3,015 research outputs found

    Three-phase modular permanent magnet brushless machine for torque boosting on a downsized ICE vehicle

    Get PDF
    The paper describes a relatively new topology of 3-phase permanent magnet (PM) brushless machine, which offers a number of significant advantages over conventional PM brushless machines for automotive applications, such as electrical torque boosting at low engine speeds for vehicles equipped with downsized internal combustion engine (ICEs). The relative merits of feasible slot/pole number combinations for the proposed 3-phase modular PM brushless ac machine are discussed, and an analytical method for establishing the open-circuit and armature reaction magnetic field distributions when such a machine is equipped with a surface-mounted magnet rotor is presented. The results allow the prediction of the torque, the phase emf, and the self- and mutual winding inductances in closed forms, and provide a basis for comparative studies, design optimization and machine dynamic modeling. However, a more robust machine, in terms of improved containment of the magnets, results when the magnets are buried inside the rotor, which, since it introduces a reluctance torque, also serves to reduce the back-emf, the iron loss and the inverter voltage rating. The performance of a modular PM brushless machine equipped with an interior magnet rotor is demonstrated by measurements on a 22-pole/24-slot prototype torque boosting machine

    Analytical modeling of open-Circuit air-Gap field distributions in multisegment and multilayer interior permanent-magnet machines

    Get PDF
    We present a simple lumped magnetic circuit model for interior permanent-magnet (IPM) machines with multisegment and multilayer permanent magnets. We derived analytically the open-circuit air-gap field distribution, average air-gap flux density, and leakage fluxes. To verify the developed models and analytical method, we adopted finite-element analysis (FEA). We show that for prototype machines, the errors between the FEA and analytically predicted results are ≪≪1% for multisegment IPM machines and ≪≪ 2% for multilayer IPM machines. By utilizing the developed lumped magnetic circuit models, the IPM machines can be optimized for maximum fundamental and minimum total harmonic distortion of the air-gap flux density distribution

    A quantitative comparison between BLDC, PMSM, brushed DC and stepping motor technologies

    Get PDF
    Brushless DC machines (BLDC), Permanent Magnet Synchronous Machines (PMSM), Stepping Motors and Brushed DC machines (BDC) usage is ubiquitous in the power range below 1,5kW. There is a lot of common knowledge on these technologies. Stepping Motors are ideally suited for open loop positioning, BLDC machines are the most obvious candidate for high-speed applications, etc. However, literature lacks comprehensive research comparing these machines over a large range of applications. In this paper, more than 100 motors are considered. Their characteristics are compared and presented in a comprehensive way. These results support the common knowledge concerning the field of application of each technology and new insights follow from this quantitative comparison

    Analytical and numerical computation of air-gap magnetic fields in brushless motors with surface permanent magnets

    Get PDF
    This paper extends the theory of the air-gap magnetic field in permanent-magnet (PM) brushless motors. Scalar and vector potential solutions to the field equations are brought together to unify many of the important practical methods already in use. The theory admits a more general representation of the magnetization vector than has been previously assumed, including both the radial and tangential components, and variation with radius. The work is applied in the design of PM motors where there is a requirement to minimize noise and torque ripple, and maximize efficiency, and a continuing need for improvements in the accuracy and rigor of design calculations. The air-gap flux-density distribution is at the heart of the design process, and it is desirable to study different magnetization patterns, including imperfections in the magnetization, for a wide range of magnet shapes. This paper shows the application of the analytical solutions in comparison with a new finite-element procedure, with test results on a prototype motor, and with simpler, older methods of calculation based on magnetic equivalent circuits. The comparison brings out many interesting points in relation to the accuracy and the speed and practicality of the various methods

    PM fractional machines adopting bonded magnets: effect of different magnetizations on the energetic performance

    Get PDF
    The adoption of Permanent Magnets in small brushless machines for automotive applications is becoming frequent. Some research on bonded magnets is being carried on to substitute the ferrites. In the paper the parallel and radial magnetizations are considered: the different process complexity levels are analyzed and the effects on the iron losses and the energetic performances are evaluated by means of a simulation analysis and its experimental validatio

