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Abstract
In the k disjoint shortest paths problem (k-DSPP), we are given a graph and its vertex pairs
(s1, t1), . . . , (sk, tk), and the objective is to find k pairwise disjoint paths P1, . . . , Pk such that
each path Pi is a shortest path from si to ti, if they exist. If the length of each edge is equal to
zero, then this problem amounts to the disjoint paths problem, which is one of the well-studied
problems in algorithmic graph theory and combinatorial optimization. Eilam-Tzoreff [5] focused
on the case when the length of each edge is positive, and showed that the undirected version of
2-DSPP can be solved in polynomial time. Polynomial solvability of the directed version was
posed as an open problem in [5]. In this paper, we solve this problem affirmatively, that is, we
give a first polynomial time algorithm for the directed version of 2-DSPP when the length of each
edge is positive. Note that the 2 disjoint paths problem in digraphs is NP-hard, which implies
that the directed 2-DSPP is NP-hard if the length of each edge can be zero. We extend our result
to the case when the instance has two terminal pairs and the number of paths is a fixed constant
greater than two. We also show that the undirected k-DSPP and the vertex-disjoint version of
the directed k-DSPP can be solved in polynomial time if the input graph is planar and k is a
fixed constant.
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1 Introduction

1.1 Disjoint paths problem and disjoint shortest paths problem
The vertex-disjoint paths problem is one of the classic and well-studied problems in algorithmic
graph theory and combinatorial optimization. In the problem, the input is a graph (or a
digraph) G = (V, E) and k pairs of vertices (s1, t1), . . . , (sk, tk), and the objective is to find
k pairwise vertex-disjoint paths from si to ti, if they exist. If k is part of the input, the
vertex-disjoint paths problem is NP-hard [9], and it remains NP-hard even if the input graph
is constrained to be planar [12]. The vertex-disjoint paths problem in undirected graphs can
be solved in polynomial time when k = 2 [17, 19, 22], and Robertson and Seymour’s graph
minor theory gives an O(|V |3)-time algorithm for the problem when k is a fixed constant [15].
The running time of this algorithm is improved to O(|V |2) in [10]. The vertex-disjoint paths
problem in digraphs is much harder than the undirected version. Indeed, the directed version
is NP-hard even when k = 2 [6]. The vertex-disjoint paths problem in planar digraphs can
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13:2 The Directed Disjoint Shortest Paths Problem

be solved in polynomial time for fixed k [16], and it is fixed parameter tractable with respect
to parameter k [3].

The vertex-disjoint paths problem has many applications, for example in transportation
networks, VLSI-design [7, 14], or routing in networks [13, 20]. When we deal with such
practical applications, it is natural to generalize the problem to finding short or cheap vertex-
disjoint paths. There are many results on the problem to find disjoint paths minimizing a
given objective function such as the total length of the paths or the length of the longest path
(see Section 1.2). In this paper, we consider the disjoint shortest paths problem introduced
in [5], in which each path has to be a shortest path from si to ti. Note that, in contrast to
the other problems, the length of each path appears in the constraint of the problem. For an
integer k, our problem is formally described as follows.

k Disjoint Shortest Paths Problem (k-DSPP)
Input. A digraph (or a graph) G = (V, E) with a length function ` : E → R+ and k pairs of

vertices (s1, t1), . . . , (sk, tk) in G.
Find. Pairwise disjoint (vertex-disjoint or edge-disjoint) paths P1, . . . , Pk such that Pi is a

shortest path from si to ti for i = 1, 2, . . . , k, if they exist.

Note that R+ denotes the set of non-negative real numbers. We can consider both directed
and undirected variants of this problem, which we call the directed k-DSPP and the undirected
k-DSPP, respectively. For each problem, we can consider vertex-disjoint and edge-disjoint
versions. If the length of each edge is equal to zero, then these problems amount to the
directed or the undirected version of the k disjoint paths problem. With this observation,
most hardness results on the k disjoint paths problem can be extended to the directed (or
undirected) k-DSPP. In particular, since the k disjoint paths problem in digraphs is NP-hard
even when k = 2 [6], almost all variants of the directed k-DSPP are hard.

Only few positive results are known for k-DSPP. An important positive result is a
polynomial time algorithm of Eilam-Tzoreff [5] for the undirected 2-DSPP, in which the
length of each edge is positive. It is interesting to note that the algorithm in [5] is completely
different from the algorithms for the 2 disjoint paths problem in [17, 19, 22]. This means
that properties or tractability of k-DSPP will be different from those of the k disjoint paths
problem by assuming that the length of each edge is positive. This fact motivates us to study
polynomial solvability of the directed k-DSPP under this assumption. Indeed, for the case
when k is a fixed constant and the length of each edge is positive, polynomial solvability of
the directed k-DSPP was posed as an open problem in [5].

