross-talk” example: inferred network. Network structure of the “no cross-talk” (NCT) model containing two simulated inputs

(Input1, Input2) and seven gene nodes. Inferred connections are highlighted in green (TP = 18), red (FPn=1) and dashed grey (FN = 2).

Prior knowledge. Prior knowledge was taken into

account as described in the corresponding sub-section.

Gene interactions were retrieved from the Pathway Studio

ResNet Mammalian database. We obtained 6 gene-gene

and 5 input-gene regulatory interactions. Gene-gene

interactions were passed as flexible prior knowledge to

NetGenerator. Input-gene interactions were not inte-

grated. Additionally, potential gene interactions were

determined by binding site predictions. For this purpose,

we obtained PWMs for SOX9, MEF2C and MSX1 from

the Transfac database and promoter sequences 1000 bp

upstream from the transcription start site. Both PWMs

and sequences were loaded into matrix-scan from RSAT,

which is performed with default options (weight-score >

1, p-value < 10−4) and organism-specific estimation of

background nucleotide frequencies. The resulting signif-

icant binding sites have been listed in the table of Addi-

tional file 3. The observed high significance of all matches

minimises the risk obtaining similar results from random

sequences.

Network inference of multi-stimuli (TGF-beta1 and

BMP2) multi-experiment data. After pre-processing, the

input and time series data of the microarray experiments

were passed to NetGenerator for automatic network

inference. According to the experimental set-up, the avail-

able data sets describe two experiments: only TGF-beta1

stimulation (“T”) and TGF-beta1 + BMP2 stimulation

(“TB”). This is mirrored by the two distinct input data

matrices both describing the respective stimuli by step

functions

U
T

=

⎡
⎢⎢⎢⎢⎢⎣

1 0

1 0

...
...

1 0

⎤
⎥⎥⎥⎥⎥⎦
, U

TB
=

⎡
⎢⎢⎢⎢⎢⎣

1 1

1 1

...
...

1 1

⎤
⎥⎥⎥⎥⎥⎦

Model evaluation and validation. The inference results

of the chondrogenic system, the GRN and the graphi-

cal comparison of time series, are displayed in Figure 8

and Additional file 4, respectively. The resulting network

contains 20 connections: 14 gene-gene connections and

6 input-gene connections. Compared to the prior knowl-

edge, there are 10 green connections (consistent), 1 red

connection (wrong sign) and 3 blue connections (addi-

tional colour code for predicted binding site).

For validation, we performed resampling which is based

on random perturbation of time series data. A Gaus-

sian noise component N (0, 0.052) was added to the time

series data which is used for subsequent model infer-

ence. Repeated performance (100×) led to a series of

inference results as well as relative frequencies for each

of the connections of the nominal model, i.e. the pro-

portion of models containing that specific connection.

Those frequencies imply a reliability ranking of all nom-

inal connections. Most of the connections were inferred

with high frequency, (76±24)%, see Figure 8. Particularly,
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Figure 8 Chondrogenesis system: inferred network. Network of the chondrogenesis system, which contains two inputs (TGF-beta1 and BMP2).

Nodes represent either transcription factor genes (SOX9, MEF2C, MSX1, TRPS1, SATB2) or genes coding for structural proteins (COL2A1, COL10A1,

ACAN). Connections are coloured in green (consistent with prior knowledge), red (contrary to prior knowledge), blue (predicted connection with

existing binding site) and black (predicted interaction). Connection widths and percentage labels illustrate the frequency of occurrence in the

validation procedure.

this applies to connections which reflect prior knowledge.

Also, inferred connections which are associated with a

predicted binding site (blue colour) were present in more

than 50% of the models.

Network interpretation. SOX9 exhibits a central role in

this chondrogenic network and is activated by both TGF-

beta1 and BMP2. This indicates a complementary effect

of both stimuli on the expression of SOX9. Activated

SOX9 drives the expression of its target genes COL2A1,

ACAN and COL10A1 [24-26]. This regulation marks the

essential formation of cartilage-specific structural compo-

nents of the extra-cellular matrix and the differentiation of

hMSC towards chondrocytes. Beside this process, SOX9

also activates the repressor gene TRPS1 and vice versa.

Regulatory interactions between both factors has not yet

been addressed in the literature. Additionally, the SOX9

binding motif is present in the proximal promoter of the

TRPS1 gene according to the prior knowledge. There is

also a modelled effect from TRPS1 on MEF2C, which in

turn activates COL10A1 and ACAN, but represses SOX9.

This represents a negative global feedback from MEF2C

on SOX9 in our model. MEF2C also represses the expres-

sion of MSX1, which is solely activated by BMP2 stimulus

and activates COL2A1 according to the prior knowl-

edge [27]. MSX1 also activates the SATB2 gene, which

in turn activates MEF2C expression. Negative regulation

of ACAN by TGF-beta1 is contrary to prior knowledge,

as indicated by the red connection of the network graph.

However, TGF-beta1 can also activate ACAN indirectly

through SOX9, [24]. In summary, the central player SOX9

is influenced by both TGF-beta1 and BMP2. Essential

structural proteins are not solely regulated by SOX9, but

also by other transcription factors (MEFC, MSX1). More-

over, SOX9 and MSX1 are repressed by MEF2C through

negative feedback that involves TRPS1 and SATB2.

Discussion
TheNetGenerator algorithm for automatic network infer-

ence from multi-input multi-experiment time series data

and prior knowledge, described in the methods section,

will be classified and distinguished from other methods

in the next sub-section. Therefore, its properties will be

reviewed and justified showing advantages and disadvan-

tages to other approaches. Our discussion contains a wide

spectrum of other methods, but will only go into detail

for the ones closely related to NetGenerator. Also, fur-

ther specifications of NetGenerator will be summarised

without a detailed comparison to other methods.

Classification of the algorithm

Good review articles on methods for automatic inference

of GRNs can be found in [1,3,4]. The different methods

can be classified by the data type (static or dynamic), the
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mathematical approach (e.g. probabilistic vs. determinis-

tic) and the result (e.g. undirected vs. directed graphs,

algebraic correlation vs. dynamic models) whereby vari-

ous combinations are possible. Mutual information meth-

ods (for a review of ARACNE, CLR and MRNET see

[28]) are based on evaluating the statistical dependen-

cies of large data sets resulting in undirected graphs.

In comparison to NetGenerator they possess far differ-

ent preconditions and purposes, for example they do not

consider a concerted influence of the variables or the

dynamics of the state-space concept, and therefore a more

detailed comparison is set aside. Even though dynami-

cal Boolean networks for gene-regulation, first proposed

by [29], possess some similarities to discrete-valued state-

space models, their rule-based approaches typically lead

to rather qualitative results (for an overview of recent

methods see the aforementioned review articles).

Very often, like in case of the core elements of Net-

Generator, GRNs are based on linear modelling, i.e. the

behaviour of one variable depends on a linear combina-

tion of other variables. Still the method can be a combi-

nation of either probabilistic or deterministic approach as

well as algebraic correlation modelling (equations system)

or dynamic modelling (differential equations system). In

the case of the probabilistic modelling which is especially

covered by static and dynamic Bayesian networks (see

aforementioned review articles) the inference is based on

the application of probability distributions to describe the

uncertainties or noise inherent in GRNs. Beside the differ-

ences in the mathematical approach, probabilistic mod-

elling includes the determination of statistical parameters

and therefore generally more data replicates are required

in comparison to deterministic modelling approaches

such as NetGenerator.

Deterministic linear modelling applied to automatic

network inference, [30], can be distinguished into at

least two types depending on the results: (i) algebraic

equations systems, e.g. [31], and (ii) differential (differ-

ence) equations systems, e.g. [32]. Although they have

different prepositions on the dynamics of time series data,

both types can be solved by linear regression. Still, there

is a disproportion between the number of free parame-

ters and available measurement data on the one hand and

the property of sparsity of GRNs on the other hand. For

the former interpolated data points can be applied under

the assumption that the influence of the chosen interpola-

tion on the results can be neglected. For the reproduction

of sparse networks the regression can be combined with

model reduction, for example using the large group of

LASSO-based algorithms, see e.g. [33-36], on the basis of

PCA (SVD), [37], or a combination of both, [38]. For fur-

ther approaches, see the aforementioned review articles.

In contrast to all these methods, we propose the Net-

Generator algorithm dealing with the problem of data

number and sparsity in a different way. The algorithm is

not inferring the network structure and parameters in one

go. Instead we applied an heuristic approach of explicit

structure optimisation, which iteratively generates a sys-

tem of sparsely coupled sub-models. In that way, the GRN

property of possessing more or less hierarchical input to

output structures is reproduced. Thus, only the param-

eters of sub-models describing one time series have to

be determined. A major drawback of regression-based

solutions of linear differential (difference) equations sys-

tems is the necessity of applying numerical derivatives of

small sample size and noisy data, which have a strong

influence on the resulting network and modelled dynam-

ics. NetGenerator uses a different solution, whereby the

regression just provides initial parameters for a non-linear

optimisation of an objective function of the least squares

type. Overall, the final dynamic network can be obtained

by a lower computational effort, because in comparison to

the total number of parameters (N2 +M ·N) in the model

description (2) only a small number of parameters has to

be determined.

Inference frommulti-stimulimulti-experiment time series

data

The concept of inferring from multiple data sets is also

applied by [38], however on the basis of principal com-

ponents of those data sets. The work of [39] provides a

multiple methods framework to integrate distinct types

of data like steady-state and time series data, focussing

mainly on the combination of knock-out and stimulation

data.

The proposed NetGenerator V2.0 algorithm allows for

integrating data sets of multiple experiments with multi-

ple stimuli. In the inferred models, weighed input terms

represent external stimuli and resulting GRNs represent

the merged effects of the diverse experiments. There-

fore, from a biological point of view, the algorithm is able

to handle experiments which investigate the degree of

cross-talk.

We applied and tested this feature for 3 benchmark

examples and 1 real-world example, the gene regulation

during chondrogenic differentiation. The evaluation of the

benchmark examples’ results showed the power of the

algorithm to infer the network structure and to reproduce

the time series. Further, for a special system of “full cross-

talk”, i.e. all components are influenced by all stimuli, we

could show that the simultaneous utilisation of different

data sets leads to higher model quality compared to mod-

elling data sets individually. The reason for this effect is

due to the different stimulation by another external input

which alters the time series data qualitatively and quanti-

tatively, something that could not be achieved by biologi-

cal replicates of a single input experiment. This underlines

the benefit of using our integrated approach. Further, the
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presented examples LCT and NCT are possible outcomes

of GRN investigations. In the first case, there are two

different types of genes: some are induced by one stim-

ulus only and some are induced by multiple stimuli. The

model inferred by NetGenerator contains both the sepa-

rate and common structural elements. The special case of

NCT occurs, if network parts are stimulated that are not

connected at all. In summary, the extended NetGenerator

takes advantage ofmulti-stimuli multi-experiment data by

network refinement and extension.

We further inferred a two-stimulus network for

hMSC differentiating towards chondrocytes. This net-

work model contains gene regulatory events following the

stimulation with two distinct chondrogenic factors, there-

fore providing a view on how genes involved in differenti-

ation might be controlled by external molecules. Applying

a subsequent resampling gives further information about

the connections of this inferred GRN: (i) the majority of

connections, especially the ones of prior knowledge and

predicted binding sites, occur with a high frequency which

can be considered a measure of reliability and (ii) the

ranking of the frequencies can be used in interpreting the

results with regard to biological hypotheses. Overall, this

shows the importance for an extension of NetGenerator

to deal with multiple data sets.

Consideration of prior knowledge

The means to integrate prior knowledge (fix and flexible)

into the network inference is a distinctive feature of the

extended NetGenerator algorithm achieved by modifying

the objective function. This feature can reduce the com-

plexity of the structure optimization, although it strongly

depends on the origin and quality of the given knowledge,

see e.g. [7]. Using prior knowledge for network inference

can also be found in several other algorithms, see [1,3,4].

