155 research outputs found

    Fuzzy-logic framework for future dynamic cellular systems

    Get PDF
    There is a growing need to develop more robust and energy-efficient network architectures to cope with ever increasing traffic and energy demands. The aim is also to achieve energy-efficient adaptive cellular system architecture capable of delivering a high quality of service (QoS) whilst optimising energy consumption. To gain significant energy savings, new dynamic architectures will allow future systems to achieve energy saving whilst maintaining QoS at different levels of traffic demand. We consider a heterogeneous cellular system where the elements of it can adapt and change their architecture depending on the network demand. We demonstrate substantial savings of energy, especially in low-traffic periods where most mobile systems are over engineered. Energy savings are also achieved in high-traffic periods by capitalising on traffic variations in the spatial domain. We adopt a fuzzy-logic algorithm for the multi-objective decisions we face in the system, where it provides stability and the ability to handle imprecise data

    An Overview of Multi-Attribute Decision Making (MADM) Vertical Handover Using Systematic Mapping

    Get PDF
    The evolution of infotainment industries yet the advancement of cellular gadgets such as smartphones, tablets, and laptop had increased the request on cellular traffic demands. As a result, a Heterogeneous Wireless Network (HWN) has been introduced to fulfil users requests in having seamless mobility and better Quality of Services (QoS) for the users. A lot of research works have been done in order to provide a seamless connection to the users. Even though a lot of methods have been proposed, a Multi-Attribute Decision Making (MADM) has been seemed like a promising way due to its ability to evaluate many attributes simultaneously. Previously, many reviews based on MADM methods in a Heterogeneous Wireless Network provides a details review which required researchers time in order to determine the possible potential areas to be explored. Therefore, in this study, we present an overview of the MADM method in performing vertical handover via a systematic mapping method. This will enable future researchers to identify the trends and research opportunities within this area. This mapping study analysed 30 papers. Results from the study show eight main potential research issues can be explored by researchers, including normalisation, criteria weighting, ranking abnormality, network selection, and performance comparison between MADM algorithms, network selection for a group of calls, mobility patterns and handover triggering

    Trusted Network Selection using SAW and TOPSIS Algorithms for Heterogeneous Wireless Networks

    Full text link
    Seamless continuity is the main goal in fourth generation Wireless networks (FGWNs), to achieve this "HANDOVER" technique is used, when a mobile terminal(MT) is in overlapping area for service continuity, Handover mechanism are mainly used. In Heterogeneous wireless networks main challenge is continual connection among the different networks like WiFi, WiMax, WLAN, WPAN etc. In this paper, Vertical handover decision schemes are compared and Multi Attribute Decision Making (MADM) is used to choose the best network from the available Visitor networks (VTs) for the continuous connection by the mobile terminal. In our work we mainly concentrated to the handover decision phase and to reduce the processing delay in the period of handover. MADM algorithms SAW and TOPSIS where compared to reduce the processing delay by using NS2 to evaluate the parameters for processing delay.Comment: arXiv admin note: substantial text overlap with arXiv:1106.240

    Performance Comparison of MADM Algorithms for Network Selection in Heterogeneous Networks

    Get PDF
    Vertical handover is a need of present era of heterogeneous networks comprising different network technologies. Lot of quality of service (QoS) parameters, user�s preferences, network conditions and other parameters participate in selection of appropriate network among available networks. This multi- criteria nature of vertical handover verifiesapplicability of multiple attribute decision making (MADM) algorithms to be used for network selection in heterogeneous networks. In this work, six MADM algorithms SAW, MEW, TOPSIS, GRA, AHP and VIKOR have been implemented. Performance of these algorithms has beenanalyzed for handover latency,number of handovers and optimum network selection. It was concluded that VIKOR algorithm is able to provide compromised solution in the light of these parameters

    Network selection based on chi-square distance and reputation for internet of things