1.2 Related work
There are many results on the problem in which we find k disjoint paths minimizing a given
objective function. Such a problem is sometimes called the shortest disjoint paths problem. A
natural objective function is the total length of the paths. That is, the aim of the problem is
to find disjoint paths P1, . . . , Pk that minimize

∑
i `(Pi) when we are given a length function

` : E → R+, which we call the min-sum k disjoint paths problem. Here, `(Pi) denotes the
length of Pi. We note that a solution of the k disjoint shortest paths problem must be an
optimal solution of the corresponding min-sum k disjoint paths problem, which shows that if
we can solve the min-sum k disjoint paths problem, then we can also solve the k disjoint
shortest paths problem. Another objective function is the length of the longest path. That is,
the aim of the problem is to find disjoint paths P1, . . . , Pk that minimize maxi `(Pi), which
we call the min-max k disjoint paths problem.
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Table 1 Results on the k disjoint paths problem and the k-DSPP. In the results with (∗), we
assume that the length of each edge is positive.

Conditions Disjoint Paths Disjoint Shortest Paths
k = 2 undirected P [17, 19, 22] P [5] (∗)

directed NP-hard [6] NP-hard (Proposition 1)
P (Theorem 2) (∗)

k: fixed undirected P [14] OPEN
planar, vertex-disjoint P (Corollary 11)
planar, edge-disjoint P (Theorem 5)

directed NP-hard [6] OPEN (∗) / NP-hard
planar, vertex-disjoint P [16] P (Theorem 4)
planar, edge-disjoint OPEN OPEN
acyclic P [6] P (Proposition 10)

k: general undirected/directed NP-hard [9] NP-hard

Since the min-sum or min-max k disjoint paths problem is a generalization of the k disjoint
paths problem, hardness results on the k disjoint paths problem can be extended to the
optimization problem. See [11] for classical results on the min-sum and min-max k disjoint
paths problems. We now describe several positive results on the min-sum k disjoint paths
problem. Colin de Verdière and Schrijver [4] presented a polynomial time algorithm for the
case when the input digraph (or graph) is planar, s1, . . . , sk are on the boundary of a common
face, and t1, . . . , tk are on the boundary of another face. Kobayashi and Sommer [11] gave a
polynomial time algorithm for the case when the graph is planar, k = 2, and the terminals
are on at most two faces. Borradaile et al. [2] gave a polynomial time algorithm for the case
when the graph is planar, the terminals are ordered nicely on a common face. Björklund and
Husfeldt [1] gave a randomized polynomial time algorithm for the case when k = 2 and each
edge has a unit length, which is based on interesting algebraic techniques. This result was
recently generalized to the case with two terminal pairs by Hirai and Namba [8].

1.3 Our results
In this subsection, we describe our results, which are summarized in Table 1.

As mentioned in Section 1.1, it is not difficult see that the directed k-DSPP is NP-hard
even when k = 2 if the length of each edge can be zero.

I Proposition 1. Both vertex-disjoint and edge-disjoint versions of the directed k-DSPP are
NP-hard even when k = 2.

Proof. Suppose that the length of each edge is equal to zero. In this case, since any path
is a shortest path, the directed k-DSPP is equivalent to finding two vertex-disjoint (or
edge-disjoint) paths P1 and P2 such that Pi is from si to ti. This problem is known to be
NP-hard [6], and hence the directed k-DSPP is NP-hard even when k = 2. J

The main result of this paper is to show that the directed k-DSPP can be solved in
polynomial time when the length of each dicycle (directed cycle) is positive and k = 2.

I Theorem 2. If the length of each dicycle is positive, both vertex-disjoint and edge-disjoint
versions of the directed 2-DSPP can be solved in polynomial time. In particular, the directed
2-DSPP can be solved in polynomial time if each edge has a positive length.
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Figure 1 Reduction to the directed case.

The proof of this theorem is given in Section 3. It is posed as an open problem by Eilam-
Tzoreff [5] to determine whether or not the directed k-DSPP can be solved in polynomial
time when each edge has a positive length and k is a fixed constant. Theorem 2 answers this
problem affirmatively for the case of k = 2. It is interesting to note that the assumption on
the edge length affects the polynomial solvability of the problem as we can see in Proposition 1
and Theorem 2. We also note that a polynomial time algorithm for the undirected version
can be derived from Theorem 2, that is, we obtain an alternative elementary proof for the
following result.

I Corollary 3 (Eilam-Tzoreff [5]). If each edge has a positive length, both vertex-disjoint and
edge-disjoint versions of the undirected 2-DSPP can be solved in polynomial time.

Proof. Suppose we are given an instance of the undirected 2-DSPP in which `(e) > 0
for every e ∈ E. Replace each edge e = uv with two new vertices xe, ye and five new
directed edges uxe, vxe, xeye, yeu, yev (see Fig. 1). Define a new length function `′ by
`′(uxe) = `′(vxe) = `′(xeye) = `′(yeu) = `′(yev) = `(uv)

3 . Then, each edge has a positive
length in the obtained digraph. In this way, we can reduce the undirected 2-DSPP to the
directed 2-DSPP, which shows the corollary by Theorem 2. J

Theorem 2 can be extended to the case when the input digraph contains two terminal
pairs and k is a fixed constant, which is discussed in Section 4.

We also discuss the case when the input (di)graph is restricted to be planar in Section 5.
We first show that the vertex-disjoint version of the directed k-DSPP can be solved in
polynomial time in planar digraphs.

I Theorem 4. If k is a fixed constant and the input digraph is planar, the vertex-disjoint
version of the directed k-DSPP can be solved in polynomial time.