For our example of chondrogenic differentiation, we

exemplarily showed network inference using flexible prior

knowledge about regulatory interactions extracted from

a database (Pathway Studio). The graphical evaluation of

the inferred network showed very good reproduction of

the proposed prior knowledge. Further predicted con-

nections could be associated with potential regulatory

binding sites generated from sequence data (Transfac,

Ensembl).

Further aspects

Apart from the linear modelling presented in detail, the

ability of NetGenerator to infer a non-linear model has

been mentioned as a further option. The additional sig-

moid function describing saturation in gene-expression

has been proven successful before, e.g. [40-42]. Since the

sigmoid transformation has also been used for neural

network models, those inference methods are sometimes

classified as such.

Besides the many advantages and possible application

areas, there are minor restrictions of NetGenerator: it

should be applied to pre-processed data without high cor-

relations, it infers networks from measured time series

data and due to the heuristic approach it cannot be proven

that the global solution was found. The latter can be

improved by decreasing the influence of noisy data using

a bootstrap (resampling) approach, see chondrogenesis

example and [1]. One feature which might be introduced

in subsequent versions is the application of “interven-

tional” multi-experiment data, i.e. data originating from

perturbations within the system. This can be dealt with

by applying either experiment-wise prior knowledge or an

additional module in the structure optimisation explicitly

dealing with that kind of data.

Conclusions
We presented the novel NetGenerator algorithm for auto-

matic inference of GRNs, which applies multi-stimuli

multi-experiment time series data and biological prior

knowledge resulting in dynamical models of differential

equations systems. This heuristic approach combines net-

work structure and parameter optimisation of coupled

sub-models and takes into account the biological prop-

erties of those networks: indirect transcriptional events

for information propagation, limited number of connec-

tions and mostly hierarchical structures. The analysis

of benchmark examples showed a good reproduction of

the networks and emphasised the biological relevance of

inferred networks with a different degree of cross-talk.

The ability to infer a real-world example based on multi-

stimuli multi-experiment data was shown by application

of NetGenerator to a system of growth factor-induced

chondrogenesis.

Additional files

Additional file 1: Figure: “Limited cross-talk” example, time courses.

Comparison of the “limited cross-talk” (LCT) network time courses. Each

panel displays the results of one gene: the simulated time course (solid

line), interpolated measurements (dashed line) and the measured time

series (dots) for both data sets (Experiment1 and Experiment2).

Additional file 2: Figure: “No cross-talk” example, time courses.

Comparison of the “no cross-talk” (NCT) network time courses. Each panel

displays the results of one gene: the simulated time course (solid line),

interpolated measurements (dashed line) and the measured time series

(dots) for both data sets (Experiment1 and Experiment2).

Additional file 3: Table: Results of RSAT. Results of RSAT matrix-scan

tool using Transfac PWMs and genomic DNA sequences from Ensembl.

Each row represents a predicted binding site with Transfac motif (“PWM”),

target gene, start and end coordinates, the matched sequence, match

score (“Weight”) and associated p-value.

Additional file 4: Figure: Chondrogenesis system, time courses.

Comparison of the chondrogenesis system time courses. Each panel

displays the results of one gene: the simulated time course (solid line),

interpolated measurements (dashed line) and the measured time series

(dots) for both data sets (“T” and “TB”).
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Abstract

Background Network inference from gene expression data is a typical approach to reconstruct gene regulatory net-

works. During chondrogenic differentiation of human mesenchymal stem cells (hMSCs), a complex transcriptional

network is active and regulates the temporal differentiation progress. As modulators of transcriptional regulation,

microRNAs (miRNAs) play a critical role in stem cell differentiation. Integrated network inference approaches

determine interrelations between miRNAs and mRNAs on the basis of expression data as well as miRNA target

predictions. We applied the tool NetGenerator to infer an integrated gene regulatory network.

Results Time series experiments measured mRNA and miRNA abundances of TGF-beta1+BMP2 stimulated

hMSCs. Network nodes were identified using information about differential expression, predicted interactions,

time series correlation and associated literature knowledge. Network inference was performed using NetGenerator

to reconstruct a dynamical regulatory model for the given expression and knowledge data. The resulting model

is robust and optimal with regard to data-fit and prior knowledge. It predicts the influence of miRNAs on the

expression of chondrogenic marker genes and therefore proposes novel relations in differentiation control. Analysing

the inferred network, we identified a previously unknown regulatory effect of miR-524-5p on the expression of the

transcription factor SOX9 and the chondrogenic marker genes COL2A1, ACAN and COL10A1.
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Conclusions Integrated network inference is beneficial to elucidate the impact of miRNAs on gene expression.

Especially in biological processes which are driven by transcription factors, it reveals a new layer of transcriptional

control. The tool NetGenerator is able to perform integrated network inference and leads to valid network results.

Background

Modelling of gene regulatory networks (GRNs) has become a widely used computational approach in systems

biology [19]. This development has been greatly promoted by the availability of high-throughput data of

adequate amount and quality, such as genome-wide expression data. Inference of regulatory dependencies

between genes on the basis of such data is the major task. The inferred gene interactions constitute a network,

which contains predictions about cellular regulation. Those can motivate the design of new experiments,

which might validate and potentially elucidate unknown regulatory interactions. Successful applications of

GRNs can be found in studies about specific human diseases (cancer [12], rheumatoid arthritis [18]), murine

hepatocytes [41], the infection by E. coli [16, 25] and the pathogenic fungus Candida albicans [28]. In this

study, we focus on the involvement of microRNAs (miRNAs) in the gene regulation of human mesenchymal

stem cells (hMSCs) which differentiate towards chondrocytes. Therefore, we provide a biological background

about hMSCs, characteristics and function of miRNAs and modelling approaches which integrate miRNA

regulation.

hMSCs are multi-potent adult stem cells, which have the capacity to differentiate into multiple cell types,

such as chondrocytes, osteoblasts and adipocytes [31,36]. Lineage commitment towards a certain type of cell

depends on specific environmental factors. Those factors can activate intracellular signalling pathways which

control developmental genes and other signalling pathways. Here, we focus on chondrogenic differentiation,

which is characterised by a sequence of intermediate developmental stages, including cell condensation,

proliferation, differentiation and hyperthrophy [7]. Each of the individual processes is associated with the

activity and regulation of lineage-specific genes [17]. These genes encode e.g. transcription factors (e.g.

SOX9, MEF2C) and ligands of distinct signalling pathways (e.g. TGF-beta1, BMP2, IHH, WNT) [24].

Stimulation of hMSCs by TGF-beta1 initiates the process of chondrogenic differentiation [39]. Although

key genes were determined, the entire process of regulation in chondrogenesis is still not fully understood.

In the recent years, it has become apparent that miRNAs are active regulators in the development of stem

cells [23] [15].

MiRNAs are short (� 22 nucleotides), noncoding RNA molecules, which bind to complementary sequences

in target mRNAs and repress translation or induce degradation [14]. Silencing of gene expression by these
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post-transcriptional processes has revealed a new level of gene regulation which is capable of modulating

expression levels after DNA-dependent regulation by transcription factors. For the human genome, more

than two thousand mature miRNAs have been identified [13]. Much effort has been invested into unravelling

the complex functional network of miRNA and target gene regulation. According to sequence predictions,

one miRNA can target hundreds of potential target genes, while in turn one gene can be regulated by

multiple miRNAs [10]. Considering the function of the target genes, miRNAs were found to target biological

processes such as various signalling pathways and the cell cycle. Interestingly, transcription factor genes

have been found to be overrepresented targets of miRNAs [5,6].

Network inference approaches have considered the emerging knowledge about miRNA-dependent regula-

tion by taking account of interactions between miRNAs and mRNAs. Those approaches utilise data about

miRNA target predictions as well as miRNA and mRNA expression data. Consideration and integration of

diverse data led to the extension of GRNs by the inclusion of post-transcriptional gene regulation. This new

feature has promoted the analysis of dependencies between miRNAs and target genes. For example, tools

like MAGIA [4], MMIA [30] and mirConnX [20] perform integrated network analysis on the basis of miRNA

target predictions and correlation between miRNA and mRNA expression profiles.

In this study, we applied the tool NetGenerator for an integrated network inference based on mRNA

and miRNA time series data as well as prior knowledge [16, 37, 43]. The resulting network predicts the

activity of selected miRNAs in the chondrogenic regulatory network. In comparison to correlation-based ap-

proaches (e.g. MAGIA), the NetGenerator applies a dynamical model, which is based on ordinary differential

equations.

Results and discussion
Chondrogenesis data and node selection

We analysed a dataset which contained mRNA and miRNA microarray measurements of cultured hMSCs

in pellet cultures after stimulation with growth factors TGF-beta1 and BMP2. Both factors are known to

induce the process of chondrogenesis [24, 39]. Microarray samples were available for 9 time points (0, 3,

6, 12, 24, 48, 72, 120 and 192) h with 3 (mRNA microarray) and 2 (miRNA microarray) replicates per

time point. For mRNA microarray data pre-processing, custom chip definition files [9] were used in order to

improve the accuracy of the expression estimates. Quantile normalisation was applied to mRNA and miRNA

microarray data, respectively (see Methods). This resulted in time series expression data for 12,175 protein-

coding genes (mRNAs) and 1,023 miRNAs. Integrated network inference requires the filtering of relevant

3
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mRNAs and miRNAs, which constitute the network nodes in the model. A multi-step selection strategy

was applied, which included statistical filtering, knowledge-based filtering and time series correlation, to

identify miRNAs and genes that are associated with the investigated differentiation process. A workflow

which illustrates the sequence of selection procedures, starting from microarray data and resulting in network

components, is displayed in Figure 1. The statistical method LIMMA identified differentially expressed genes

(DEGs) and miRNAs (DEMIRs) from the time series expression data, as described in the Methods section.

It resulted in the selection of 192 DEGs and 485 DEMIRs. Subsequently, both sets were used to perform

knowledge-driven selection, which is based on miRNA target predictions and literature about gene regulation

during hMSC differentiation. It is known that the transition from stem cells to terminally differentiated cells

is mainly controlled by transcription factors [7]. Moreover, transcription factor genes are reported to be

potential targets of miRNAs, because they are significantly overrepresented among the miRNA target genes

[6]. Based on this information, annotated transcription factor genes were selected using the Gene Ontology

term GO:0003700 (sequence-specific DNA binding transcription factor activity) resulting in 10 differentially

expressed transcription factor genes (DETFs). In the next step, predicted interactions between miRNAs and

target genes were considered, as they provide a useful link between miRNA and mRNA data. Specifically,

interaction data represents a subset of miRNAs and mRNAs and therefore promotes the selection process.

There are numerous resources to obtain experimentally validated or computationally predicted interactions

between miRNAs and target mRNAs, such as TarBase [40], miranda [3], miRBase [13], MirTarget2 [42] and

TargetScan [10]. Access to those databases is provided by the R package RmiR.Hs.miRNA, which downloads

the data in form of interaction tables. Overall, there are more than 1 million predicted interactions stored

in the combination of the provided tables. However, most prediction approaches are reported to have

relatively low specificity [1]. This issue can be addressed by combining the sequence-based predictions with

the correlation of the corresponding time series expression data. To obtain the most reliable interaction

predictions, two criteria were applied: (1) at least two of the five above mentioned databases store the

interaction and (2) the associated miRNA-mRNA expression time series are negatively correlated. The first

criterion ensures that the considered interactions were found by different approaches. For the second criterion,

Pearson correlation between miRNA and mRNA time series was calculated for each interaction pair. Under

the assumption that the predicted miRNA target gene interaction is functional, we would intuitively expect

a negative correlation coefficient, due to the negative regulatory effect of the miRNA on the expression of

its mRNA target. This assumption could be confirmed by [29], who successfully identified miRNA targets

by correlation. However, the authors also emphasise that a strong miRNA effect on target gene expression
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might be better recognisable on target protein level or downstream gene expression levels. Moreover, we

noted that positive as well as negative correlations were observed for functional miRNA target relations in

the literature [38]. In this study, we focused on strongly negatively correlated predictions only, which can be

modelled by a repressing interaction between the miRNA and its target. As a result, four interactions with

a correlation smaller than -0.8 were extracted (see Table 1). Therefore, the focus on negatively correlated

interactions resulted in the selection of 4 DEMIRs and 4 DETFs.

