5,329 research outputs found

    Galerkin approximations for the optimal control of nonlinear delay differential equations

    Get PDF
    Optimal control problems of nonlinear delay differential equations (DDEs) are considered for which we propose a general Galerkin approximation scheme built from Koornwinder polynomials. Error estimates for the resulting Galerkin-Koornwinder approximations to the optimal control and the value function, are derived for a broad class of cost functionals and nonlinear DDEs. The approach is illustrated on a delayed logistic equation set not far away from its Hopf bifurcation point in the parameter space. In this case, we show that low-dimensional controls for a standard quadratic cost functional can be efficiently computed from Galerkin-Koornwinder approximations to reduce at a nearly optimal cost the oscillation amplitude displayed by the DDE's solution. Optimal controls computed from the Pontryagin's maximum principle (PMP) and the Hamilton-Jacobi-Bellman equation (HJB) associated with the corresponding ODE systems, are shown to provide numerical solutions in good agreement. It is finally argued that the value function computed from the corresponding reduced HJB equation provides a good approximation of that obtained from the full HJB equation.Comment: 29 pages. This is a sequel of the arXiv preprint arXiv:1704.0042

    Legendre-Tau approximations for functional differential equations

    Get PDF
    The numerical approximation of solutions to linear functional differential equations are considered using the so called Legendre tau method. The functional differential equation is first reformulated as a partial differential equation with a nonlocal boundary condition involving time differentiation. The approximate solution is then represented as a truncated Legendre series with time varying coefficients which satisfy a certain system of ordinary differential equations. The method is very easy to code and yields very accurate approximations. Convergence is established, various numerical examples are presented, and comparison between the latter and cubic spline approximations is made

    An isogeometric finite element formulation for phase transitions on deforming surfaces

    Get PDF
    This paper presents a general theory and isogeometric finite element implementation for studying mass conserving phase transitions on deforming surfaces. The mathematical problem is governed by two coupled fourth-order nonlinear partial differential equations (PDEs) that live on an evolving two-dimensional manifold. For the phase transitions, the PDE is the Cahn-Hilliard equation for curved surfaces, which can be derived from surface mass balance in the framework of irreversible thermodynamics. For the surface deformation, the PDE is the (vector-valued) Kirchhoff-Love thin shell equation. Both PDEs can be efficiently discretized using C1C^1-continuous interpolations without derivative degrees-of-freedom (dofs). Structured NURBS and unstructured spline spaces with pointwise C1C^1-continuity are utilized for these interpolations. The resulting finite element formulation is discretized in time by the generalized-α\alpha scheme with adaptive time-stepping, and it is fully linearized within a monolithic Newton-Raphson approach. A curvilinear surface parameterization is used throughout the formulation to admit general surface shapes and deformations. The behavior of the coupled system is illustrated by several numerical examples exhibiting phase transitions on deforming spheres, tori and double-tori.Comment: fixed typos, extended literature review, added clarifying notes to the text, added supplementary movie file

    Sampling from a system-theoretic viewpoint: Part II - Noncausal solutions

    Get PDF
    This paper puts to use concepts and tools introduced in Part I to address a wide spectrum of noncausal sampling and reconstruction problems. Particularly, we follow the system-theoretic paradigm by using systems as signal generators to account for available information and system norms (L2 and L∞) as performance measures. The proposed optimization-based approach recovers many known solutions, derived hitherto by different methods, as special cases under different assumptions about acquisition or reconstructing devices (e.g., polynomial and exponential cardinal splines for fixed samplers and the Sampling Theorem and its modifications in the case when both sampler and interpolator are design parameters). We also derive new results, such as versions of the Sampling Theorem for downsampling and reconstruction from noisy measurements, the continuous-time invariance of a wide class of optimal sampling-and-reconstruction circuits, etcetera

    Spectrum-based stability analysis and stabilization of a class of time-periodic time delay systems

    Full text link
    We develop an eigenvalue-based approach for the stability assessment and stabilization of linear systems with multiple delays and periodic coefficient matrices. Delays and period are assumed commensurate numbers, such that the Floquet multipliers can be characterized as eigenvalues of the monodromy operator and by the solutions of a finite-dimensional non-linear eigenvalue problem, where the evaluation of the characteristic matrix involves solving an initial value problem. We demonstrate that such a dual interpretation can be exploited in a two-stage approach for computing dominant Floquet multipliers, where global approximation is combined with local corrections. Correspondingly, we also propose two novel characterizations of left eigenvectors. Finally, from the nonlinear eigenvalue problem formulation, we derive computationally tractable expressions for derivatives of Floquet multipliers with respect to parameters, which are beneficial in the context of stability optimization. Several numerical examples show the efficacy and applicability of the presented results

    Fitted non-polynomial spline method for singularly perturbed differential difference equations with integral boundary condition

    Get PDF
    The aim of this paper is to present fitted non-polynomial spline method for singularly perturbed differential-difference equations with integral boundary condition. The stability and uniform convergence of the proposed method are proved. To validate the applicability of the scheme, two model problems are considered for numerical experimentation and solved for different values of the perturbation parameter, ε and mesh size, h. The numerical results are tabulated in terms of maximum absolute errors and rate of convergence and it is observed that the present method is more accurate and uniformly convergent for h ≥ ε where the classical numerical methods fails to give good result and it also improves the results of the methods existing in the literature
    • …
    corecore