The proof is given in Section 5. Our proof is based on the reduction technique used in
the proof of Theorem 2 and the algorithm for the disjoint paths problem in planar digraphs
proposed in [16]. Note that this result implies that we can also solve the undirected version
in polynomial time. Since Schrijver’s algorithm for the disjoint paths problem [16] works only
for the vertex-disjoint case, the proof of Theorem 4 cannot be extended to the edge-disjoint
case directly. However, when the graph is undirected, we can show the following theorem,
whose proof is given in Section 5.

I Theorem 5. If k is a fixed constant and the input graph is planar, the edge-disjoint version
of the undirected k-DSPP can be solved in polynomial time.

2 Preliminary

For a digraph G = (V, E), a directed edge from u to v is denoted by uv. For a directed edge
e in G, the head and the tail of e are denoted by headG(e) and tailG(e), respectively, that is,
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Figure 2 Reduction to the edge-disjoint version.

e is a directed edge from tailG(e) to headG(e). A dipath (or a directed path) is a sequence
(v0, e1, v1, e2, . . . , ep, vp) such that v0, v1, . . . , vp ∈ V are distinct vertices and ei = vi−1vi ∈ E

for each i. If v0 = vp in the definition of a dipath, the sequence is called a dicycle (or a
directed cycle). If no confusion may arise, a dicycle, a dipath, and a directed edge are simply
called a cycle, a path, and an edge, respectively. For a dipath, a dicycle, or a subgraph Q, its
vertex set and edge set are denoted by V (Q) and E(Q), respectively. For a length function
` : E → R+ and for an edge set F ⊆ E, we denote `(F ) =

∑
e∈F `(e). For a dipath or a

dicycle Q, we identify Q with its edge set, and `(E(Q)) is simply denoted by `(Q).

3 Proof of Theorem 2

In this section, we give a proof of Theorem 2, that is, we show that the directed 2-DSPP
can be solved in polynomial time if the length of each dicycle is positive. To solve this
problem, we will efficiently reduce it to a set of 2 disjoint paths problem in acyclic digraphs.
Although the original digraph is not necessarily acyclic, we decompose the digraph into
smaller subgraphs and modify each subgraph to an acyclic digraph.

We first note that the vertex-disjoint version of the directed 2-DSPP can be reduced to
the edge-disjoint version of the directed 2-DSPP by the following procedure: replace each
vertex v with two vertices v+ and v−, replace each edge uv with an edge u+v− of the same
length, and add an edge v−v+ of length zero for each v (see Fig. 2). Therefore, it suffices to
give a polynomial time algorithm for the edge-disjoint version of the problem.

Suppose we have an instance of the edge-disjoint version of the directed 2-DSPP in which
each dicycle is of positive length. For i = 1, 2, let Ei ⊆ E be the set of edges that are
contained in some shortest path from si to ti. By the definition, an si-ti path is a shortest
si-ti path if and only if it consists of edges in Ei. Note that we can compute Ei in polynomial
time as follows. We first apply a shortest path algorithm (e.g., Dijkstra’s algorithm) and
obtain the distance di(v) from si to v for every v ∈ V . Let E′i ⊆ E be the set of all the edges
uv with di(v)− di(u) = `(uv). Then, {uv ∈ E′i | E′i contains a v-ti path} is the desired set
Ei. With this observation, the edge-disjoint version of the directed 2-DSPP can be reduced
to the following problem: given a digraph G = (V, E), subsets E1, E2 ⊆ E, and two pairs of
vertices (s1, t1) and (s2, t2) in G, find edge-disjoint paths P1 and P2 such that E(Pi) ⊆ Ei

and Pi is a path from si to ti for i = 1, 2. We now show some properties of Ei.

I Lemma 6. The edge set Ei forms no dicycle for i = 1, 2.

Proof. Assume that Ei forms a dicycle C. By the definition of di and Ei, di(v)−di(u) = `(uv)
for each uv ∈ E(C). This shows that `(C) =

∑
uv∈E(C) `(uv) =

∑
uv∈E(C)(di(v)−di(u)) = 0,

which contradicts that the length of each dicycle is positive. J

For a set F of directed edges, let F be the set of directed edges obtained from F by
reversing all the edges, that is, F = {vu | uv ∈ F}. Then, we have the following lemma.

ESA 2017



13:6 The Directed Disjoint Shortest Paths Problem

I Lemma 7. Suppose that C is a dicycle in E1∪E2. Then, E1∩E(C) ⊆ E2 and E2∩E(C) ⊆
E1.

Proof. Since C is a dicycle in E1 ∪ E2, it can be decomposed into subpaths P1, Q1, P2, Q2,
. . . , Pr, Qr such that Pi is a dipath from ui to vi with E(Pi) ⊆ E1 and Qi is a dipath from
ui+1 to vi with E(Qi) ⊆ E2 for i = 1, . . . , r, where we denote ur+1 = u1. By the definition
of d1 and E1, d1(vi) − d1(ui) = `(Pi) and d1(vi) − d1(ui+1) ≤ `(Qi) for i = 1, . . . , r. By
combining them, we obtain

∑r
i=1 `(Pi) ≤

∑r
i=1 `(Qi). Similarly, by the definition of d2 and

E2, d2(vi)− d2(ui) ≤ `(Pi) and d2(vi)− d2(ui+1) = `(Qi) for i = 1, . . . , r, which shows that∑r
i=1 `(Pi) ≥