As reported in the literature, there are prominent chondrogenesis marker genes such as COL2A1, ACAN

(aggrecan) and COL10A1, whose expression level indicates the progress of differentiation [2,8]. They encode

for structural proteins of the extra-cellular matrix (ECM) and are differentially expressed in our time series

data. Therefore, we added them to the selection of network nodes, because marker genes help to monitor

the effects of regulation by miRNAs and transcription factors on chondrogenic differentiation.

In summary, the applied multi-step selection procedure resulted in a set of 11 network components,

including 4 miRNAs (miR-524-5p, miR-494, miR-298 and miR-500), 4 transcription factor genes (SOX9,

TRPS1, MEF2C and SATB2) and 3 chondrogenic marker genes coding for components of the extra-cellular

matrix (COL2A1, ACAN and COL10A1).

Network inference

The tool NetGenerator was applied to infer regulatory interactions among the network components and the

influence of the external stimulus (TGF-beta1+BMP2). Input data of the algorithm comprised time series

data and prior knowledge about potential regulatory interactions between the components. Time series data

were extracted from the available miRNA and mRNA microarray datasets, averaged across replicates at each

time point, centered and scaled by their maximum absolute value (see Methods). The resulting time series

matrix has 9 rows (time points) and 11 columns (nodes). Prior knowledge about regulatory interactions was

collected from diverse sources, which will be described below.

Extraction of prior knowledge

We considered knowledge about the general regulatory potential of each component as well as knowledge

about regulatory interactions among the components for GRN inference. On the basis of the three component

classes ((1) miRNA, (2) transcription factor gene, (3) marker/target gene), each of which was linked to its

typical biological function. Those functions were translated into prior knowledge as follows: (1) miRNAs

primarily function by degradation of their target mRNAs [14]. Therefore, they are expected to negatively

regulate the expression of their respective target genes. (2) Transcription factors positively or negatively

5
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regulate the expression of their target genes, which can be protein-coding genes as well as miRNA precursor

genes. (3) Genes encoding for structural components of the extracellular matrix (ECM) are not known to

have an effect on the expression of neither protein-coding genes nor miRNA genes. Therefore, they were

considered to be pure target genes, whose expression is regulated by transcription factors and miRNAs.

In addition to this functional annotation-based knowledge, a set of potential regulatory interactions was

obtained from miRNA target predictions, as described in the gene selection section, and scientific literature.

This included four predicted interactions from miRNAs on target genes, which have not been reported in the

literature (see Table 1). To extract regulatory interactions from published literature, Pathway Studio V9 was

applied, which provides a database of automatically derived interactions from PubMed [44]. In total, four

interactions from transcription factors on target genes were retrieved from the database. SOX9 was found

to regulate the expression of COL2A1, ACAN and COL10A1 by specifically binding to regulatory elements

of those genes [26]. The chondrocyte hypertrophic marker COL10A1 is activated by MEF2C, which binds

to conserved sequences in the promoter region [2]. Finally, the collected prior knowledge data were stored

in form of interaction matrices (see Methods), which can be processed by NetGenerator.

Model inference and interpretation

Inference of the network model, which is based on ordinary differential equations, aims to find a solution

which is optimal with respect to the given input data and the presumption of a sparse interaction matrix.

Consequently, the algorithm’s objective is to minimise the model error J, which quantifies the deviation

between measured and simulated data, and to consider prior knowledge. The balance between network

complexity and an adequate model error is controlled by the parameter “allowedError”, which is the requested

minimum error for each time series. A series of inference results varying this parameter was analysed with

respect to model error, model complexity (total number of connections) and number of integrated prior

knowledge connections (see Methods and Figure 2). This resulted in the selection of one model, which

shows a good fit to the measured time series data (J=0.0833) and contains 8 prior knowledge interactions.

Simulated model time courses and measured time series are displayed in Figure 3. The simulated time

courses (blue lines) show a good reproduction of the measured time series data (black points). Although

this inferred model seems to be excellent in terms of model fit and prior knowledge, model validation

is necessary. The main reason is to prevent over-fitting of the measured time series data by the model.

Therefore, the model’s robustness against noise in the data was evaluated by using an approach which is

based on repeated resampling of the time series data (see Methods). This procedure resulted in a table

of occurrence frequencies for each interaction of the initial model (Additional File 1). While most of the
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connections attained a high frequency (86 ± 22)%, two connections with a frequency less than 40% were

discarded from the network. All remaining interactions were considered robust against minor fluctuations in

the expression data. The network (Figure 4) consists of 11 nodes, i.e. 4 miRNAs, 4 transcription factors (TF),

3 target genes (chondrogenesis marker), and the external stimulus (TGF-beta1+BMP2). There are 19 stable

connections in the network, which indicate transcriptional or post-transcriptional regulation, depending on

the type of the connected components. Considering the proportion of nodes and connections (11 nodes /

19 connections) the network appears to be sparsely connected. There are 6 input-to-node and 13 node-

to-node (miRNA/ TF/ target) interactions. Latter type of interactions can be further grouped into 1

(miRNA,miRNA), 6(miRNA,TF), 2(TF,miRNA) and 4(TF,target gene). Four connections are coloured in

green, which reflects their concordance with literature knowledge. Four connections are coloured in blue,

because they are underpinned by predicted miRNA target sites. Connections coloured in black represent

regulatory hypotheses without further evidence.

Biological interpretation

In the following, the network model will be described and interpreted. The interpretation will be based on

transcription factor nodes (SOX9, MEF2C, TRPS1, SATB2), to identify regulator and target nodes for each

of them. This promotes the understanding of the model, particularly about how miRNAs might interfere

with transcriptional regulation and control the differentiation process. Additional knowledge about the

regulation of chondrogenic differentiation will be provided for interpretation of selected model characteristics.

The input stimulus (TGF-beta1+BMP2) inhibits the expression of 3 miRNAs (miR-494, miR-524-5p, miR-

298) and activates miR-500, which is in turn suppressed by TRPS1. Consequently, the negative effect of

downregulated miRNAs on their target genes is attenuated, which leads to the activation of the transcription

factor genes SOX9, MEF2C, TRPS1 and SATB2. SOX9, the main regulatory factor in chondrogenesis [27],

is inhibited by miR-524-5p, which is supported by a predicted miRNA target site (Table 1). Since miR-

524-5p expression is suppressed by the TGF-beta1+BMP2 stimulus, SOX9 expression increases and leads

to activation of differentiation markers COL2A1, ACAN and COL10A1. This transactivation is achieved

through the detection of a consensus binding motif ((A/T)(A/T)CAA(A/T)G), which is shared by the SOX

family members [26]. In COL2A1, this motif could be identified multiple times in an enhancer located in

intron 1. Activation of ACAN could be associated with the binding of SOX9 in its first intron [34] and the

COL10A1 promoter contains a distal enhancer element 4.3 kb upstream from transcription start site [27].

Therefore, primary chondrogenesis might be under control of miR-524-5p by modulating the expression

of SOX9 and its target genes. The MADS box transcription factor MEF2C, which controls chondrogenic

7
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hypertrophy, positively regulates expression of COL10A1 through binding to conserved sequences in the

promoter region [2]. Negative regulation of MEF2C by miR-298 might be a mechanism to prevent early

activation of hyperthrophic genes. The transcriptional repressor TRPS1 is known to be activated by a

specific type of BMP-signalling and promotes chondrogenic differentiation by transcriptional repression of

only few known target genes [22]. In our model, its expression is regulated by the stimulus as well as by miR-

494 and miR-524-5p. The interaction from miR-494 is underpinned by prior knowledge (blue connection in

Figure 4), but surprisingly there also exists a predicted binding site of miR-524-5p within the TRPS1 mRNA.

However, the positive sign of the connection suggests that the assumed inhibitory effect may be not reflected

by the given data. In recent literature, extensive control of TRPS1 by at least 7 miRNAs has been described

for the process of skeletal development [45]. In the network, TRPS1 inhibits the expression of miR-500 and

miR-298, which controls the chondrogenic transcription factor MEF2C. While knowledge about target genes

of TRPS1 is rare, it is known that TRPS1 can act positively on the chondrogenic marker gene COL10A1

and thereby promote chondrogenic differentiation [22]. SATB2, a transcription factor mainly associated with

osteogenesis [17], is repressed by miR-500 and miR-494, as predicted by the model. A potential regulation

of SATB2 by miR-500 is supported by the associated binding sequence (Table 1). However, since there is

no influence of SATB2 on the expression of chondrogenic marker genes in our model, it is less relevant for

chondrogenesis according to our model.

Overall, the involvement of transcription factor genes is a central part of the model. The model integrates

transcriptional regulation (by transcription factor genes) and post-transcriptional regulation (by miRNAs)

and thereby displays the interrelationship between miRNAs and transcription factors. Since all four in-

vestigated miRNAs are ultimately downregulated, the model proposes the suppression of miRNA activity,

which gives rise to the activation of the transcriptional regulators of chondrogenic differentiation such as

SOX9. The model comprises miRNAs acting on different stages of the differentiation process including early

proliferation and late hyperthrophic stages. The downregulation of miR-524-5p constitutes an interesting

prediction about how chondrogenic differentiation might be modulated on the level of post-transcriptional

mRNA interference. Furthermore, we found expression of miR-524-5p to be oppositely (positively) regulated

during osteogenic and adipogenic hMSC differentiation (data not shown). This indicates that the repression

of miR-524-5p activity may be relevant for lineage specificity during hMSC differentiation.
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Experimental validation

The inferred chondrogenic network implies that mir-524-5p is able to target SOX9 mRNA and thereby re-

pressing expression of SOX9 and its target genes (COL2A1, ACAN, COL10A1). Therefore, we performed

overexpression experiments of mir-524-5p in hMSCs to validate if chondrogenesis was impaired. Changes

in chondrogenic differentiation were measured in basis of the expression of specific marker genes. For this,

hMSCs were transfected with lentivirus harbouring the mir-524-5p coding sequence and a non-related mur-

ine Jnk RNAi lentivirus used as a negative control. Then, hMSCs were allowed to differentiate for 14 days

into chondrocytes after which the expression of chondrogenic marker genes was measured by using qPCR.

Relative expression of marker genes of transfected cells was compared to the negative control (incomplete:

differentiation in culture medium without any growth factors added) and a positive control (TGFB1+BMP2:

medium containing TGF-beta1 and BMP2) in which differentiation occurs in culture medium but without

lentiviral transduction (see Figure 5). The positive control sets the baseline for comparison of the differ-

ent expression levels, because differentiation is optimal. The results showed that mir-524-5p overexpression

decreases the relative expression of all measured marker genes. The decrease in relative expression is signi-

ficantly stronger than the decrease observed when using the non-related murine Jnk RNAi lentivirus. This

negative control had no effect on chondrogenesis observed for all marker genes tested. In addition, hMSCs

were transfected with mir-524-5p lentivirus and the empty pMIRNA backbone (PM_40) vector lentivirus

(as negative control) and subsequently cells were allowed to differentiate for 14 days prior RNA qPCR

analysis. The relative expression of SOX9 decreased when mir-524-5p was overexpressed and the control

virus (PM_40) remained comparable to the relative expression of the positive control (TGFB1+BMP2).

