11 research outputs found

    The use of interleaving to reduce the peak-to-average power ratio of an OFDM signal

    Get PDF
    An interleaver based technique for improving the peak-to-average power ratio (PAP) of an orthogonal frequency division multiplexing (OFDM) signal is presented. For this technique, K-1 random interleavers are used to produce K-1 permuted sequences from the same information sequence. PAPs of the permuted sequences and the original information sequence are then computed using K oversampled FFTs (OFFTs). The sequence with the lowest PAP is chosen for transmission. The complementary cumulative density function (CCDF), of PAP of an interleaved OFDM signal is observed. Results show that for 256 subcarriers and QPSK data symbols, even with K=2, the 0.1% CCDF is reduced by 1.3 dB and with K=4, is reduced by 2 dB. The 0.1% CCDF can be reduced by 3 dB and 0.01% CCDF by 4 dB at a cost of 16 OFFTs and a data rate loss of less than 0.8% with K-16. Further statistical improvement for the PAP is obtained by combining this approach and the partial transmit sequence (PTS) approach. This paper also proposes an adaptive approach to reduce the complexity of the interleaving technique

    Resource Allocation-Based PAPR Analysis in Uplink SCMA-OFDM Systems

    Get PDF
    Sparse code multiple access (SCMA) is a non-orthogonal multiple access (NOMA) uplink solution that overloads resource elements (RE's) with more than one user. Given the success of orthogonal frequency division multiplexing (OFDM) systems, SCMA will likely be deployed as a multiple access scheme over OFDM, called an SCMA-OFDM system. One of the major challenges with OFDM systems is the high peak-to-average power ratio (PAPR) problem, which is typically studied through the PAPR statistics for a system with a large number of independently modulated sub-carriers (SCs). In the context of SCMA systems, the PAPR problem has been studied before through the SCMA codebook design for certain narrowband scenarios, applicable more for low-rate users. However, we show that for high-rate users in wideband systems, it is more meaningful to study the PAPR statistics. In this paper, we highlight some novel aspects to the PAPR statistics for SCMA-OFDM systems that is different from the vast body of existing PAPR literature in the context of traditional OFDM systems. The main difference lies in the fact that the SCs are not independently modulated in SCMA-OFDM systems. Instead, the SCMA codebook uses multi-dimensional constellations, leading to a statistical dependency between the data carrying SCs. Further, the SCMA codebook dictates that an UL user can only transmit on a subset of the available SCs. We highlight the joint effect of the two major factors that influence the PAPR statistics-the phase bias in the multi-dimensional constellation design along with the resource allocation strategy. The choice of modulation scheme and SC allocation strategy are static configuration options, thus allowing for PAPR reduction opportunities in SCMA-OFDM systems through the setting of static configuration parameters. Compared to the class of PAPR reduction techniques in the OFDM literature that rely on multiple signalling and probabilistic techniques, these gains come with no computational overhead. In this paper, we also examine these PAPR reduction techniques and their applicability to SCMA-OFDM systems

    New methods of partial transmit sequence for reducing the high peak-to-average-power ratio with low complexity in the ofdm and f-ofdm systems