∑r
i=1 `(Qi). Therefore,

∑r
i=1 `(Pi) =

∑r
i=1 `(Qi) and all the above inequalities

are tight. That is, d1(vi) − d1(ui+1) = `(Qi) and d2(vi) − d2(ui) = `(Pi) for i = 1, . . . , r,
which shows that E(Qi) ⊆ E′1 and E(Pi) ⊆ E′2. Since E(Pi) ⊆ E1 for i = 1, . . . , r, there is a
vi-t1 path in E′1. This implies that E′1 contains a v-t1 path for any v ∈ V (Qi), and hence
E(Qi) ⊆ E1. Similarly, since E(Qi) ⊆ E2 for i = 1, . . . , r, there is a vi-t2 path in E′2, which
shows that E(Pi) ⊆ E2. J

We add four vertices s′1, s′2, t′1, and t′2, and four edges s′1s1, s′2s2, t1t′1, and t2t′2. We
update Ei ← Ei ∪ {s′isi, tit

′
i} for i = 1, 2. Then, a path from si to ti is corresponding to a

path whose first and last edges are s′isi and tit
′
i, respectively. By using this correspondence,

we can rephrase the problem to the following: find edge-disjoint paths P1 and P2 such that
E(Pi) ⊆ Ei and Pi is a path whose first and last edges are s′isi and tit

′
i, respectively.

Let E0 := E1 ∩ E2, E∗1 = E1 \ E0, and E∗2 = E2 \ E0. We remove all the edges in
E \ (E1 ∪ E2) from G, contract all the edges in E0, and reverse all the edges in E∗2 . Then,
we obtain a digraph G∗ = (V ∗, E∗). Let V0 ⊆ V ∗ be the set of all the vertices in V ∗ that
are newly created by contracting E0. In other words, V ∗ \ V0 ⊆ V is the set of all original
vertices. For v ∈ V0, let Gv be the subgraph of G− (E \ (E1 ∪E2)) induced by the vertex
set corresponding to v. For any edge e in Gv, by the definition of Gv, either e ∈ E0 or there
exist edges f1, f2, . . . , fr ∈ E0 such that e, f1, f2, . . . , fr form a cycle when we ignore the
direction of the edges. In the latter case, these edges induce a dicycle C in E1 ∪ E2, which
shows that e ∈ E0 by Lemma 7. Thus, every edge in Gv is in E0, which implies that we can
identify E∗ with E∗1 ∪ E∗2 . Furthermore, since every edge in Gv is in E0, Gv is an acyclic
digraph by Lemma 6.

We can also see that, by Lemma 7, G∗ is an acyclic digraph. In what follows, roughly,
we find two disjoint paths in G∗ such that one is from s′1 to t′1 and the other is from t′2 to
s′2. Our algorithm is based on the algorithm for finding disjoint paths in digraphs proposed
in [6].

We define a new digraph G whose vertex set is W = E∗1×E∗2 as follows. For (e1, e2), (e′1, e′2) ∈
W , G has a directed edge from (e1, e2) to (e′1, e′2) if one of the following holds.

e′1 = e1, headG∗(e2) = tailG∗(e′2) =: v, and there is no path in G∗ from headG∗(e1) to v.
Furthermore, if v ∈ V0, then Gv contains a path from tailG(e′2) to headG(e2).
e′2 = e2, headG∗(e1) = tailG∗(e′1) =: v, and there is no path in G∗ from headG∗(e2) to v.
Furthermore, if v ∈ V0, then Gv contains a path from headG(e1) to tailG(e′1).
headG∗(e1) = headG∗(e2) = tailG∗(e′1) = tailG∗(e′2) =: v. Furthermore, if v ∈ V0, then
Gv contains two edge-disjoint paths such that one is from headG(e1) to tailG(e′1) and the
other is from tailG(e′2) to headG(e2).

To construct G, it suffices to solve the two disjoint paths problem in each acyclic digraph Gv,
which can be done in polynomial time by [6]. We now show that we can solve the edge-disjoint
version of the directed 2-DSPP by finding a path in G from (s′1s1, t′2t2) to (t1t′1, s2s′2).
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I Lemma 8. There is a path in G from (s′1s1, t′2t2) to (t1t′1, s2s′2) if and only if G has two
edge-disjoint paths P1 and P2 such that Pi is from si to ti and E(Pi) ⊆ Ei for i = 1, 2.

Proof. Sufficiency (“if” part). Suppose that G has two edge-disjoint paths P1 and P2 such
that Pi is from si to ti and E(Pi) ⊆ Ei for i = 1, 2. E(P1) \E0 forms a path P ∗1 from s1 to t1
in G∗, and E(P2) \ E0 forms a path P ∗2 from t2 to s2 in G∗. Suppose that P ∗1 traverses edges
e1

1, e2
1, . . . , ep

1 in this order, and let e0
1 := s′1s1 and ep+1

1 := t1t′1. Similarly, suppose that P ∗2
traverses edges e1

2, e2
2, . . . , eq

2 in this order, and let e0
2 := t′2t2 and eq+1

2 := s2s′2. It is obvious
that ei

1 ∈ E∗1 for i = 0, 1, . . . , p + 1 and ej
2 ∈ E∗2 for j = 0, 1, . . . , q + 1. Since G∗ is acyclic,

for any i = 0, 1, . . . , p + 1 and for any j = 0, 1, . . . , q + 1, at least one of the following holds.
(1) There is no dipath in G∗ from headG∗(ei

1) to headG∗(ej
2).