In conclusion, experimental validation showed lentiviral based overexpression experiments of mir-524-5p in

differentiating hMSCs resulted in a significant inhibition of several chondrogenic marker genes compared to

either non-transfected hMSCs or transfected with a control lentivirus.

Conclusions

In this study, we have demonstrated how miRNA regulation can be modelled by a dynamical GRN inference

approach. This required the integration of mRNA and miRNA time series data of stimulated hMSCs, which

underwent chondrogenic differentiation. We presented a filtering approach, in which specific biological know-

ledge (literature knowledge, transcription factor annotation, miRNA target gene predictions) was utilised

in conjunction with statistical criteria. This filtering helped in dealing with the vast number of miRNA

target gene predictions and in selecting highly relevant network components. Hereby, we detected 4 miRNAs
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(miR-524-5p, miR-494, miR-298 and miR-500) and predicted their involvement in the gene regulation of

chondrogenic differentiation. Applying the NetGenerator algorithm to the given data, we inferred a net-

work model of moderate complexity, good data fit and robustness. We analysed this model by interpreting

the interactions between miRNAs and transcription factors, while also considering the potential effect on

chondrogenic marker genes. This analysis resulted in hypotheses and additional experiments which verified

model predictions by showing that miR-524-5p can affect the expression of the central transcription factor

gene SOX9 and differentiation marker genes. Therefore, this work showed how dynamic modelling of miRNA

regulation can enhance the understanding of a specific biological process, such as hMSCs differentiation, and

lead to the discovery of new regulatory interactions.

Methods
Culture and differentiation of human mesenchymal stem cells

Human mesenchymal stem cells (hMSCs), harvested from normal human bone marrow, were purchased from

Lonza (Walkersville, MD) at passage 2. Cells were tested by the manufacturer and were found to be positive

by flow cytometry for expression of CD105, CD166, CD29 and CD44 and negative for CD14, CD34 and

CD45. We confirmed multipotency of all donor batches based on in vitro osteo-, chondro- and adipogenic

differentiation capacity [36]. The cells were expanded for no more than 5 passages in ‘mesenchymal stem cell

growth medium’ (MSCGM; Lonza, Walkersville, MD) at 37ºC in a humidified atmosphere containing 7.5%

CO2. Studies were performed with hMSCs from multiple donors, including 5F0138, 5F0138 and 1F1061. For

chondrogenic differentiation, hMSCs were trypsinised and 2.5x 105 cells pelleted in a 10 ml round bottom

tube (Greiner Bio-One, Monroe, NC) for 10 min at 250xg. Cell pellets were subsequently cultured for 21 days

in chondrogenic differentiation medium, consisting of proliferation medium supplemented with 6.25 μg/ml

insulin, 6.25 μg/ml transferrin, 6.25 ng/ml sodium selenite, 5.35 μg/ml linoleic acid, 400 μg/ml proline, 1

mg/ml sodium pyruvate, 10−7 M dexamethasone, 50 μg/ml sodium L-ascorbate (all obtained from Sigma-

Aldrich, St. Louis, MO) , in the absence (incomplete or control) or presence of 10 ng/ml recombinant

TGF-beta1 in combination with 50 ng/ml recombinant human BMP2 (TGF-beta1+BMP2). Growth factors

were obtained from R&D Systems.

mRNA and microRNA profiling

Affymetrix Human Genome U133A (HG-U133A) microarrays were employed in triplicate experiments at 9

time points (0, 3, 6, 12, 24, 48, 72, 120 and 192 hours after onset of treatment with TGF-beta1+BMP2).
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Further experimental details can be found in [36]. For miRNA profiling, 18 RNA samples were obtained

from duplicate experiments, one biological condition and measured at 9 time points (0, 3, 6, 12, 24, 48, 72,

120 and 192 hours after onset of treatment with TGF-beta1+BMP2). RNA was extracted using TRIzol®

according to the protocol provided by the manufacturer (Invitrogen). For each sample, 5 μg of RNA was

used for miRNA profiling. Hybridisation and profiling were performed using Exiqon (Vedbaek, Denmark)

capture probe sets spotted on Schott Nexterion Hi-Sense E glass slides [32].

Determination of relative expression levels of chondrogenic marker genes using quantitative PCR (qPCR)

Total RNA was isolated from chondrogenic pellets using the Mirvana (Ambion) kit according to

manufacturer’s instructions. The isolated total RNA (≈100 ng) was then used as a template in a

20 μl reverse transcriptase reaction using superscript reverse transcriptase from Invitrogen according

to manufacturer’s instructions using random hexamers to prime the reaction. The following cycling

conditions were used: 10 min at 20°C, 45 min at 42°C and 10 min at 94°C. The resulting cDNA

solution was diluted 5x by adding 80μl water. qPCR of chondrogenic markers was performd using

the following human primers: COL2A1 (forward: 5’-CTGCCAGTGGGCAACCA-3’; reverse: 5’-

TTTGGGTCCTACAATATCCTTGATG-3’), COL10A1 (forward: 5’-AAAGCTGCCAAGGCACCAT-

3’ and reverse: 5’-AGGATACTAGCAGCAAAAAGGGTATT-3’), ACAN (forward: 5’-

GACAGAGGGACACGTCATATGC-3’ and reverse: 5’-CGGGAAGTGGCGGTAACA-3’) and SOX9 (for-

ward: 5’-GCAAGCTCTGGAGACTTCTGAAC-3’ and reverse: 5’-ACTTGTAATCCGGGTGGTCCTT-

3’), expression values were normalised and corrected using RPS27a housekeeping gene (Forward:

5’-GTTAAGCTGGCTGTCCTGAAA-3’ and reverse: 5’-CATCAGAAGGGCACTCTCG-3’). Relative

expression was calculated using the following formula: Relative expression: 2−Ct · 106 marker gene /

2−Ct · 106 RPS27a. Data are presented as a fraction of RPS27a expression and all qPCRs were performed

in duplicates.

Microarray data analysis

Microarray data pre-processing and network inference was entirely performed in the statistical programming

environment R [33] using Bioconductor software tools [11]. Pre-processing aims to remove non-biological

noise from the data and to estimate gene expression levels.

Pre-processing of mRNA microarray data

Data from mRNA microarray experiments were pre-processed using the customised chip definition pack-
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age “gahgu133a” and the robust multi-array average (RMA) procedures [21]. The chip definition package

provides custom probe-sets for the Affymetrix HG-U133A chip, which reduces the number of cross-hybridising

probes [9]. The remaining probes allow for a one-to-one correspondence between probe-set and gene. RMA

procedures were applied for background correction, quantile normalisation and summarisation. The resulting

signal matrix contains the logarithmised gene expression estimates for 12,175 genes.

Pre-processing of miRNA microarray data

First, mean signal values were extracted for each of the measured miRNAs, respectively. Second, quantile

normalisation was applied, which is provided by the RMA package. This led to logarithmised miRNAs ex-

pression estimates for 1,023 miRNAs. In contrast to mRNA microarray data, there can be multiple probe-sets

representing the same miRNA.

Statistical filtering

We applied the statistical tool LIMMA [35], which is available as an R package, on the miRNA and the

mRNA dataset, respectively. It provides routines for identification of differentially expressed genes using

an empirical bayes approach. Time series data can be analysed by contrast terms, which were defined

by subtracting the control group from the stimulus group at each time point. Statistical significance was

determined by applying a moderated F-statistics. Finally, LIMMA returned a ranked table, which contains

columns for gene name, fold-change and adjusted p-values. By applying thresholds for adjusted p-value and

fold-change, a list of significantly regulated mRNAs and miRNAs was determined. Due to the fact that the

replicate number in the miRNA dataset is low (2 replicates per time point), differentially expressed miRNAs

were selected by using a 2-fold-change criterion, while for mRNA selection the fold-change criterion was

combined with a p-value threshold (Benjamini-Hochberg adjusted p-value ≤ 10−10).

Time series standardisation

Time series standardisation is a required processing step before starting network inference applying Net-

Generator [43]. It includes centering and scaling of each time series. Centering implies subtraction of the

initial value at the starting time point from all values such that the transformed time series starts from zero.

Subsequent scaling divides each time series by its maximum absolute value, which leads to gene-wise scaled

data and time series varying within -1 and 1.
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Network inference

Network inference was performed using the tool NetGenerator, which models gene regulation by a system

of ordinary differential equations (Equation 1).

ẋi(t) =
N∑

j

ai,jxj(t) + biu(t) (1)

Dynamic change of expression xi of gene i is described by the sum of weighted gene expressions of N

genes and the weighted input u(t), which is a stepwise constant function representing the external stimulus

(e.g. TGF-beta1+BMP2). Regulatory interactions are modelled by the interaction parameters ai,j and the

input parameters bi. A positive parameter value denotes an activating connection, a negative value denotes

an inhibitory connection and the value zero denotes no connection. Consequently, the GRN structure

is determined by the model’s interaction parameters, which have to be identified by the NetGenerator

algorithm. The algorithm’s central part is an optimisation heuristic, which performs network structure and

parameter optimisation. Structure optimisation applies the principle of sparseness. Iterative development of

sparse sub-models explicitly restricts the number of found connections. In each development step, parameter

optimisation is applied to obtain interaction and input parameter values. The resulting model contains a

minimal number of parameters that are necessary to obtain a good fit between simulated model and measured

time series. A more detailed description of the algorithm can be found in [16,37,43].

NetGenerator also allows for integration of additional information about regulation among the compon-

ents, referred to as prior knowledge. As this knowledge is usually independent of the time series data,

it represents valuable additional data for the network inference. NetGenerator is capable of using prior

knowledge as proposals during the structure optimisation process, while also dealing with contradictions

between prior knowledge and time series data. Knowledge data is provided in form of an interaction matrix,

which contains values for information about a connection (coded by 1), no connection (0), activation (10),

inhibition (-10) or not available (NA). NetGenerator provides a flexible integration mode which ignores prior

knowledge interactions in case the model fit is worsened.

Since NetGenerator contains a heuristic core, it depends on the setting of configuration parameters. The

central parameter “allowedError” controls the allowed deviation between simulated and measured data of

each time series. To determine an optimal result, we performed a series of network inference runs varying

the value of this parameter (0.001, 0.01 (0.005) 0.05) resulting in ten models (see Figure 2). The resulting

models were assessed on the basis of the actual model error J and the number of successfully integrated
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prior knowledge connections. An optimal model reproduces the data with a low error (high accuracy),

while attaining a relatively low model complexity (number of interactions). Considering the ten models, we

found the second model (0.01) to be optimal with respect to model error (J=0.0833), model complexity (21

interactions) and integrated prior knowledge connections (8). The network model is shown in Figure 4 and

simulated time courses are shown in Figure 3.

For model validation, robustness of the inferred network against small changes in the time series data

was tested. Such changes may occur in the data due to technical or biological variance in the data. A

robust inference result is expected to maintain a similar network structure when the input data is perturbed.

Therefore, we applied random perturbation of the time series data by sampling from a Gaussian noise

distribution (N (0, 0.052)). This noise was added to the time series data, which was used for subsequent

network inference. This procedure was repeated 100x leading to a series of models, from which relative

frequencies for each of the connections of the initial model were derived. Connections which were inferred

with a frequency of at least 50% were considered stable and therefore reliable.