    Get PDF
    The orthogonal frequency division multiplexing system (OFDM) is one of the most important components for the multicarrier waveform design in the wireless communication standards. Consequently, the OFDM system has been adopted by many high-speed wireless standards. However, the high peak-to-average- power ratio (PAPR) is the main obstacle of the OFDM system in the real applications because of the non-linearity nature in the transmitter. Partial transmit sequence (PTS) is one of the effective PAPR reduction techniques that has been employed for reducing the PAPR value 3 dB; however, the high computational complexity is the main drawback of this technique. This thesis proposes novel methods and algorithms for reducing the high PAPR value with low computational complexity depending on the PTS technique. First, three novel subblocks partitioning schemes, Sine Shape partitioning scheme (SS-PTS), Subsets partitioning scheme (Sb-PTS), and Hybrid partitioning scheme (H-PTS) have been introduced for improving the PAPR reduction performance with low computational complexity in the frequency-domain of the PTS structure. Secondly, two novel algorithms, Grouping Complex iterations algorithm (G-C-PTS), and Gray Code Phase Factor algorithm (Gray-PF-PTS) have been developed to reduce the computational complexity for finding the optimum phase rotation factors in the time domain part of the PTS structure. Third, a new hybrid method that combines the Selective mapping and Cyclically Shifts Sequences (SLM-CSS-PTS) techniques in parallel has been proposed for improving the PAPR reduction performance and the computational complexity level. Based on the proposed methods, an improved PTS method that merges the best subblock partitioning scheme in the frequency domain and the best low-complexity algorithm in the time domain has been introduced to enhance the PAPR reduction performance better than the conventional PTS method with extremely low computational complexity level. The efficiency of the proposed methods is verified by comparing the predicted results with the existing modified PTS methods in the literature using Matlab software simulation and numerical calculation. The results that obtained using the proposed methods achieve a superior gain in the PAPR reduction performance compared with the conventional PTS technique. In addition, the number of complex addition and multiplication operations has been reduced compared with the conventional PTS method by about 54%, and 32% for the frequency domain schemes, 51% and 65% for the time domain algorithms, 18% and 42% for the combining method. Moreover, the improved PTS method which combines the best scheme in the frequency domain and the best algorithm in the time domain outperforms the conventional PTS method in terms of the PAPR reduction performance and the computational complexity level, where the number of complex addition and multiplication operation has been reduced by about 51% and 63%, respectively. Finally, the proposed methods and algorithms have been applied to the OFDM and Filtered-OFDM (F-OFDM) systems through Matlab software simulation, where F-OFDM refers to the waveform design candidate in the next generation technology (5G)

    Generalized discrete Fourier transform with non-linear phase : theory and design

    Get PDF
    Constant modulus transforms like discrete Fourier transform (DFT), Walsh transform, and Gold codes have been successfully used over several decades in various engineering applications, including discrete multi-tone (DMT), orthogonal frequency division multiplexing (OFDM) and code division multiple access (CDMA) communications systems. Among these popular transforms, DFT is a linear phase transform and widely used in multicarrier communications due to its performance and fast algorithms. In this thesis, a theoretical framework for Generalized DFT (GDFT) with nonlinear phase exploiting the phase space is developed. It is shown that GDFT offers sizable correlation improvements over DFT, Walsh, and Gold codes. Brute force search algorithm is employed to obtain orthogonal GDFT code sets with improved correlations. Design examples and simulation results on several channel types presented in the thesis show that the proposed GDFT codes, with better auto and cross-correlation properties than DFT, lead to better bit-error-rate performance in all multi-carrier and multi-user communications scenarios investigated. It is also highlighted how known constant modulus code families such as Walsh, Walsh-like and other codes are special solutions of the GDFT framework. In addition to theoretical framework, practical design methods with computationally efficient implementations of GDFT as enhancements to DFT are presented in the thesis. The main advantage of the proposed method is its ability to design a wide selection of constant modulus orthogonal code sets based on the desired performance metrics mimicking the engineering .specs of interest. Orthogonal Frequency Division Multiplexing (OFDM) is a leading candidate to be adopted for high speed 4G wireless communications standards due to its high spectral efficiency, strong resistance to multipath fading and ease of implementation with Fast Fourier Transform (FFT) algorithms. However, the main disadvantage of an OFDM based communications technique is of its high PAPR at the RF stage of a transmitter. PAPR dominates the power (battery) efficiency of the radio transceiver. Among the PAPR reduction methods proposed in the literature, Selected Mapping (SLM) method has been successfully used in OFDM communications. In this thesis, an SLM method employing GDFT with closed form phase functions rather than fixed DFT for PAPR reduction is introduced. The performance improvements of GDFT based SLM PAPR reduction for various OFDM communications scenarios including the WiMAX standard based system are evaluated by simulations. Moreover, an efficient implementation of GDFT based SLM method reducing computational cost of multiple transform operations is forwarded. Performance simulation results show that power efficiency of non-linear RF amplifier in an OFDM system employing proposed method significantly improved

    Frequency synchronization in multiuser OFDM-IDMA systems.