    Evaluation of the magnetization direction effects on ferrite PM brushless fractional machines

    Get PDF
    Permanent magnets are frequently adopted in small brushless machines for automotive applications. Normally anisotropic ferrites, but some research on bonded magnets is being carried on. Several types of magnetization can be proposed, involving different levels of complexity in the magnetization process. In the paper a comparison between parallel and radial magnetization is described, taking into account on one side the major complexity of the radial process and on the other the small power derating of the paralle

    Computationally Efficient Strand Eddy Current Loss Calculation in Electric Machines

    Get PDF
    A fast finite element (FE) based method for the calculation of eddy current losses in the stator windings of randomly wound electric machines is presented in this paper. The method is particularly suitable for implementation in large-scale design optimization algorithms where a qualitative characterization of such losses at higher speeds is most beneficial for identification of the design solutions that exhibit the lowest overall losses including the ac losses in the stator windings. Unlike the common practice of assuming a constant slot fill factor s f for all the design variations, the maximum s f in the developed method is determined based on the individual slot structure/dimensions and strand wire specifications. Furthermore, in lieu of detailed modeling of the conductor strands in the initial FE model, which significantly adds to the complexity of the problem, an alternative rectangular coil modeling subject to a subsequent flux mapping technique for determination of the impinging flux on each individual strand is pursued. Rather than pursuing the precise estimation of ac conductor losses, the research focus of this paper is placed on the development of a computationally efficient technique for the derivation of strand eddy current losses applicable in design optimization, especially where both the electromagnetic and thermal machine behavior are accounted for. A fractional-slot concentrated winding permanent magnet synchronous machine is used for the purpose of this study due to the higher slot leakage flux and slot opening fringing flux of such machines, which are the major contributors to strand eddy current losses in the windings. The analysis is supplemented with an investigation on the influence of the electrical loading on ac winding loss effects for this machine design, a subject that has received less attention in the literature. Experimental ac loss measurements on a 12-slot 10-pole stator assembly will be discussed to verify the existing trends in the simulation result

    Improved transistor-controlled and commutated brushless DC motors for electric vehicle propulsion

    Get PDF
    The development, design, construction, and testing processes of two electronically (transistor) controlled and commutated permanent magnet brushless dc machine systems, for propulsion of electric vehicles are detailed. One machine system was designed and constructed using samarium cobalt for permanent magnets, which supply the rotor (field) excitation. Meanwhile, the other machine system was designed and constructed with strontium ferrite permanent magnets as the source of rotor (field) excitation. These machine systems were designed for continuous rated power output of 15 hp (11.2 kw), and a peak one minute rated power output of 35 hp (26.1 kw). Both power ratings are for a rated voltage of 115 volts dc, assuming a voltage drop in the source (battery) of about 5 volts. That is, an internal source voltage of 120 volts dc. Machine-power conditioner system computer-aided simulations were used extensively in the design process. These simulations relied heavily on the magnetic field analysis in these machines using the method of finite elements, as well as methods of modeling of the machine power conditioner system dynamic interaction. These simulation processes are detailed. Testing revealed that typical machine system efficiencies at 15 hp (11.2 kw) were about 88% and 84% for the samarium cobalt and strontium ferrite based machine systems, respectively. Both systems met the peak one minute rating of 35 hp

    A Study of the Degradation of Electronic Speed Controllers for Brushless DC Motors

    Get PDF
    Brushless DC motors are frequently used in electric aircraft and other direct drive applications. As these motors are notactually direct current machines but synchronous alternating current machines; they are electronically commutated by a power inverter. The power inverter for brushless DC motors typically used in small scale UAVs is a semiconductor base delectronic commutator that is external to the motor and is referred to as an electronic speed control (ESC). This paper examines the performance changes of a UAV electric propulsion system resulting from ESC degradation. ESC performance is evaluated in simulation and on a new developed test bed featuring propulsion components from a reference UAV. An increase in the rise fall times of the switched voltages is expected to cause timing issues at high motor speeds. This study paves the way for further development of diagnostic and prognostic methods for inverter circuits which are part of the overall electric UAV system
    • …
    corecore