Maintenance, lentiviral transfection and induced chondrogenesis of hMSCs

hMSCs were maintained in DMEM medium supplemented with 10% FBS, 1% pyruvate, 1% L-glutamine,

100 U/ml penicillin and 100 μg/ml streptomycin (referred to as proliferation medium, PM) and incubated

at 37°C and an humidified atmosphere containing 7,5% CO2. The day before lentiviral transduction, about

5 · 105 cells were transferred to 25cm2 flasks in PM and incubated for 18 hours, as before. Then, cells were

transfected using lentivirus containing either the empty pMIRNA backbone vector (control) or pMIRNA

vector with mir-524-5p premature DNA sequences (purchased from System Biosciences). Lentiviruses were

added in various concentrations (20 ng, 40 ng and 80 ng virus/30.000 cells) in addition to 1 mg/L polybrene

(Milipore). The transfected cells were incubated for 2-3 days to allow for lentiviral integration and expression

of the introduced transgenes. Transfected hMSCs were grown as pellets (by centrifugation) in high-glucose

DMEM supplemented with 100 U/ml penicillin, 100 μg/ml streptomycin, 1% L-glutamate 6,25 μg/ml insulin,

6,25 ng/ml sodium selenite, 6,25 μg/ml transferrin, 5,35 μg/ml linoleic acid, 400 μg/ml proline, 1% pyruvate,

100 nM dexamethasone, 50 μg/ml sodium ascorbate and 1,25 mg/ml bovine albumin (listed compound from

Sigma). This medium will be further referred to as incomplete medium. Differentiation experiments were

performed using incomplete medium in the presence or absence of 10 ng/ml TGF-beta1 and 50 ng/ml BMP2

(both purchased from R&D Systems). Differentiation of hMSCs chondrogenic pellets was allowed for 14 days.
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Figures
Figure 1 Gene selection workflow
This workflow illustrates the steps from pre-processed miRNA/mRNA microarray data to the selection of 11 network
components, which includes statistical filtering (2), transcription factor annotation (3), negative correlation of predicted
interactions (4) and identification of chondrogenesis marker genes (5).

Figure 2 Network model selection
A series of ten network inference results, varying the NetGenerator parameter “allowedError”, is shown. For each inference
result the model error (left ordinate) and the number of model connections / prior knowledge connections (right ordinate,
orange/green) are displayed. For further analysis one model (highlighted in red) was selected (allowedError = 0.01).

Figure 3 Chondrogenesis model: time courses
Comparison of the measured and simulated time courses. Each panel displays the results of one model component: the
simulated time course (blue solid line), interpolated measurements (black dashed line) and the measured time series (black
dots).

Figure 4 Chondrogenesis model: inferred network
Network structure of the chondrogenesis model, which contains the input TGF-beta1+BMP2 and 11 nodes. Nodes represent
either a miRNA (miR-524-5p, miR-494, miR-298, miR-500), a transcription factor gene (SOX9, MEF2C, TRPS1, SATB2)
or a chondrogenic marker gene (COL2A1, COL10A1, ACAN). Connections are coloured in green (consistent with prior
knowledge), blue (predicted miRNA target site) and black (predicted interaction).

Figure 5 Experimental validation
Barplots depict the relative expression of COL2A1, COL10A1, ACAN and SOX9, respectively, under a series of distinct
conditions. Those include untreated cells (Incomplete), TGF-beta1+BMP2-treated cells (TGFB1+BMP2), lentiviral based
miR-524-5p overexpression with three different concentrations (Mir-524_20, Mir-524_40, Mir-524_80) and negative
control experiments (Jnk RNAi_20, Jnk RNAi_40, Jnk RNAi_80, PM_40).
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Tables

Table 1 Predicted miRNA targets and associated time series correlation

miRNA gene method Pearson correlation
hsa-miR-494 TRPS1 miranda, mirtarget2, targetscan -0.89
hsa-miR-298 MEF2C miranda, mirtarget2 -0.86
hsa-miR-500 SATB2 miranda, mirtarget2 -0.86

hsa-miR-524-5p SOX9 miranda, mirtarget2 -0.88
Predicted miRNA target genes, corresponding prediction methods and the attained time series correlation.

Additional Files
Additional file 1 — Table of connection frequencies from model validation

A table of the network model connections and their relative frequencies in the model validation.
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Chapter 4

Discussion

This thesis includes four papers which cover different parts of the process of network inference in
the context of chondrogenic differentiation. The main biological objective has been the investig-
ation of regulatory processes which are involved in the development of chondrocytes. To identify
interesting regulatory hypotheses, this work applied microarray data analysis and an integrat-
ive network inference approach, which combines diverse types of biological data. The following
chapter will discuss the presented results and highlight the main issues in network modelling on
the basis of multiple microarray datasets.

4.1 Updated chip definition for microarrays

The application of an updated chip definition file (CDF) is the recommended initial step in mi-
croarray data pre-processing [65]. Replacement of the standard probe-set annotation intends to
improve the reliability of the gene expression estimates, which are based on the corresponding
probe intensities. Since all subsequent gene expression analyses operate on those estimates, it is
crucial to ensure an accurate and specific mapping from probes to gene transcripts. To achieve
this goal, probes have been classified according to their potential to cross-hybridise, e.g. bind
RNA fragments of multiple mRNA species. Non-specific binding is known to be one reason for
measurement errors in microarray data and therefore needs to be minimised by exclusion of po-
tentially cross-hybridising probes.

Newly developed and publicly available CDFs were tested and evaluated on the basis of the
resulting gene expression estimates. Each of the CDFs is characterised by its individual probe
selection, which is based on different sequence annotation resources (e.g. GeneAnnot, RefSeq)
and classification criteria. The subsequent reassembly of updated probe-sets therefore incorpor-
ates only the detected specific probes. The crucial objective of this study was to evaluate the
performance of the different CDFs and to identify the most suitable for subsequent microarray
analysis. Evaluation of the diverse gene expression estimates required the use of reference ex-
pression data in form of qRT-PCR data. Since the qRT-PCR technology is reported to show
high assay specificity and detection sensitivity, the resulting data is suitable to be used as a
validation reference [66]. Nonetheless, data obtained by this technology might also be affected
by measurement errors, for example due to an amplification bias [67]. Furthermore, given that
qRT-PCR experiments are generally more time-consuming, they are typically performed for only
a small subset of genes which are measured by the microarray.

In section 3.1, two datasets were chosen for evaluation which included microarray as well as
quantitative expression data from qRT-PCR experiments: (1) an illustrative collection of 16
genes obtained from a study of rheumatoid arthritis patients [68] and (2) a collection of 1000
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genes from the MAQC dataset [36]. To avoid the effects of systematic bias, normalised microar-
ray data and standardised qRT-PCR data were employed. The most important finding of this
study is that the three custom CDFs performed, on average, considerably better than the stand-
ard annotation from Affymetrix on both datasets. This underscores the positive effect of the
updated CDFs on the generated expression data and generally recommends the use of a custom
CDF. Overall, the CDF provided by Ferrari et al. accomplished the best average correlation
values between the microarray data and the qRT-PCR validation data. Moreover, this CDF
provides a one-to-one correspondence between genes and probe-sets and therefore resolves the
problem of multiple probe-sets per gene. The effectiveness of this approach is best reflected by
the fact that 29% of the original probes are no longer considered by the updated CDF for the
HG-U133A GeneChip, which is the central microarray platform used in this thesis [69].
A further question addressed the influence of microarray normalisation on the results. The stand-
ard MAS5 algorithm from Affymetrix [26] was compared to the alternative RMA normalisation
method proposed by [20]. According to the correlation of the analysed datasets, RMA normal-
isation led to slightly better expression estimates. Nevertheless, the differences in the normalised
measurements generated by using either RMA or MAS5 are generally considered to have a minor
impact on the subsequent biological interpretation [7].

4.2 Genome-wide microarray analysis of hMSC differentiation

The investigation of multipotent hMSCs, which undergo differentiation towards diverse cell types,
was the central aim of the underlying biological study presented in section 3.2. To analyse the
biological processes taking place during cellular development, cells were exposed to various exper-
imental conditions and were allowed to differentiate for a comprehensive time course. Genome-
wide expression measurements were performed using Affymetrix GeneChips at predefined time
points. The resulting microarray data contained time series datasets for chondrogenic, osteogenic
and adipogenic differentiation that include diverse experimental condition groups. Time series
experiments were designed to cover several developmental stages including growth, differentiation
and maturation of the cells. The main objective was to monitor the expression levels of all genes
which are involved in the cellular development. Since each of the developmental stages is asso-
ciated with the activity of specific genes, it is important to understand how actively transcribed
genes can influence the expression of target genes during the ongoing development. Another
important aspect concerned the distribution of the time point samples along the differentiation
process. The ten experimental time points were distributed on a logarithmic scale, which allowed
for a high resolution of the early events i.e. the direct response to the stimulation, while fewer
time points cover the late stages of cellular maturation.

Furthermore, to verify the successful differentiation of the investigated cells, staining experi-
ments were conducted to detect specific characteristics of the mature cells. Such characteristics
included staining intensity or proportion of positively stained cells as well as the size of cultured
pellets. As a result, the observed patterns were found to show variation among the different
experimental condition groups. On this basis, the individual performance of each condition
was further evaluated. For example, the TGF-beta1+BMP2 (TB) stimulation showed enhanced
staining effects, which indicated a better differentiation performance compared to the two other
groups (TGF-beta1 and TGF-beta1+GDF5). In the case of osteogenic treatment, the differen-
tiation performance of cells was enhanced up to 75% by adding VitaminD3.

The investigation of the underlying gene expression, which might give rise to those differences,
was based on the computational analysis of microarray time series data. One bioinformatic chal-
lenge in microarray data analysis is the choice and correct application of tools which pre-process
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the data, identify differentially expressed genes (DEGs) and model the gene expression pro-
files [35]. Even though those tasks are regarded as standard procedures for microarray analysis,
it is crucial to be aware of the specific requirements and assumptions of the applied methods as
well as the underlying experimental conditions of the given data. Otherwise the results might
be affected by undesired properties and of low significance. Some methods are preferably used,
because they have been adapted to the specific features of microarray data. This makes them
superior to other methods. An updated chip definition file, which improves the mapping between
probes and target genes, was applied in the first step of pre-processing as already described in
section 4.1. In comparison to the standard CDF, the resulting gene expression estimates are
more reliable, since they are less affected by inaccurate measurements. Subsequently, data nor-
malisation was applied using RMA in order to remove systematic bias from the data and to
generate gene expression estimates from the signal intensities. One assumption of the involved
quantile normalisation is that the underlying distribution of gene expression intensities should
be the same over all arrays [30]. Consequently, to achieve an optimal normalisation result, the
three datasets (chondro, osteo, adipo) were normalised separately in order to account for their
underlying experimental differences with regard to culture condition, cell density and cell donor.

The identification of DEGs was performed using the tool LIMMA [32]. This method can deal
with time series data and applies statistical tests which take account of the low number of replic-
ates per time point. Particularly, the variance estimation is not only based on the three available
replicates, but also on the global expression of all genes, which results in more stable estim-
ates [32]. The major objective of the gene selection process is the identification of biologically
relevant genes. Therefore, genes were selected which display pronounced expression differences
compared to the control group by applying a stringent adjusted p-value cutoff in combination
with two-fold-change criterion. Particularly, this combination helped to considerably reduce the
number of identified DEGs. In comparison, application of a conventional p-value cutoff without
fold-change criterion led to the selection of gene time series which showed only marginal dif-
ference to control and therefore have only minor relevance. Sets of DEGs were identified for
each stimulation group and therefore enabled a comparative analysis among the different groups.
The functional analysis revealed genes that are associated with developmental processes, activ-
ity of signalling pathways and factors involved in cellular regulation. This provided the basis
for identification of genes whose expression kinetics vary among the differentiation groups and
therefore might contribute to the differentiation process. Overall, a large number of candidate
genes has been identified, which reflect the variety of underlying processes involved in the cellular
response. Based on the behaviour of the corresponding time series three distinct differentiation
stages (growth, differentiation, maturation) can be distinguished. Each of those stages is associ-
ated with specific genes which are activated in the respective biological processes.