    Get PDF
    The internet of things (IoT) has become one of the most important technologies of the 21st century. The IoT environment is composed of heterogeneous IoT communication networks. These technologies are complementary and need to be integrated to meet the requirements of different types of IoT applications that require the mobility of the IoT device under different IoT communication networks. In this paper, the vertical handover decision method is considered to select the appropriate network among different IoT technologies. So, IoT devices, equipped with several radio technologies, can select the most suitable network based on several criteria like quality of service (QoS), cost, power, and security. In this work, a multi-attribute decision-making algorithm (MADM) based on techniques for order preference by similarity to an ideal solution (TOPSIS) that uses chi-square distance instead of Euclidean distance is proposed. The network reputation is added to reduce the average number of handoffs. The proposed algorithm was implemented to select the best technology depending on the requirements of the different IoT traffic classes. The obtained results showed that our proposition outperforms the traditional MADM algorithms

    Context-aware multi-attribute decision multi - attribute decision making for radio access technology selection in ultra dense network

    Get PDF
    Ultra Dense Network (UDN) is the extreme densification of heterogeneous Radio Access Technology (RAT) that is deployed closely in coordinated or uncoordinated manner. The densification of RAT forms an overlapping zone of signal coverage leading to the frequent service handovers among the RAT, thus degrading overall system performance. The current RAT selection approach is biased towards network-centric criteria pertaining to signal strength. However, the paradigm shift from network-centric to user-centric approach necessitates a multi-criteria selection process, with methodology relating to both network and user preferences in the context of future generation networks. Hence, an effective selection approach is required to avoid unnecessary handovers in RAT. The main aim of this study is to propose the Context-aware Multiattribute decision making for RAT (CMRAT) selection for investigating the need to choose a new RAT and further determine the best amongst the available methods. The CMRAT consists of two mechanisms, namely the Context-aware Analytical Hierarchy Process (CAHP) and Context-aware Technique for Order Preference by Similarity to an Ideal Solution (CTOPSIS). The CAHP mechanism measures the need to switch from the current RAT, while CTOPSIS aids in decision making to choose the best target RAT. A series of experimental studies were conducted to validate the effectiveness of CMRAT for achieving improved system performance. The investigation utilises shopping mall and urban dense network scenarios to evaluate the performance of RAT selection through simulation. The findings demonstrated that the CMRAT approach reduces delay and the number of handovers leading to an improvement of throughput and packet delivery ratio when compared to that of the commonly used A2A4-RSRQ approach. The CMRAT approach is effective in the RAT selection within UDN environment, thus supporting heterogeneous RAT deployment in future 5G networks. With context-aware selection, the user-centric feature is also emphasized

    Network Selection Problems - QoE vs QoS Who is the Winner?

    Get PDF
    In network selection problem (NSP), there are now two schools of thought. There are those who think using QoE (Quality of Experience) is the best yardstick to measure the suitability of a Candidate Network (CN) to handover to. On the other hand, Quality of Service (QoS) is also advocated as the solution for network selection problems. In this article, a comprehensive framework that supports effective and efficient network selection is presented. The framework   attempts to provide a holistic solution to network selection problem that is achieved by combining both of the QoS and QoE measures.   Using this hybrid solution the best qualities in both methods are combined to overcome issues of the network selection problem According to ITU-R (International Telecommunications Union – Radio Standardization Sector), a 4G network is defined as having peak data rates of 100Mb/s for mobile nodes with speed up to 250 km/hr and 1Gb/s for mobile nodes moving at pedestrian speed. Based on this definition, it is safe to say that mobile nodes that can go from pedestrian speed to speed of up to 250 km/hr will be the norm in future. This indicates that the MN’s mobility will be highly dynamic. In particular, this article addresses the issue of network selection for high speed Mobile Nodes (MN) in 4G networks. The framework presented in this article also discusses how the QoS value collected from CNs can be fine-tuned to better reflect an MN’s current mobility scenario

    Seamless Heterogeneous Handoff Based on SAP

    Get PDF
    Contemporarily there has been a number of techniques being suggested and used for heterogeneous handoff hitch. Different types of decision making methods are being implemented for handoff impediment. Mobile terminals progressing in neighbourhood will incur a handoff when its link capacity decreases below the threshold level. Various types of Multiple Attribute Decision Making methods have been exploited for handoff decision making. Here we have used a novel Reliable Seamless Handoff such as Simple Analytical Process method which uses Analytical Hierarchy Process for predicting the criterion weights and employed Simple Additive Weighting method for handoff decision making. Alternatives such as GSM, CDMA and EDGE networks are used. Data Rate, Packet Loss, Velocity, Bandwidth, Dwell time and Jitter are the parameters applied
    • …
    corecore