(2) There is no dipath in G∗ from headG∗(ej
2) to headG∗(ei

1).
(3) headG∗(ei

1) = headG∗(ej
2).

For each case, we obtain the following by the definition of the edge set of G.
If (1) holds and j 6= q + 1, then G has an edge from (ei

1, ej
2) to (ei

1, ej+1
2 ). Note that

if v := headG∗(ej
2) ∈ V0, then E(P2) ∩ E(Gv) forms a path in Gv from tailG(ej+1

2 ) to
headG(ej

2).
If (2) holds and i 6= p + 1, then G has an edge from (ei

1, ej
2) to (ei+1

1 , ej
2). Note that

if v := headG∗(ei
1) ∈ V0, then E(P1) ∩ E(Gv) forms a path in Gv from headG(ei

1) to
tailG(ei+1

1 ).
If (3) holds, then G has an edge from (ei

1, ej
2) to (ei+1

1 , ej+1
2 ). Note that if v :=

headG∗(ei
1) = headG∗(ej

2) ∈ V0, then E(P1) ∩ E(Gv) and E(P2) ∩ E(Gv) form two
edge-disjoint paths in Gv such that one is from headG(ei

1) to tailG(ei+1
1 ) and the other is

from tailG(ej+1
2 ) to headG(ej

2).
By observing that (1) holds if i = p + 1 and (2) holds if j = q + 1, we can see that G has an
edge from (ei

1, ej
2) to (ei

1, ej+1
2 ), (ei+1

1 , ej
2), or (ei+1

1 , ej+1
2 ) unless (i, j) = (p + 1, q + 1). We

begin with (i, j) = (0, 0) and find an edge leaving (ei
1, ej

2) in G as above, repeatedly. Then,
we obtain a path in G from (e0

1, e0
2) = (s′1s1, t′2t2) to (ep+1

1 , eq+1
2 ) = (t1t′1, s2s′2), which shows

the sufficiency.
Necessity (“only if” part). Suppose that there is a path in G from (f0

1 , f0
2 ) := (s′1s1, t′2t2)

to (fr
1 , fr

2 ) := (t1t′1, s2s′2) that traverses vertices (f0
1 , f0

2 ), (f1
1 , f1

2 ), . . . , (fr
1 , fr

2 ) of G in this
order. In this proof, we regard a path in G as a sequence of edges, and the concatenation of
two paths P and Q is denoted by P ·Q. We define two paths P1 and P2 as follows.
1. Set P1 = P2 = ∅.
2. For i = 0, 1, 2, . . . , r, we update Pi as follows.

Suppose that f i+1
1 = f i

1, headG∗(f i
2) = tailG∗(f i+1

2 ) =: v, and there is no dipath in
G∗ from headG∗(f i

1) to v. In this case, let Q be the path in Gv from tailG(f i+1
2 ) to

headG(f i
2) if v ∈ V0 and let Q = ∅ if v 6∈ V0. Then, update P2 as P2 ← f i+1

2 ·Q · P2.
Suppose that f i+1

2 = f i
2, headG∗(f i

1) = tailG∗(f i+1
1 ) =: v, and there is no dipath in

G∗ from headG∗(f i
2) to v. In this case, let Q be the path in Gv from headG(f i

1) to
tailG(f i+1

1 ) if v ∈ V0 and let Q = ∅ if v 6∈ V0. Then, update P1 as P1 ← P1 ·Q · f i+1
1 .

Suppose that headG∗(f i
1) = headG∗(f i

2) = tailG∗(f i+1
1 ) = tailG∗(f i+1

2 ) =: v. In this
case, if v ∈ V0, then Gv contains two edge-disjoint paths Q1 and Q2 such that Q1 is from
headG(f i

1) to tailG(f i+1
1 ) and Q2 is from tailG(f i+1

2 ) to headG(f i
2). Let Q1 = Q2 = ∅

if v 6∈ V0. Then, update P1 and P2 as P1 ← P1 ·Q1 · f i+1
1 and P2 ← f i+1

2 ·Q2 · P2.
Then, P1 and P2 are edge-disjoint paths in G such that Pi is from si to ti and E(Pi) ⊆ Ei

for i = 1, 2, which shows the necessity. J
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Since G contains at most |E|2 vertices, we can detect a path in G in polynomial time. Thus,
Lemma 8 shows that the directed 2-DSPP can be solved in polynomial time.

We note that the most time consuming part of our algorithm is to construct G. We have
already seen that, for each pair of vertices in G, the existence of an edge between them
can be checked by solving the two disjoint paths problem in an acyclic digraph. Thus, in a
naive implementation of our algorithm, we solve the two disjoint paths problem in an acyclic
digraph O(|E|4) times. If we adopt the algorithm of [18] for the two disjoint paths problem,
which runs in O(|V ||E|) time, the total running time of our algorithm is O(|V ||E|5). Note
that a faster algorithm for the two disjoint paths problem is proposed in [21]. Although the
above estimation of the running time is very rough, we do not discuss its improvement in
this paper, since we focus on the polynomial solvability of the problem.

