8,627 research outputs found

    The Directed Disjoint Shortest Paths Problem

    Get PDF
    In the k disjoint shortest paths problem (k-DSPP), we are given a graph and its vertex pairs (s_1, t_1), ...(s_k, t_k), and the objective is to find k pairwise disjoint paths P_1, ...P_k such that each path P_i is a shortest path from s_i to t_i, if they exist. If the length of each edge is equal to zero, then this problem amounts to the disjoint paths problem, which is one of the well-studied problems in algorithmic graph theory and combinatorial optimization. Eilam-Tzoreff (1998) focused on the case when the length of each edge is positive, and showed that the undirected version of 2-DSPP can be solved in polynomial time. Polynomial solvability of the directed version was posed as an open problem by Eilam-Tzoreff (1998). In this paper, we solve this problem affirmatively, that is, we give a first polynomial time algorithm for the directed version of 2-DSPP when the length of each edge is positive. Note that the 2 disjoint paths problem in digraphs is NP-hard, which implies that the directed 2-DSPP is NP-hard if the length of each edge can be zero. We extend our result to the case when the instance has two terminal pairs and the number of paths is a fixed constant greater than two. We also show that the undirected k-DSPP and the vertex-disjoint version of the directed k-DSPP can be solved in polynomial time if the input graph is planar and k is a fixed constant

    A Local-To-Global Theorem for Congested Shortest Paths

    Get PDF
    P_k such that each P_i is a shortest path from s_i to t_i, and every node in the graph is on at most c paths P_i, or reporting that no such collection of paths exists. When c = k, there are no congestion constraints, and the problem can be solved easily by running a shortest path algorithm for each pair (s_i,t_i) independently. At the other extreme, when c = 1, the (k,c)-SPC problem is equivalent to the k-Disjoint Shortest Paths (k-DSP) problem, where the collection of shortest paths must be node-disjoint. For fixed k, k-DSP is polynomial-time solvable on DAGs and undirected graphs. Amiri and Wargalla interpolated between these two extreme values of c, to obtain an algorithm for (k,c)-SPC on DAGs that runs in polynomial time when k-c is constant. In the same way, we prove that (k,c)-SPC can be solved in polynomial time on undirected graphs whenever k-c is constant. For directed graphs, because of our counterexample to the original theorem statement, our roundtrip local-to-global result does not imply such an algorithm (k,c)-SPC. Even without an algorithmic application, our proof for directed graphs may be of broader interest because it characterizes intriguing structural properties of shortest paths in directed graphs

    Counting Shortest Two Disjoint Paths in Cubic Planar Graphs with an NC Algorithm

    Get PDF
    Given an undirected graph and two disjoint vertex pairs s1,t1s_1,t_1 and s2,t2s_2,t_2, the Shortest two disjoint paths problem (S2DP) asks for the minimum total length of two vertex disjoint paths connecting s1s_1 with t1t_1, and s2s_2 with t2t_2, respectively. We show that for cubic planar graphs there are NC algorithms, uniform circuits of polynomial size and polylogarithmic depth, that compute the S2DP and moreover also output the number of such minimum length path pairs. Previously, to the best of our knowledge, no deterministic polynomial time algorithm was known for S2DP in cubic planar graphs with arbitrary placement of the terminals. In contrast, the randomized polynomial time algorithm by Bj\"orklund and Husfeldt, ICALP 2014, for general graphs is much slower, is serial in nature, and cannot count the solutions. Our results are built on an approach by Hirai and Namba, Algorithmica 2017, for a generalisation of S2DP, and fast algorithms for counting perfect matchings in planar graphs

    Shortest Odd Paths in Undirected Graphs with Conservative Weight Functions

    Full text link
    We consider the Shortest Odd Path problem, where given an undirected graph GG, a weight function on its edges, and two vertices ss and tt in GG, the aim is to find an (s,t)(s,t)-path with odd length and, among all such paths, of minimum weight. For the case when the weight function is conservative, i.e., when every cycle has non-negative total weight, the complexity of the Shortest Odd Path problem had been open for 20 years, and was recently shown to be NP-hard. We give a polynomial-time algorithm for the special case when the weight function is conservative and the set E−E^- of negative-weight edges forms a single tree. Our algorithm exploits the strong connection between Shortest Odd Path and the problem of finding two internally vertex-disjoint paths between two terminals in an undirected edge-weighted graph. It also relies on solving an intermediary problem variant called Shortest Parity-Constrained Odd Path where for certain edges we have parity constraints on their position along the path. Also, we exhibit two FPT algorithms for solving Shortest Odd Path in graphs with conservative weight functions. The first FPT algorithm is parameterized by ∣E−∣|E^-|, the number of negative edges, or more generally, by the maximum size of a matching in the subgraph of GG spanned by E−E^-. Our second FPT algorithm is parameterized by the treewidth of GG

    Parameterizing Path Partitions

    Full text link
    We study the algorithmic complexity of partitioning the vertex set of a given (di)graph into a small number of paths. The Path Partition problem (PP) has been studied extensively, as it includes Hamiltonian Path as a special case. The natural variants where the paths are required to be either \emph{induced} (Induced Path Partition, IPP) or \emph{shortest} (Shortest Path Partition, SPP), have received much less attention. Both problems are known to be NP-complete on undirected graphs; we strengthen this by showing that they remain so even on planar bipartite directed acyclic graphs (DAGs), and that SPP remains \NP-hard on undirected bipartite graphs. When parameterized by the natural parameter ``number of paths'', both SPP and IPP are shown to be W{1}-hard on DAGs. We also show that SPP is in \XP both for DAGs and undirected graphs for the same parameter, as well as for other special subclasses of directed graphs (IPP is known to be NP-hard on undirected graphs, even for two paths). On the positive side, we show that for undirected graphs, both problems are in FPT, parameterized by neighborhood diversity. We also give an explicit algorithm for the vertex cover parameterization of PP. When considering the dual parameterization (graph order minus number of paths), all three variants, IPP, SPP and PP, are shown to be in FPT for undirected graphs. We also lift the mentioned neighborhood diversity and dual parameterization results to directed graphs; here, we need to define a proper novel notion of directed neighborhood diversity. As we also show, most of our results also transfer to the case of covering by edge-disjoint paths, and purely covering.Comment: 27 pages, 8 figures. A short version appeared in the proceedings of the CIAC 2023 conferenc
    • …
    corecore