    Get PDF
    Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2013.Various multiuser schemes have been proposed to efficiently utilize the available bandwidth while ensuring an acceptable service delivery and flexibility. The multicarrier CDMA became an attractive solution to the major challenges confronting the wireless communication system. However, the scheme is plagued with multiple access interference (MAI), which causes conspicuous performance deterioration at the receiver. A low-complexity multiuser scheme called the Interleave Division Multiple Access (IDMA) was proposed recently as a capable solution to the drawback in the multicarrier CDMA scheme. A combined scheme of OFDM-IDMA was later introduced to enhance the performance of the earlier proposed IDMA scheme. The multicarrier IDMA scheme therefore combats inter-symbol interference (ISI) and MAI effectively over multipath with low complexity while ensuring a better cellular performance, high diversity order, and spectral efficiency. Major studies on the OFDM-IDMA scheme emphasis only on the implementation of the scheme in a perfect scenario, where there are no synchronization errors in the system. Like other multicarrier schemes, the OFDM-IDMA scheme however suffers from carrier frequency offset (CFO) errors, which is inherent in the OFDM technique. This research work therefore examines, and analyzes the effect of synchronization errors on the performance of the new OFDM-based hybrid scheme called the OFDM-IDMA. The design of the OFDM-IDMA system developed is such that the cyclic prefix duration of the OFDM component is longer than the maximum channel delay spread of the multipath channel model used. This effectively eliminates ISI as well as timing offsets in the system. Since much work has not been done hitherto to address the deteriorating effect of synchronization errors on the OFDM-IDMA system, this research work therefore focuses on the more challenging issue of carrier frequency synchronization at the uplink. A linear MMSE-based synchronization algorithm is proposed and implemented. The proposed algorithm is a non-data aided method that focuses on the mitigation of the ICI induced by the residual CFOs due to concurrent users in the multicarrier system. However, to obtain a better and improved system performance, the Kernel Least Mean Square (KLMS) algorithm and the normalized KLMS are proposed, implemented, and effectively adapted to combat the degrading influence of carrier frequency offset errors on the OFDM-IDMA scheme. The KLMS synchronization algorithm, which involves the execution of the conventional Least Mean Square (LMS) algorithm in the kernel space, utilizes the modulated input signal in the implementation of the kernel function, thereby enhancing the efficacy of the algorithm and the overall output of the multicarrier system. The algorithms are applied in a Rayleigh fading multipath channel with varying mobile speed to verify their effectiveness and to clearly demonstrate their influence on the performance of the system in a practical scenario. Also, the implemented algorithms are compared to ascertain which of these algorithms offers a better and more efficient system performance. Computer simulations of the bit error performance of the algorithms are presented to verify their respective influence on the overall output of the multicarrier system. Simulation results of the algorithms in both slow fading and fast fading multipath scenarios are documented as well

    Peak-to-Average Power Ratio Reduction of DOCSIS 3.1 Downstream Signals

    Get PDF
    Tone reservation (TR) is an attractive and widely used method for peak-to-average power ratio (PAPR) reduction of orthogonal frequency division multiplexing (OFDM) signals, where both transmitter and receiver agree upon a number of subcarriers or tones to be reserved to generate a peak canceling signal that can reduce the peak power of the transmitted signals. The tones are selected to be mutually exclusive with the tones used for data transmission, which allows the receiver to extract the data symbols without distortions. This thesis presents two novel PAPR reduction algorithms for OFDM signals based on the TR principle, which do not distort the transmitted signals. The first proposed algorithm is performed in the time domain, whereas the second algorithm is a new clipping-and-filtering method. Both algorithms consist of two stages. The first stage, which is done off-line, creates a set of canceling signals based on the settings of the OFDM system. In particular, these signals are constructed to cancel signals at different levels of maximum instantaneous power that are above a predefined threshold. The second stage, which is online and iterative, reduces the signal peaks by using the canceling signals constructed in the first stage. The precalculated canceling signals can be updated when different tone sets are selected for data transmission, accommodating many practical applications. Simulation results show that the proposed algorithms achieve slightly better PAPR reduction performance than the conventional algorithms. Moreover, such performance is achieved with much lower computational complexity in terms of numbers of multiplications and additions per iteration. Among the two proposed algorithms, the time-domain algorithm gives the best peak reduction performance but the clipping-and-filtering algorithm requires considerably less number of multiplications per iteration and can be efficiently implemented using the fast Fourier transform (FFT)/inverse fast Fourier transform (IFFT) structure

    Semi-blind channel estimation for multiuser OFDM-IDMA systems.