4 Disjoint Shortest Paths with Two Terminal Pairs

In this section, we extend Theorem 2 to the case when the digraph has two terminal pairs.
More precisely, for fixed integers k1 and k2, we consider the following problem and give a
polynomial time algorithm for it.

Directed Disjoint Shortest Paths Problem with Two Terminal Pairs.
Input. A digraph G = (V, E) with a length function l : E → R+, two pairs of vertices (s1, t1)

and (s2, t2) in G.
Find. Internally-vertex-disjoint (or edge-disjoint) paths P 1

1 , . . . , P 1
k1

, P 2
1 , . . . , P 2

k2
such that

P i
j is a shortest path from si to ti for i = 1, 2 and j = 1, 2, . . . , ki.

Our result is formally stated as follows.

I Theorem 9. Let k1 and k2 be fixed integers. If the length of each dicycle is positive, both
internally-vertex-disjoint and edge-disjoint versions of the directed disjoint shortest paths
problem with two terminal pairs can be solved in polynomial time.

Proof. In the same way as the proof of Theorem 2, it suffices to give an algorithm for the
edge-disjoint version. For i = 1, 2, let Ei ⊆ E be the set of all the edges that are contained
in some shortest path from si to ti, which satisfy Lemmas 6 and 7. Then, an si-ti path is a
shortest si-ti path if and only if it consists of edges in Ei.

We add 2(k1 + k2) vertices s′1,1, . . . , s′1,k1
, s′2,1, . . . , s′2,k2

, t′1,1, . . . , t′1,k1
, t′2,1, . . . , t′2,k2

, and
2(k1 + k2) edges s′1,js1 and t1, t′1,j for j = 1, . . . , k1, and s′2,js2 and t2, t′2,j for j = 1, . . . , k2.
We update Ei ← Ei ∪ {s′i,jsi, tit

′
i,j | j = 1, . . . , ki} for i = 1, 2. Then, we can rephrase

the problem to the following: find edge-disjoint paths P 1
1 , . . . , P 1

k1
, P 2

1 , . . . , P 2
k2

such that
E(P i

j ) ⊆ Ei and P i
j is a path whose first and last edges are s′i,jsi and tit

′
i,j for each i and j.

Define E0, E∗1 , E∗2 , G∗, V0, and Gv for v ∈ V0 in the same way as the proof of Theorem 2.
Let S0 := {(i, j) | i = 1, 2, j = 1, . . . , ki}. We define a digraph G whose vertex set is W =
(E∗1 )k1 × (E∗2 )k2 as follows. For (e1

1, . . . , e1
k1

, e2
1, . . . , e2

k2
) ∈W and (f1

1 , . . . , f1
k1

, f2
1 , . . . , f2

k2
) ∈

W , G has an edge from (e1
1, . . . , e1

k1
, e2

1, . . . , e2
k2

) to (f1
1 , . . . , f1

k1
, f2

1 , . . . , f2
k2

) if there exists a
non-empty set S ⊆ S0 and a vertex v ∈ V ∗ such that

headG∗(ei
j) = tailG∗(f i

j) = v for (i, j) ∈ S, and ei
j = f i

j and there is no path in G∗

from headG∗(ei
j) to v for (i, j) ∈ S0 \ S. Furthermore, if v ∈ V0, then Gv contains |S|

edges disjoint paths such that each path is from headG(e1
j ) to tailG(f1

j ) with (1, j) ∈ S

or from tailG(f2
j ) to headG(e2

j ) with (2, j) ∈ S.
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Note that this is a generalization of the construction in the proof of Theorem 2. To construct
G, it suffices to solve the disjoint paths problem with at most k terminal pairs in each acyclic
digraph Gv, which can be done in polynomial time by [6].

In the same way as Lemma 8, there is a path in G from (s′1,1s1, . . . , s′1,k1
s1, t′2,1t2, . . . , t′2,k2

t2)
to (t1t′1,1, . . . , t1t′1,k1

, s2s′2,1, . . . , s2s′2,k2
) if and only if G has k1 + k2 edge-disjoint paths

P 1
1 , . . . , P 1

k1
, P 2

1 , . . . , P 2
k2

such that E(P i
j ) ⊆ Ei and P i

j is a path whose first and last edges
are s′i,jsi and tit

′
i,j for each i and j. Since G has a polynomial size in |V |, we can detect a

path in G from (s′1,1s1, . . . , s′1,k1
s1, t′2,1t2, . . . , t′2,k2

t2) to (t1t′1,1, . . . , t1t′1,k1
, s2s′2,1, . . . , s2s′2,k2

)
in polynomial time. Hence, we can solve the directed disjoint shortest paths problem with
two terminal pairs in polynomial time. J

In order to construct G, we solve the k disjoint paths problem in an acyclic digraph
|E|O(k) times. Since the k disjoint paths problem in an acyclic digraph can be solved in
|E|O(k) time [6], the total running time of our algorithm is |E|O(k), which is also denoted by
|V |O(k).

We note that, by using the same argument as the proofs of Theorems 2 and 9, we can
show that the directed k-DSPP in acyclic digraphs can be solved in polynomial time if k is a
fixed constant.