Since this thesis focuses particularly on chondrogenesis, one aim was to investigate genes which
are associated with the three chondrogenic stimulations that might explain the distinct dif-
ferentiation efficacy. Generally, the formation of chondrocytes requires the presence of TGF-
beta1, which is considered as the essential growth factor to induce chondrogenic lineage com-
mitment [68]. This fact is supported by the observation that the majority of DEGs is regulated
by the TGF-beta1 stimulus. Interestingly, stimulation with TGF-beta1+BMP2 displays a large
number of genes, which can be associated to the additional BMP2 stimulus. Moreover, the
gene expression time series indicate a rapid progress of chondrocyte differentiation after TGF-
beta1+BMP2 stimulation. SOX9, the main player in chondrocyte differentiation, showed a
stronger upregulation, while chondrocyte marker genes COL2A1, ACAN and COL10A1 were
found to show upregulation at earlier time points. Those results initiated further analysis which
identified regulatory factors, that might be responsible for this behaviour. Similar behaviour has
been observed in osteocyte differentiation and has been described as an acceleration phenomena
driven by specific transcription factors [64].
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4.3 Integrative inference of gene regulatory networks

4.3.1 Modelling multi-stimuli multi-experiment data

This thesis described and evaluated a novel tool for network inference from multiple experimental
time series data. The availability of time series datasets, which investigate the influence of differ-
ent experimental conditions, and the demand for rapid network inference results, have led to the
development of NetGenerator V2.0. This extended implementation of the previously published
NetGenerator algorithm represents an easy applicable and automatic network inference tool that
includes several features which increase reliability and interpretability of the resulting model. The
integration of multiple experimental data leads to one inferred network model instead of several
individual network models for each dataset. Consequently, network model evaluation including
analysis, interpretation and comparison is necessary for only one network and therefore more
efficient. Furthermore, the applied optimisation procedures generally benefit from more data.
The result is a refined and more reliable network structure, which accounts for all integrated
datasets. The network visualisation of NetGenerator V2.0 includes input nodes, which represent
the applied stimulus of each experiment. This directly supports the interpretation of the inferred
model, since it allows to discriminate the effects of the multiple inputs on the network genes.

Besides those advantages, there is a basic assumption of the tool on the underlying biology
of the data. In each of the incorporated experimental datasets, the structure of the underlying
GRN is assumed to be identical. This implies that all variation in gene expression is only due to
the impact of the applied experimental conditions, but not a result of structural changes in the
GRN. In fact, the strength of the regulatory interactions among the genes is assumed to be in-
dependent of the applied stimulation. This modelling assumption is motivated by the knowledge
about the nature of cellular regulation. Gene expression is controlled by signalling pathways,
or more precisely by the activity of the involved transcription factors. Those are capable of
binding to specific DNA motifs and thereby control gene expression of their associated target
genes. Different experimental conditions may alter the activity of corresponding signalling path-
ways which in turn leads to a change in activity of the involved transcription factors. However,
while transcription factor activity is modulated, their corresponding binding sites in the DNA
sequence and the associated target genes remain unchanged. Nevertheless, there are biological
mechanisms which have the potential to change binding site sequences, e.g. DNA mutation.
Therefore, NetGenerator V2.0 is principally not applicable to integrate data from experiments
based on a different genetic context. All network models which were inferred on the basis of
multiple expression data and presented in this thesis satisfy the discussed biological assumption.
In the case of the chondrogenesis model in section 3.3, both expression datasets were obtained
from equally cultivated hMSC, whose differences in expression are assumed to be exclusively due
to the applied stimulus.

Another point is the pre-processing of time series data before applying the NetGenerator tool.
Centering and scaling are introduced as required processing steps in order to transform the data
into an adequate format for the model optimisation process. Subtraction of the value at the
initial time point, which represents the expression before stimulation, is referred to as centering.
The centred time series start from zero and represent relative changes from the steady-state,
rather than absolute measurement values. This supports the NetGenerator modelling concept
which assumes the initiation of the time series from the steady-state. In the subsequent scal-
ing procedure, each time series is divided by its maximum absolute value across all provided
datasets. Specifically, the scaled measurements are all relative to the largest absolute expression
value. This emphasizes the qualitative properties of the time series dynamics and prevents the
influence of gene-specific expression magnitudes. Taken together, this thesis proposes GRN in-
ference on the basis of centered and scaled time series, which start from a cellular steady-state
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and range in the same interval for all genes.

4.3.2 Network inference validation using benchmark examples

Three benchmark networks were generated to test the performance of the NetGenerator V2.0
tool. Each of the computational examples consists of two weighted inputs, which represent the
applied external stimuli. Since NetGenerator V2.0 allows for integration of multiple stimuli,
cross-talk between the included inputs can be analysed. In the study of signalling pathways,
there is a great interest to quantify the degree of cross-talk e.g. the extent of shared pathway
components and interactions. Even though this study focuses on GRNs which generally sum-
marise the effects of signalling pathways on the expression of downstream target genes, it is still
interesting to investigate the cross-talk on this level. Therefore, examples were designed to con-
tain different types of cross-talk, which may occur in the cellular response to two distinct external
stimuli. The full cross-talk (FCT) network exclusively consists of genes which are affected by
both inputs, while in the no cross-talk (NCT) network each gene is exclusively affected by one
input. The limited cross-talk model (LCT) contains genes which are affected by either both or
one of the inputs. Notably, all genes in all models are regulated by at least one input, because
NetGenerator only deals with DEGs e.g. genes that are directly or indirectly affected by any of
the considered stimuli.

To reconstruct the example networks, input data in form of time series samples needed to be
generated. By individual simulation of each input, two time series datasets per network were
generated. This data generation process considered some characteristics of real-world microar-
ray data in order to ensure a relatively realistic benchmark evaluation. Those characteristics
included the logarithmic scale of the sampled time series, the few number of samples per time
point and the inherent noise of microarray data. Three replicates were generated by adding
random Gaussian noise to the simulated time series. Applying the NetGenerator V2.0 to the
three benchmark examples resulted in models which reproduce the time series with high accur-
acy. More importantly, the underlying network structures were inferred with a relatively high
quality. In the case of the FCT model, it was shown that the combination of the two datasets
improved the inference quality compared to individual application of each dataset. Overall, this
benchmark study demonstrated the tool’s general capability to infer networks of diverse cross-
talk structure by combining multiple experimental data. Therefore, application of NetGenerator
V2.0 provides a novel way to systematically and automatically investigate the common regulat-
ory effects of various signalling pathways. This approach can enhance biological understanding
about the complexity of cellular regulation in an efficient and powerful manner.

Another study which also deals with the generation of benchmark examples for the validation
of network inference approaches is the Dream Challenge [70]. The provided in silico challenges
are available for small-scale as well as large-scale networks and provide a range of experimental
data including time series, knock-out and knock-down data. The difference to our benchmark
data is that they generally provide more equidistant time points (21 in DREAM3 Challenge4).
Additionally, different perturbations of the same network are provided. Future work on NetGen-
erator should evaluate its performance on the various in silico challenges provided by the Dream
project.

4.3.3 Integration of prior knowledge

One distinctive feature of NetGenerator is its ability to integrate prior biological knowledge into
the inference process. Inclusion of such information is regarded as beneficial to infer networks
of high biological plausibility [14]. As a novel feature, NetGenerator V2.0 supports the flexible
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integration of prior knowledge which is implemented by an extended objective function of the
optimisation algorithm. Soft integration of the known connections represents a valuable feature,
because it enables the rejection of inappropriate connections which cannot be reproduced by the
model with regard to the given time series data. Therefore, prior interactions constitute propos-
als for the inference rather than fixed structural constraints. This way of knowledge utilisation
has already been proven beneficial in other network inference studies [41,45].

In this thesis, different types of prior knowledge were collected using various methods and re-
sources. Published gene regulatory interactions were retrieved from the Pathway Studio data-
base [71]. All interactions in that database have been identified with the help of automatic
text mining, which represents a rapid alternative approach to comprehensive manual literature
research. Interactions derived from Pathway Studio can be considered of high quality, since sci-
entific literature is in general a reliable resource and the false positive rate is reported be about
10% [71]. Because of the few number of ultimately used regulatory interactions, the automatically
found text parts were manually checked and additional information such as binding site locations
were extracted from the publications. Furthermore, prediction of transcription factor binding
sites (TFBS) was performed in order to obtain additional data about potential TF interactions.
TFBS were predicted using the toolbox RSAT and position weight matrices (PWMs), which
represent experimentally determined binding motifs of transcription factors, from the Transfac
database V10 [72, 73]. For three transcription factors (SOX9, MEF2C, MSX1), which are dif-
ferentially expressed during chondrogenic differentiation, corresponding PWMs were available in
the database. Promoter sequences of the analysed network genes were extracted from the human
genome sequence GRCh37 stored in Ensembl [74]. Since the length of the promoter or regulatory
upstream region of a gene is not defined, proximal binding sites in the region of 1000 base pairs
upstream from transcription start were considered. The main problem of TFBS prediction is due
to the short length and heterogeneous conservation of the binding motifs, which make it difficult
to distinguish between a random and a functional sequence. The toolbox RSAT addresses this
issue by employing a background nucleotide distribution to assess the significance of the detected
TFBS and thereby reduces the number of false positive matches. For binding site detection, a
stringent p-value cutoff was applied in order to ensure a high quality of the found sites. In sum-
mary, the identification of DNA sequence sites which can be detected by transcription factors is
a wide field of bioinformatic research. This thesis applied a suitable tool on genomic sequence
data to generate prior knowledge for the task of network inference.

Furthermore, predictions about miRNA target genes are supplied by various resources including
TargetScan, Miranda, miRBase and MirTarget2 [21, 75–77]. The associated target prediction
algorithms employ diverse criteria, such as sequence complementarity and evolutionary conser-
vation to improve their prediction quality. The enormous number of miRNA target predictions
represents a tremendous data resource to initiate miRNA investigations. However, it is difficult
to judge how to proceed with the heterogeneity and low specificity of the supplied data [78]. In
a preliminary step, predicted interactions which were detected by just one resource were elim-
inated, i.e. each considered miRNA target prediction occurred in at least 2 of the 5 available
databases. The resulting interaction set comprised about a fifth of the total set. MiRNAs are
known for their regulatory effects by translational repression and transcript degradation [22]. The
latter effect was investigated with the help of the available microarray data for both miRNAs
and mRNAs. If a relation is functional, one would expect a negative correlation of the pre-
dicted pair. This assumption was confirmed by [79] who successfully identified miRNA targets
by correlation. Therefore, Pearson correlation was applied in order to identify highly correlated
miRNA target predictions. The selection resulted in four miRNA target gene predictions, which
are most reliable according to the analysed expression data. On the one hand this series of
selection criteria has dramatically limited the analysis of potential miRNAs and their associated
target genes. On the other hand, this result includes only hypotheses of high reliability, which
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represents meaningful prior knowledge for the network inference.

Overall, the combination of diverse prior knowledge of different reliability was the focus of this
thesis to provide useful additional data for the task of network inference. Three different types
of prior knowledge were applied: literature knowledge, predicted binding sites of transcription
factors and miRNA target interactions. Clearly, the first source of information is most reliable
as it represents experimental findings from scientific literature. Predicted interactions reflect
significant findings of the prediction method which is based on previous biological findings. Even
though the performance of the applied methods has been evaluated in previous publications,
they are associated with a certain false positive rate. In case of predicted miRNA target genes,
the number of predictions was markedly decreased by only considering consistently found inter-
actions. Eventually, network inference provides an approach to further confirm or reject those
interactions on the basis of further experimental data. Therefore, combination of heterogeneous
prior knowledge represents a reasonable way to augment the process of network inference.

4.3.4 Dynamic modelling of chondrogenesis

In this thesis, network inference was applied to infer regulatory networks for hMSC which undergo
chondrogenic differentiation. Two network models (MULTI-CHONDRO, MIRNA-CHONDRO)
have been presented, which describe different aspects in the regulation of chondrogenesis and
also have a different purpose. Both models were inferred using the NetGenerator V2.0 and are
therefore based on a system of ODEs. First of all, the common network inference strategy and
the related issues will be discussed. Generally, those issues also apply to any network inference
task which is based on microarray data. Subsequently, this subsection focuses on the individual
behaviour and purpose of each model.

In the process of network model generation, several efforts were made in order to obtain a
network model of high quality including (1) the reliable gene expression estimation using an
updated CDF and the normalisation of microarray data, (2) the balance between network size
and available data, (3) the use of additional biological knowledge and (4) the robustness valid-
ation on the basis of data resampling. One inherent problem of network structure optimisation
is the immense number of possible combinations. Particularly, the number of possible network
structures grows exponentially with the number of included network nodes. The existence of
many alternative network structures, which explain the underlying time series data, can hamper
the NetGenerator heuristic to infer a stable network result. To avoid or at least minimise such
effects, statistical and biological selection criteria were combined to identify network components
(genes and miRNAs) which are most suitable for network inference. The main selection strategy
involved a differential expression analysis, as discussed in section 4.2.

Additionally, genes which encode for TFs were selected in the construction of both chondro-
genesis models. A functional category from Gene Ontology was used to identify those DEGs
which encode for transcription factors and are characterised by sequence-specific DNA binding
activity. There are at least two reasons which make transcription factor genes ideal candidates
for network inference. One relates to the interpretation of inferred GRNs, which is generally
difficult because network connections generally indicate rather indirect relationships between the
connected nodes. In comparison, TF gene to target gene interactions can be interpreted as direct
relationships in which the active TF is involved in the direct regulation of the target gene by
promoter binding. Apparently, this interpretation is based on the assumption that the changed
TF gene expression results in the change of TF activity. In the analysis of both models, most of
the included TFs were found to be associated with hMSC differentiation in the literature, which
indicates the activity of those regulators. On the other hand, active TFs might not be identified
by differential expression analysis if they are primarily regulated by post-translational modifica-
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tion. One example is the SOX9 antagonist RUNX2, which is not differentially expressed in any of
the analysed time series, but is well-known to be active and controlled on the post-translational
level [80]. Those factors should be taken into account for a more complete modelling of the
underlying regulation process. There are specialised modelling strategies which address the issue
of transcriptionally silent TF, for example TILAR and ExTILAR [40, 41]. Their approach im-
plements a template network, which can include unmeasured TF nodes, and is based on specific
prior knowledge about TF binding interactions. Therefore, knowledge data and gene expression
data is combined in a very elegant way to extend the scope of the resulting network.

Overall, the selection of genes using statistical criteria and TF annotation resulted in the small-
scale character of the presented network models, which consist of less than about twenty nodes
per network. Since additional biological knowledge was available from diverse sources, this data
was used in the network inference by means of soft integration and for the evaluation of the res-
ulting network model. The last common concept applied in network inference with NetGenerator
considers the computational validation of the inferred model. Generally, NetGenerator inference
primarily results in one model without any information about the variance of the inferred model
connections. This can be disadvantageous if the inferred connections are due to noise i.e. do
not reflect a biological change in expression. Since microarray data have been employed, the
appearance of noise in the data is likely. Therefore, it is important to deal with such effects
to avoid a negative impact on the result. Both inferred network models were computationally
validated by a resampling approach. This approach was based on the random perturbation of
the input time series data using Gaussian noise. A similar approach was used by [38,81] in their
validation. The repeated resampling and model inference led to occurrence frequencies for each
connection of the initial model. Those frequency values were interpreted as scores which imply a
ranking of the network connections. Connections which attained higher scores can be considered
more stable and therefore more reliable. With respect to experimental validation, those scores
can help to select reliable hypotheses from the network, which represents the ultimate goal of
network inference. From both models, hypotheses with acceptable scores and high biological
plausibility were selected.

After the common steps in the inference of both models, individual features and the inter-
pretation of both models will be discussed. The inference of the MULTI-CHONDRO model
illustrated the ability of the novel NetGenerator tool to reconstruct a biologically relevant multi-
stimuli model from multi-experiment data. In comparison to the computationally generated
benchmark models, this dataset included microarray time series data from an induced biological
process. Differences in the gene expression datasets are explained by two inputs, which corres-
pond to the applied growth factors TGF-beta1 and BMP2. While the first dataset represents
the expression levels after TGF-beta1 stimulation, the second dataset contains the effects of
combined stimulation with TGF-beta1 and BMP2. Simultaneous network inference from both
datasets demonstrated NetGenerator’s ability to integrate multiple experimental data into one
resulting model. While the TGF-beta1 input is responsible for inducing the dynamics of the first
dataset as well as partially for the second dataset, the BMP2 stimulus accounts for the significant
higher upregulation in the second dataset.

The focus of the model is the regulation of specific transcription factors (SOX9, MEF2C, MSX1,
TRPS1, SATB2) and their activation by the two stimuli. All five were previously found to
be active during hMSC differentiation [63, 82–85]. According to the time series data, they can
be discriminated into early activated factors (SOX9, MSX1) and late factors (TRPS1, SATB2,
MEF2C). The central purpose of the network model is to propose gene regulation hypotheses
which are relevant in the process of chondrogenic differentiation. Particularly, this includes reg-
ulatory events which have an influence on the expression of the three essential chondrogenic
marker genes (COL2A1, ACAN, COL10A1). With regard to the applied prior knowledge, the
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network model contains connections which represent literature knowledge as well as connec-
tions which represent regulatory hypotheses that are associated with a potential transcription
factor binding site. The latter type of knowledge provides valuable links in the interpretation
of the model. For example, given the knowledge that SOX9 is the central regulatory factor in
chondrogenesis and TRPS1 is known to promote chondrogenic differentiation via MSX1, the
TFBS-supported hypothesis that SOX9 regulates TRPS1 appears to be relevant and interesting.
Similarly, downregulation of SOX9 by the late transcription factor MEF2C can be interpreted
as a negative feedback of the differentiation process to initiate cellular hypertrophy. MEF2C is
known to control chondrogenic hypertrophy, while SOX9 is rather associated with the early stages
of chondrocyte differentiation [82]. Taken together, the MULTI-CHONDRO model showed that
network inference from multiple microarray datasets is feasible and that the interpretation of
the resulting network leads to interesting regulatory hypotheses about the underlying biological
process. Further experiments are required to verify those findings.

In contrast, the MIRNA-CHONDRO network model includes only one input stimulus, which
represents the combined action of TGF-beta1 and BMP2. This is due to the provided miRNA
time series data, which is available for TGF-beta1+BMP2 stimulation only. Considering the net-
work components, the miRNA network model focused on the regulation of transcription factors by
specific miRNAs. Transcription factors were previously found to be significantly over-represented
targets of miRNAs [86]. Interestingly, apart from the miRNAs, all considered network genes were
also part of the MULTI-CHONDRO model. However, in this model, the main objective was to
integrate miRNA and mRNA expression data into a single network inference. Concerning the
dynamic behaviour of the miRNAs, all four are ultimately down-regulated either by the stim-
ulus or a transcription factor. The transcription factors SOX9, TRPS1 and MEF2C have an
influence on the expression of the three chondrogenic markers (COL2A1, ACAN, COL10A1). A
miRNA-dependent modulation of transcription factor gene expression which in turn changes the
expression of a chondrogenesis marker gene reflects an interesting regulatory hypothesis. Previ-
ous studies have already described the impact of other miRNAs on the expression of SOX9 and
TRPS1 in the context of skeletal development [87,88].

According to the model, the stimulus-driven downregulation of miR-524-5p leads to the ac-
tivation of SOX9 expression and therefore enables chondrogenic differentiation, which includes
the activation of cartilage-forming genes. This model hypothesis was found to be most interest-
ing, especially because miR-524-5p shows opposite regulation during osteogenic and adipogenic
hMSC differentiation. Such behaviour indicates that miR-524-5p may be involved in the process
of lineage commitment. To verify the model predictions, additional experiments were performed
which overexpressed the concentration of miR-524-5p and monitored the response of the poten-
tially affected downstream genes (SOX9, COL2A1, ACAN, COL10A1). Overall, the effect could
be demonstrated by significant downregulation of the analysed genes for varying miR-524-5p
concentration, whereas control experiments did not show this effect. Consequently, the integ-
rated network inference using NetGenerator V2.0 resulted in the discovery of a so-far unknown
regulation, which might play a role in the process of chondrogenesis.

4.4 Future perspectives

Consideration of data from multiple experiments which analyse multiple stimuli was found to
extend interpretability and reliability of the inferred network. Apart from experiments which
are based on external stimulations, there are also studies which investigate the effects of genetic
perturbations, such as knock-down or knock-out of specific genes. The automatic integration of
heterogeneous data including data from diverse types of perturbation experiments with NetGen-
erator is a promising and challenging future task. Another more apparent issue to be addressed is
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the relatively time-consuming step of prior knowledge collection. Particularly, predicted binding
sites of transcription factors can be stored in a database attached to NetGenerator to circumvent
the repeated application of prediction tools. This would minimise the time needed for obtaining
this data. Additionally, this thesis applied one tool (RSAT) for prediction of binding sites, but
there are various other powerful tools available which could be combined to enhance the reliab-
ility of the detected binding sites.

With regard to the modelling of chondrogenesis, the proposed network models focus on the
effect of differentially expressed transcription factors. Future modelling needs to include essen-
tial regulators whose dynamical behaviour is not reflected on the transcriptional level. To solve
this issue, one could take advantage of an advanced modelling concept, which allows for integ-
ration of unmeasured network nodes. More preferable would be the application of data that
measures transcription factor activity, such as protein phosphorylation measurements.

The inference of regulatory networks which include miRNA nodes to investigate miRNA tar-
get gene interactions was found to be a very promising. In the presented modelling, the selection
procedure involved several criteria that resulted in very few miRNA nodes. Application of less
stringent criteria can lead to more comprehensive models which provide information about gen-
eral characteristics of miRNA regulation and a better understanding about how chondrogenesis
is controlled by miRNAs.
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Chapter 5

Summary

Application of human mesenchymal stem cells, which can be extracted from a variety of adult
tissues such as the bone marrow, represents a promising approach in the field of regenerative
medicine. Adult stem cells have preserved their multi-potent differentiation capability, i.e. can
still differentiate into multiple cell types. Specific stimulation activates the commitment of the
cells to a certain cellular lineage. Depending on the applied experimental conditions, this can
give rise to chondrocytes, osteocytes or adipocytes. Investigation of the underlying biological
processes which induce the observed cellular differentiation is essential to efficiently generate
specific tissues for therapeutic purposes. A particular issue is the analysis of the differentiation
performance upon treatment with different combination of molecules. A large-scale gene ex-
pression study was conducted to address those questions. Upon treatment with diverse stimuli,
gene expression levels of cultivated human mesenchymal stem cells were monitored using time
series microarray experiments for three lineages (chondro, osteo, adipo). The chosen time points
covered the cellular response from the early undifferentiated stage until late terminal differenti-
ation of the cells. On the basis of specific marker genes, differentiation progress of the analysed
cells could be observed.

Analysis of microarray data involved a series of procedures including data pre-processing, gene
selection and time series modelling. The initial task in pre-processing of microarray data from
Affymetrix GeneChips applied an updated chip definition file. Those alternative microarray an-
notations claim to improve the estimation of gene expression by redefinition of the probe-sets.
To evaluate the performance of four probe-set annotations, pre-processed microarray data were
compared to data from qRT-PCR experiments. As a result, one annotation was found to per-
form best and was therefore used in this work. In the subsequent analysis, differentially expressed
genes were identified, which are regulated during the differentiation process and helped to dis-
tinguish differentiation stages. Furthermore, expression of differentiation regulators and marker
genes was found to be accelerated in case of the most efficient experimental stimulation. Further
analysis aimed at a more precise understanding of the underlying gene regulation.

Application of gene network inference is a common approach to identify the regulatory de-
pendencies among a set of investigated genes. The general aim is to understand the complex
behaviour of gene regulation and how this gives rise to the observed expression changes. There
are various network inference approaches which apply different mathematical concepts to learn
the network structure from experimental data. Frequently, such reconstruction of the underlying
network structure is based on microarray data. This thesis applies the NetGenerator V2.0 tool,
which is capable to deal with multiple time series data, which investigates the effect of multiple
external stimuli. In a system biological view, those data are based on the same biological sys-
tem under different environmental conditions. The applied model is based on a system of linear
ordinary differential equations. Model parameters are optimised to reproduce the given time



102 Summary

series datasets and to describe the underlying gene regulatory network. Since this model optim-
isation represents a combinatorial challenge, NetGenerator applies a heuristic search strategy to
identify the optimal model parameters. Several procedures in the inference process, including
pre-processing, optimisation and visualisation, were adapted in this new version in order to allow
for the integration of multiple datasets. The inference result is a single network which contains
an individual input node for each of the associated experimental stimuli and therefore allows for
cross-talk analysis among the inputs.

Three different cross-talk benchmark examples were generated in silico in order to evaluate the
performance of the NetGenerator V2.0 tool. Inference of the examples was accomplished with
high accuracy, even though the applied time series were sparsely sampled and perturbed with
artificial noise. In one case, network inference quality improved due to the application of multiple
datasets. Afterwards, network inference was applied on the given multi-experiment microarray
data of mesenchymal stem cells, which are stimulated to differentiate towards chondrocytes.
This task involved the selection of an adequate number of network nodes and the collection of
additional biological knowledge about known and predicted regulatory interactions among the
components. Since the underlying regulatory network is unknown, the resulting chondrogenesis
model was evaluated on the basis of several features including the model adaptation to the data,
total number of connections, proportion of connections associated with prior knowledge and the
model stability in a resampling procedure. Altogether, the proposed chondrogenesis model was
found to have a high quality and includes interesting hypotheses about specific gene regulation
in the differentiation process. Generally, NetGenerator V2.0 has provided an automatic and ef-
ficient way to integrate experimental datasets and to enhance the interpretability and reliability
of the resulting network.

In a second chondrogenesis model, the influence of miRNAs on the differentiation process was
investigated. On the basis of miRNA microarray data, this work demonstrated the integration
of mRNA and miRNA time series expression data for the purpose of network inference. An
initial challenge was to identify the most interesting miRNAs from the microarray dataset. A
series of procedures was applied including differential expression analysis, functional annotation,
miRNA target gene prediction and miRNA-mRNA time series correlation. The resulting net-
work nodes included four miRNAs, their predicted target genes and chondrogenic differentiation
marker genes. Similarly to the multi-stimuli chondrogenesis model, evaluation was based on the
quality of the data reproduction, the number of total / prior knowledge connections and stability.
In a subsequent validation experiment, one hypothesis of the model was verified by overexpres-
sion experiments, which demonstrated the negative effect of miR-524-5p on downstream genes
including the transcription factor SOX9 and the marker genes COL2A1, COL10A1 and ACAN.
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Chapter 6

Zusammenfassung

Die Verwendung von humanen mesenchymalen Stammzellen, welche aus einer Vielzahl von adul-
ten Geweben, zum Beispiel dem Knochenmark, gewonnen werden können, ist ein vielverspre-
chender Ansatz im Gebiet der regenerativen Medizin. Adulte Stammzellen haben ihre Fähigkeit
zur multipotenten Differenzierung erhalten, d.h. sie können in verschiedene Zelltypen differenzie-
ren. Die Stimulation mit spezifischen Molekülen aktiviert den Differenzierungsprozess der Zellen
in Richtung einer bestimmten Zelllinie. Abhängig von den angewandten experimentellen Be-
dingungen, können Chondrozyten, Osteozyten oder Adipozyten entstehen. Die Untersuchung
der ablaufenden biologischen Prozesse, welche die beobachtete Zelldifferenzierung bewirken, ist
entscheidend um spezielle Gewebetypen für therapeutische Zwecke effizient herzustellen. Ein
spezielles Problem ist die Analyse der Differenzierungsleistung nach Behandlung mit verschiede-
nen Kombinationen von Molekülen. Eine umfangreiche Untersuchung der Genexpression wurde
durchgeführt, um diese Fragestellungen zu untersuchen. Genexpression wurde nach unterschied-
licher Behandlung von kultivierten humanen mesenchymalen Stammzellen gemessen. Es wurden
Zeitreihenexperimente mit Mikroarrays für drei Zelllinien (Chondro, Osteo und Adipo) durchge-
führt. Die gewählten Zeitpunkte umfassten die zelluläre Antwort vom frühen undifferenzierten
Stadium bis zur späten terminalen Differenzierung der Zellen. Mit Hilfe von spezifischen Mar-
kergenen konnte der Differenzierungsverlauf der untersuchten Zellen beobachtet werden.

Die Untersuchung der erzeugten Mikroarraydaten umfasste eine Reihe von Analyseprozeduren,
inklusive Datenvorverarbeitung, Genselektion und Zeitreihenmodellierung. Der erste Schritt in
der Vorverarbeitung von Mikroarraydaten von Affymetrix GeneChips beinhaltete die Verwen-
dung einer aktualisierten “Chip Definition File”. Diese alternativen Annotationsdateien für Mi-
kroarrays behaupten die Genexpressionsschätzung durch eine Neudefinition der Probesets zu
verbessern. Für die Evaluation von vier verschiedenen Probesetannotationen wurden vorverar-
beitete Mikroarraydaten mit Daten von qRT-PCR Experimenten verglichen. Eine der untersuch-
ten Annotationen erreichte die besten Ergebnisse und wurde deshalb in dieser Arbeit verwendet.
In der folgenden Untersuchung wurden differentiell exprimierte Gene, welche während des Dif-
ferenzierungsprozesses reguliert wurden, identifiziert und unterstützten die Unterscheidung von
verschiedenen Differenzierungsstadien. Weiterhin wurde entdeckt, dass die Expression von Diffe-
renzierungsregulatoren und Markergenen im Falle der wirkungsvollsten experimentellen Stimu-
lierung beschleunigt wurde. Weitere Untersuchungen zielten auf ein genaueres Verständnis der
zugrunde liegenden Genregulation ab.

Die Inferenz von genregulatorischen Netzwerken ist ein verbreiteter Ansatz um regulatorische Ab-
hängigkeiten zwischen einer Menge von untersuchten Genen zu finden. Das generelle Ziel ist das
komplexe Verhalten der Genregulation zu verstehen und herauszufinden wie dieses zu den beob-
achteten Expressionsänderungen führt. Es gibt zahlreiche Ansätze zur Netzwerkinferenz, welche
verschiedene mathematische Konzepte einsetzen um die Netzwerkstruktur aus experimentellen
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Daten zu lernen. Häufig basiert diese Rekonstruktion des Netzwerkes auf Mikroarraydaten. Diese
Doktorarbeit nutzt erstmalig das Programm NetGenerator V2.0, welches in der Lage ist mit mul-
tiplen experimentellen Daten umzugehen, welche den Effekt von multiplen externen Stimulierun-
gen untersuchen. Aus systembiologischer Sicht representieren solche Daten dasselbe biologische
System, unter verschiedenen Umgebungsbedingungen. Das verwendete Modell basiert auf einem
System von linearen gewöhnlichen Differentialgleichungen. Modellparameter werden optimiert
um die vorliegenden Zeitreihendaten nachzubilden und um das zugrunde liegende genregula-
torische Netzwerk zu beschreiben. Da diese Modelloptimierung ein kombinatorisches Problem
darstellt, verwendet NetGenerator eine heuristische Suchstrategie um die optimalen Modellpara-
meter zu identifizieren. Mehrere Prozeduren des Inferenzprozesses einschließlich Vorverarbeitung,
Optimierung und Visualisierung wurden in dieser neuen Version angepasst um die Integration
von mehreren Datensätzen zu ermöglichen. Das Ergebnis der Inferenz ist ein Netzwerk, welches
für jeden assoziierten experimentellen Stimulus einen Eingangsknoten enthält und daher eine
Crosstalk-Analyse zwischen den Eingangsknoten ermöglicht.

Drei verschiedene Crosstalk-Beispiele wurden in silico generiert um die Leistung von NetGene-
rator V2.0 zu evaluieren. Diese Beispielnetzwerke wurden mit hoher Genauigkeit rekonstruiert,
obwohl die verwendeten Zeitreihen wenig Datenpunkte enthielten und mit künstlichem Rauschen
gestört waren. In einem Fall konnte gezeigt werden, dass sich die Qualität der Netzwerkinferenz
durch die Verwendung von mehreren Datensätzen verbesserte. Danach wurde Netzwerkinferenz
auf die vorliegenden Mikroarraydaten von mesenchymalen Stammzellen, welche zur chondroge-
nen Differenzierung stimuliert wurden, angewandt. Diese Aufgabe umfasste die Auswahl einer
angemessenen Zahl von Netzwerkknoten und die Zusammentragung von biologischem Wissen
über regulatorische Interaktionen zwischen den Komponenten. Da das zugrunde liegende regu-
latorische Netzwerk unbekannt ist, wurde das resultierende Chondrogenese-Modell auf der Ba-
sis von verschiedenen Merkmalen bewertet: Modellanpassung an die Daten, Gesamtanzahl der
Verbindungen, Anteil der Verbindungen welche Vorwissen widerspiegeln und die Modellstabili-
tät mittels Resampling. Zusammenfassend hat das vorgestellte Chondrogenese-Modell eine hohe
Qualität und beinhaltet interessante Hypothesen über die spezifische Genregulation im Differen-
zierungsprozess.

In einem zweiten Chondrogenese-Modell wurde der Einfluss von miRNAs auf den Differenzie-
rungsprozess untersucht. Auf der Grundlage von miRNA Mikroarraydaten konnte diese Arbeit
die Anwendung von Netzwerkinferenz auf kombinierte mRNA und miRNA Zeitreihendaten zei-
gen. Eine initiale Herausforderung war die Identifizierung der interessantesten miRNAs aus dem
Mikroarraydatensatz. Eine Reihe von Prozeduren wurde angewandt, einschließlich einer Analyse
der differentiellen Expression, funktioneller Annotation, Vorhersage von miRNA Zielgenen und
Korrelation von miRNA-mRNA Zeitreihen. Die resultierenden Netzwerkknoten enthielten vier
miRNAs, ihre vorhergesagten Zielgene und Markergene der chondrogenen Differenzierung. Wie
beim Chondrogenese-Modell mit multiplen Eingangsknoten basierte die Bewertung des Modells
auf der Qualität der Datenwiedergabe, der Kantengesamtanzahl, der Anzahl von Vorwissenskan-
ten und der Stabilität. In einem anschließenden Validierungsexperiment konnte eine Modellhy-
pothese mittels Überexpression verifiziert werden. Die Experimente zeigten den negativen Effekt
einer miRNA (miR-524-5p) auf Zielgene, einschließlich den Transkriptionsfaktor SOX9 und die
Markergene COL2A1, COL10A1 und ACAN.
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Abbreviations

CDF Chip Definition File

DEG Differentially Expressed Gene

FCT Full Cross-Talk

FDR False Discovery Rate

GEO Gene Expression Omnibus

GRN Gene Regulatory Network

hMSC Human Mesenchymal Stem Cells

LCT Limited Cross-Talk

LIMMA Linear Models for MicroArray data

LNA Locked Nucleic Acid

MAS5 MicroArray Suite 5.0

miRNA microRNA

NCT No Cross-Talk

ODE Ordinary Differential Equation

PWM Position Weight Matrix

qRT-PCR quantitative Real-Time Polymerase Chain Reaction

RMA Robust Multichip Average

RNA RiboNucleic Acid

RSAT Regulatory Sequence Analysis Tools

SAM Significance Analysis of Microarrays

TF Transcription Factor

TFBS Transcription Factor Start Site
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