5 research outputs found

    Application of Statistical Indicators for Digital Image Analysis and Segmentation in Sorting of Agriculture Products

    Get PDF
    Food processing industry is moving forward to a full automation of all processes, especially in technological line segments which represent critical control points of food safety. One of these points is color sorting by using machine vision, where inappropriate products are removed. Most important product appearance attributes are color and texture. During food processing, the product is captured by optical devices, mostly color cameras and lasers. The aim of this paper is to investigate new eligibility criteria for digital image segmentation by using only image from the camera. The goal is to describe the texture of the product, based on chosen mathematical measures, and to allow for recognition and then classification according to the predefined range of values in an appropriate class. Images of frozen raspberry were used. Image analysis of color parameters in RGB color space and statistical tests to examine normality of data were carried out. Thereafter, one-way Anova and correlation analysis was performed. Statistically significant difference was found for the values of two indicators: entropy and new criteria were derived from standard deviation, as well as mean values of pixels for every channel, and marked as L. After determining the range of these criteria, a new algorithm was developed for image segmentation written in Matlab. One of the results of applying this algorithm is that more than 80% of good products were recognized

    Semi-Automatic Segmentation of Normal Female Pelvic Floor Structures from Magnetic Resonance Images

    Get PDF
    Stress urinary incontinence (SUI) and pelvic organ prolapse (POP) are important health issues affecting millions of American women. Investigation of the cause of SUI and POP requires a better understand of the anatomy of female pelvic floor. In addition, pre-surgical planning and individualized treatment plans require development of patient-specific three-dimensional or virtual reality models. The biggest challenge in building those models is to segment pelvic floor structures from magnetic resonance images because of their complex shapes, which make manual segmentation labor-intensive and inaccurate. In this dissertation, a quick and reliable semi-automatic segmentation method based on a shape model is proposed. The model is built on statistical analysis of the shapes of structures in a training set. A local feature map of the target image is obtained by applying a filtering pipeline, including contrast enhancement, noise reduction, smoothing, and edge extraction. With the shape model and feature map, automatic segmentation is performed by matching the model to the border of the structure using an optimization technique called evolution strategy. Segmentation performance is evaluated by calculating a similarity coefficient between semi-automatic and manual segmentation results. Taguchi analysis is performed to investigate the significance of segmentation parameters and provide tuning trends for better performance. The proposed method was successfully tested on both two-dimensional and three-dimensional image segmentation using the levator ani and obturator muscles as examples. Although the method is designed for segmentation of female pelvic floor structures, it can also be applied to other structures or organs without large shape variatio

    Semi-Automatic Segmentation of Normal Female Pelvic Floor Structures from Magnetic Resonance Images

    Get PDF
    Stress urinary incontinence (SUI) and pelvic organ prolapse (POP) are important health issues affecting millions of American women. Investigation of the cause of SUI and POP requires a better understand of the anatomy of female pelvic floor. In addition, pre-surgical planning and individualized treatment plans require development of patient-specific three-dimensional or virtual reality models. The biggest challenge in building those models is to segment pelvic floor structures from magnetic resonance images because of their complex shapes, which make manual segmentation labor-intensive and inaccurate. In this dissertation, a quick and reliable semi-automatic segmentation method based on a shape model is proposed. The model is built on statistical analysis of the shapes of structures in a training set. A local feature map of the target image is obtained by applying a filtering pipeline, including contrast enhancement, noise reduction, smoothing, and edge extraction. With the shape model and feature map, automatic segmentation is performed by matching the model to the border of the structure using an optimization technique called evolution strategy. Segmentation performance is evaluated by calculating a similarity coefficient between semi-automatic and manual segmentation results. Taguchi analysis is performed to investigate the significance of segmentation parameters and provide tuning trends for better performance. The proposed method was successfully tested on both two-dimensional and three-dimensional image segmentation using the levator ani and obturator muscles as examples. Although the method is designed for segmentation of female pelvic floor structures, it can also be applied to other structures or organs without large shape variatio

    Semi-Automatic Segmentation of Normal Female Pelvic Floor Structures from Magnetic Resonance Images

    Get PDF
    Stress urinary incontinence (SUI) and pelvic organ prolapse (POP) are important health issues affecting millions of American women. Investigation of the cause of SUI and POP requires a better understand of the anatomy of female pelvic floor. In addition, pre-surgical planning and individualized treatment plans require development of patient-specific three-dimensional or virtual reality models. The biggest challenge in building those models is to segment pelvic floor structures from magnetic resonance images because of their complex shapes, which make manual segmentation labor-intensive and inaccurate. In this dissertation, a quick and reliable semi-automatic segmentation method based on a shape model is proposed. The model is built on statistical analysis of the shapes of structures in a training set. A local feature map of the target image is obtained by applying a filtering pipeline, including contrast enhancement, noise reduction, smoothing, and edge extraction. With the shape model and feature map, automatic segmentation is performed by matching the model to the border of the structure using an optimization technique called evolution strategy. Segmentation performance is evaluated by calculating a similarity coefficient between semi-automatic and manual segmentation results. Taguchi analysis is performed to investigate the significance of segmentation parameters and provide tuning trends for better performance. The proposed method was successfully tested on both two-dimensional and three-dimensional image segmentation using the levator ani and obturator muscles as examples. Although the method is designed for segmentation of female pelvic floor structures, it can also be applied to other structures or organs without large shape variatio
    corecore