I Proposition 10. If k is a fixed constant and the input graph is acyclic, both vertex-disjoint
and edge-disjoint versions of the directed k-DSPP can be solved in polynomial time.

Proof. It suffices to consider the edge-disjoint version. For i = 1, . . . , k, let Ei ⊆ E be
the set of all the edges that are contained in some shortest path from si to ti. Then, an
si-ti path is a shortest si-ti path if and only if it consists of edges in Ei. We add 2k

vertices s′1, . . . , s′k, t′1, . . . , t′k, and 2k edges s′1s1, . . . , s′ksk, t1t′1, . . . , tkt′k, and update Ei ←
Ei ∪ {s′isi, tit

′
i} for i = 1, . . . , k. The obtained acyclic digraph is also denoted by G. Then,

the directed k-DSPP is equivalent to finding k edge-disjoint paths P1, . . . , Pk such that
E(Pi) ⊆ Ei and Pi is a path whose first and last edges are s′isi and tit

′
i, respectively.

We define a digraph G whose vertex set is W = E1×· · ·×Ek as follows. For (e1, . . . , ek) ∈
W and (f1, . . . , fk) ∈ W , G has an edge from (e1, . . . , ek) to (f1, . . . , fk) if there exists an
index i such that ej = fj for j ∈ {1, . . . , k} \ {i}, headG(ei) = tailG(fi) =: v, and there is no
path in G from headG(ej) to v for j ∈ {1, . . . , k} \ {i}.

In the same way as Lemma 8, there is a path in G from (s′1s1, . . . , s′ksk) to (t′1t1, . . . , t′ktk)
if and only if G has k edge-disjoint paths P1, . . . , Pk such that E(Pi) ⊆ Ei and Pi is a path
whose first and last edges are s′isi and tit

′
i for each i. Since G has |V |O(k) vertices, a path in

G from (s′1s1, . . . , s′ksk) to (t′1t1, . . . , t′ktk) can be detected in |V |O(k) time. J

5 Planar Cases

In this section, we discuss the case when the input (di)graph is planar. We first give a proof
of Theorem 4, that is, we show that the vertex-disjoint version of the directed k-DSPP can
be solved in polynomial time if k is a fixed constant and the input digraph is planar.

Proof of Theorem 4. For i = 1, . . . , k, let Ei ⊆ E be the set of all the edges that are
contained in some shortest path from si to ti. Since an si-ti path is a shortest si-ti path if
and only if it consists of edges in Ei, the directed k-DSPP in a planar digraph can be reduced
to the following problem: given a planar digraph G = (V, E), subsets E1, . . . , Ek ⊆ E, and
k pairs of vertices (s1, t1), . . . , (sk, tk) in G, find vertex-disjoint paths P1, . . . , Pk such that
E(Pi) ⊆ Ei and Pi is a path from si to ti for i = 1, . . . , k. It is shown in [16] that this
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problem can be solved in |V |O(k) time if G is planar. Therefore, for fixed k, the directed
k-DSPP can be solved in polynomial time if the input digraph is planar. J

By replacing each edge with two parallel edges in opposite directions, we can reduce the
undirected version to the directed version. Hence, Theorem 4 implies the following as a
corollary.

I Corollary 11. If the input graph is planar, the vertex-disjoint version of the undirected
k-DSPP can be solved in |V |O(k) time.

We note that Schrijver’s algorithm for finding disjoint paths P1, . . . , Pk with E(Pi) ⊆
Ei [16] works only for the vertex-disjoint case, and no polynomial time algorithm is known
for the edge-disjoint version of this problem. However, when the graph is undirected, the
edge-disjoint version of k-DSPP can be solved in polynomial time (Theorem 5). To prove
Theorem 5, we first give a polynomial time algorithm for the case when the obtained paths
do not cross each other. Here, we say that two edge-disjoint paths P and Q in a planar
graph cross at a vertex v if P contains two edges e1 and e2 and Q contains two edges f1
and f2 such that e1, f1, e2, and f2 are incident to v clockwise in this order. The problem is
formally described as follows.

Undirected k Edge-disjoint Non-crossing Shortest Paths Problem
Input. A planar graph G = (V, E) with a length function ` : E → R+ and k pairs of vertices

(s1, t1), . . . , (sk, tk) in G.
Find. Pairwise edge-disjoint paths P1, . . . , Pk such that Pi is a shortest path from si to ti

for i = 1, 2, . . . , k and they do not cross each other, if they exist.

I Proposition 12. The undirected k edge-disjoint non-crossing shortest paths problem can
be solved in |V |O(k) time.

Proof. We first reduce the problem to the case when each terminal is of degree one. Suppose
we are given an instance of the the undirected k edge-disjoint non-crossing shortest paths
problem. For i = 1, . . . , k, we guess the first and last edges of Pi, say siui and viti. Then,
replace edge siui with a new vertex u′i and a new edge u′iui of length `(siui), and define
a new terminal s′i = u′i. Similarly, replace edge viti with a new vertex v′i and a new edge
viv
′
i of length `(viti), and define a new terminal t′i = v′i. In the obtained graph, we consider

the undirected k edge-disjoint non-crossing shortest paths problem with terminal pairs
(s′1, t′1), . . . , (s′k, t′k). Note that each terminal is of degree one in the obtained instance. Since
the number of choices of siui and viti is at most |V |O(k), in order to solve the original
instance, it suffices to solve |V |O(k) instances in which each terminal is of degree one.