    Get PDF
    M. Sc. Eng. University of KwaZulu-Natal, Durban 2014.Over the last decade, the data rate and spectral efficiency of wireless mobile communications have been significantly enhanced. OFDM technology has been used in the development of advanced systems such as 3GPP LTE and terrestrial digital TV broadcasting. In general, bits of information in mobile communication systems are conveyed through radio links to receivers. The radio channels in mobile radio systems are usually multipath fading channels, which cause inter-symbol interference (ISI) in the received signal. The ability to know the channel impulse response (CIR) and Channel State Information (CSI) helps to remove the ISI from the signal and make coherent detection of the transmitted signal at the receiver end of the system easy and simple. The information about CIR and CSI are primarily provided by channel estimation. This thesis is focused on the development of multiple access communication technique, Multicarrier Interleave Division Multiple Access (MC-IDMA) and the corresponding estimation of the system channel. It compares various efficient channel estimation algorithms. Channel estimation of OFDM-IDMA scheme is important because the emphasis from previous studies assumed the implementation of MC-IDMA in a perfect scenario, where Channel State Information (CSI) is known. MC-IDMA technique incorporates three key features that will be common to the next generation communication systems; multiple access capability, resistance to multipath fading and high bandwidth efficiency. OFDM is almost completely immune to multipath fading effects and IDMA has a recently proposed multiuser capability scheme which employs random interleavers as the only method for user separation. MC-IDMA combines the features of OFDM and IDMA to produce a system that is Inter Symbol Interference (ISI) free and has higher data rate capabilities for multiple users simultaneously. The interleaver property of IDMA is used by MC-IDMA as the only means by which users are separated at the receiver and also its entire bandwidth expansion is devoted to low rate Forward Error Correction (FEC). This provides additional coding gain which is not present in conventional Multicarrier Multiuser systems, (MC-MU) such as Code Division Multiple Access (CDMA), Multicarrier-Code Division Multiple Access (MC-CDMA) systems, and others. The effect of channel fading and both cross-cell and intra-cell Multiple Access Interference (MAI) in MC-IDMA is suppressed efficiently by its low-cost turbo-type Chip-by-Chip (CBC) multiuser detection algorithm. We present the basic principles of OFDM-IDMA transmitter and receiver. Comparative studies between Multiple Access Scheme such as Frequency Division Multiple Access (FDMA), Time Division Multiple Access (TDMA), CDMA and IDMA are carried out. A linear Minimum Mean Square Error (MMSE)-based estimation algorithm is adopted and implemented. This proposed algorithm is a non-data aided method that focuses on obtaining the CSI, remove ISI and reduce the complexity of the MMSE algorithm. However, to obtain a better and improved system performance, an improved MMSE algorithm and simplified MMSE using the structured correlation and reduced auto-covariance matrix are developed in this thesis and proposed for implementation of semi-blind channel estimation in OFDM-IDMA communication systems. The effectiveness of the adopted and proposed algorithms are implemented in a Rayleigh fading multipath channel with varying mobile speeds thus demonstrating the performance of the system in a practical scenario. Also, the implemented algorithms are compared to ascertain which of these algorithms offers a better and more efficient system performance, and with less complexity. The performance of the channel estimation algorithm is presented in terms of the mean square error (MSE) and bit error rate (BER) in both slow fading and fast fading multipath scenarios and the results are documented as well

    Peak to average power ratio reduction and error control in MIMO-OFDM HARQ System

    Get PDF
    Currently, multiple-input multiple-output orthogonal frequency division multiplexing (MIMOOFDM) systems underlie crucial wireless communication systems such as commercial 4G and 5G networks, tactical communication, and interoperable Public Safety communications. However, one drawback arising from OFDM modulation is its resulting high peak-to-average power ratio (PAPR). This problem increases with an increase in the number of transmit antennas. In this work, a new hybrid PAPR reduction technique is proposed for space-time block coding (STBC) MIMO-OFDM systems that combine the coding capabilities to PAPR reduction methods, while leveraging the new degree of freedom provided by the presence of multiple transmit chairs (MIMO). In the first part, we presented an extensive literature review of PAPR reduction techniques for OFDM and MIMO-OFDM systems. The work developed a PAPR reduction technique taxonomy, and analyzed the motivations for reducing the PAPR in current communication systems, emphasizing two important motivations such as power savings and coverage gain. In the tax onomy presented here, we include a new category, namely, hybrid techniques. Additionally, we drew a conclusion regarding the importance of hybrid PAPR reduction techniques. In the second part, we studied the effect of forward error correction (FEC) codes on the PAPR for the coded OFDM (COFDM) system. We simulated and compared the CCDF of the PAPR and its relationship with the autocorrelation of the COFDM signal before the inverse fast Fourier transform (IFFT) block. This allows to conclude on the main characteristics of the codes that generate high peaks in the COFDM signal, and therefore, the optimal parameters in order to reduce PAPR. We emphasize our study in FEC codes as linear block codes, and convolutional codes. Finally, we proposed a new hybrid PAPR reduction technique for an STBC MIMO-OFDM system, in which the convolutional code is optimized to avoid PAPR degradation, which also combines successive suboptimal cross-antenna rotation and inversion (SS-CARI) and iterative modified companding and filtering schemes. The new method permits to obtain a significant net gain for the system, i.e., considerable PAPR reduction, bit error rate (BER) gain as compared to the basic MIMO-OFDM system, low complexity, and reduced spectral splatter. The new hybrid technique was extensively evaluated by simulation, and the complementary cumulative distribution function (CCDF), the BER, and the power spectral density (PSD) were compared to the original STBC MIMO-OFDM signal