In what follows, we give an algorithm for the case when each terminal is of degree one by
using a reduction to the vertex-disjoint version of the undirected k-DSPP. Suppose that we
are given an instance G = (V, E), ` : E → R+, and (s1, t1), . . . , (sk, tk) of the undirected k

edge-disjoint non-crossing shortest paths problem in which each terminal is of degree one.
For a vertex v ∈ V of degree at least four, let e1, . . . , er be the edges that are incident to
v clockwise in this order. We replace v with r vertices w1, . . . , wr so that each edge ei is
incident to wi, and add r edges w1w2, w2w3, . . . , wr−1wr, wrw1 of length zero (see Fig. 3).
Note that this transformation keeps the planarity of the graph.

By applying this transformation to every vertex v ∈ V of degree at least four, we obtain
a new planar graph G′ = (V ′, E′) whose maximum degree is at most three. We can easily see
that the undirected k edge-disjoint non-crossing shortest paths problem in G is equivalent to
that in G′. Since the maximum degree of G′ is at most three and the degree of each terminal
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v
e1

e2
e3

er
e1

e2
e3

er

Figure 3 Reduction to the vertex-disjoint version.

is one, edge-disjoint paths in G′ have to be vertex-disjoint, and hence it suffices to solve the
vertex-disjoint version of the undirected k-DSPP in G′. This can be done in |V |O(k) time by
Corollary 11, which completes the proof. J

We are now ready to prove Theorem 5.

Proof of Theorem 5. Suppose we are given an instance of the edge-disjoint version of the
undirected k-DSPP in a planar graph. We begin with the following claim.

I Claim 13. If there exists a solution of the edge-disjoint version of the undirected k-DSPP
in a planar graph, then there exists a solution P1, . . . , Pk such that Pi and Pj cross at most
once for every pair i, j ∈ {1, . . . , k}.

Proof. Let P1, . . . , Pk be a solution of the edge-disjoint version of the undirected k-DSPP
that minimizes the total number of crossings of the paths. We show that this solution satisfies
the condition in the claim. Assume to the contrary that Pi and Pj cross at two distinct
vertices u and v. Then, there exists a subpath Qi of Pi and a subpath Qj of Pj such that both
Qi and Qj are paths from u to v. Since Pi is a shortest path from si to ti and Pj is a shortest
path from sj to tj , we have `(Qi) = `(Qj). This shows that, we can obtain another solution
of the edge-disjoint version of the undirected k-DSPP by replacing Pi and Pj with two paths
P ′i and P ′j such that E(P ′i ) = (E(Pi)\E(Qi))∪E(Qj) and E(P ′j) = (E(Pj)\E(Qj))∪E(Qi).
We can see that the number of crossings of P ′i and P ′j is strictly smaller than that of Pi and
Pj . We can also see that, for any h ∈ {1, . . . , k} \ {i, j}, the number of crossings of Ph and
{P ′i , P ′j} is at most that of Ph and {Pi, Pj}. Therefore, the total number of crossings of the
obtained solution is smaller than the original solution, which is a contradiction. J

Let P1, . . . , Pk be a solution of the edge-disjoint version of the undirected k-DSPP
satisfying the condition in the above claim. For i = 1, . . . , k, by the above claim, there
exist at most k − 1 vertices ui

1, ui
2, . . . , ui

ri
such that Pi crosses another path at some ui

j and
si =: ui

0, ui
1, ui

2, . . . , ui
ri

, ui
ri+1 := ti appear in this order along Pi. Then, Pi can be divided

into ri + 1 ≤ k subpaths Qi
1, . . . Qi

ri+1, where Qi
j is a shortest path from ui

j−1 to ui
j . By the

definition of Qi
j , we can see that Qi

j (i = 1, . . . , k, j = 1, . . . , ri + 1) are edge-disjoint paths
and they do not cross each other.

With this observation, we can solve the edge-disjoint version of the undirected k-DSPP
as follows.
Step 1. For i = 1, . . . , k, guess an integer ri ≤ k − 1 and vertices ui

1, ui
2, . . . , ui

ri
.

Step 2. Find pairwise edge-disjoint paths Qi
j (i = 1, . . . , k, j = 1, . . . , ri + 1) such that they

do not cross each other and Qi
j is a shortest path from ui

j−1 to ui
j , where ui

0 = si and
ui

ri+1 = ti.
Step 3. For each i, define Pi as the concatenation of Qi

1, . . . , Qi
ri+1. Check whether or not

P1, . . . , Pk form a solution of the original instance.
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In Step 1, the number of choices of ri and ui
1, ui

2, . . . , ui
ri

is at most |V |O(k2). In Step 2,
we can find desired edge-disjoint paths Qi

j (i = 1, . . . , k, j = 1, . . . , ri + 1) if they exist in
|V |O(k2) time by Proposition 12. Note that the number of terminals is at most O(k2). In
Step 3, we can easily check whether or not P1, . . . , Pk are a solution of the original problem
in polynomial time. Therefore, the edge-disjoint version of the undirected k-DSPP can be
solved in |V |O(k2) time if the input graph is planar. J
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