    PAPR and ICI reduction techniques for OFDM based satellite communication systems

    Get PDF
    Multi-carrier systems such as orthogonal frequency division multiplexing (OFDM) are significantly affected by peak-to-average-power ratio (PAPR). Unfortunately, the high PAPR inherent to OFDM signals envelopes will occasionally drive high power amplifiers (HPAs) to operate in the nonlinear region of their characteristic curve. The nonlinearity of the HPA exhibits amplitude and phase distortions, which cause loss of orthogonality among the subcarriers (SCs), and hence, inter-carrier interference (ICI) is introduced in the transmitted signal. The ICI power is proportional to the amplitude of the signal at the amplifier input and it may cause a considerable bit error rate (BER) degradation. A plethora of research has been devoted to reduce the performance degradation due to the PAPR problem inherent to OFDM systems. Some of the reported techniques such as amplitude clipping have low-complexity; on the other hand, they suffer from various problems such as in-band distortion and out-of-band expansion. Signal companding methods have low-complexity, good distortion and spectral properties; however, they have limited PAPR reduction capabilities. Advanced techniques such as coding, partial transmit sequences (PTS) and selected mapping (SLM) have also been considered for PAPR reduction. Such techniques are efficient and distortionless, nevertheless, their computational complexity is high and requires the transmission of several side information (SI) bits. In this thesis, a new low-complexity scheme is proposed based on the PTS that employs two inverse fast Fourier transforms (IFFTs) and two circulant transform matrices, in order to reduce complexity and improve the system performance. Furthermore, the low-complexity scheme is simplified by omitting one of the circulant transform matrices in order to reduce both the computational complexity and the number of SI bits at the cost of a small reduction in PAPR and BER performance. It is well known that, accurate PAPR estimation requires oversampling of the transmitted signal, which in turn results in increased complexity. More importantly, minimising the PAPR does not necessarily minimise the distortion produced by the nonlinearity of the HPA. Therefore, minimising PAPR does not necessarily imply that the BER will be minimised too. Efficient and less complex schemes for BER reduction of OFDM systems in the presence of nonlinear HPA and/or carrier frequency offset (CFO) are proposed. These proposed techniques are based on predicting the distortion introduced by the nonlinearity of HPA and/or CFO. Subsequently, techniques such as the PTS and SLM are invoked to minimise the distortion and BER. Three distortion metrics are adopted in this thesis: inter-modulation distortion (IMD), peak interference-to-carrier ratio (PICR) and distortion-to-signal power ratio (DSR). Monte Carlo simulations will confirm that the DSR and PICR are more reliable than the PAPR and IMD for selecting the coefficients of the PTS and SLM to minimise the BER. Furthermore, complexity analyses demonstrate that the proposed schemes offer significant complexity reduction when compared to standard PAPR-based methods. A closed form solution for accurate BER for the OFDM signals perturbed by both the HPA nonlinearity and CFO was derived. Good agreement between the simulation results and the theoretical analysis can be obtained for different HPA parameters and CFOs. Finally, efficient approaches to reduce the impact of nonlinear power amplifiers with respect to the BER of OFDM systems are proposed. These are approaches based on: the well-established PAPR schemes, a power amplifier model and a simple single point cross correlator. The optimum phase sequence within the proposed approaches is selected by maximising the correlation between the input and output of the power amplifier model. Simulation results have confirmed that the BER using the proposed approaches is almost identical to the DSR, while the complexity is reduced significantly for particular system configurations.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore