145 research outputs found

    APEX status pt.1: instrument development and performance

    Get PDF
    ESA APEX (Airborne Prism EXperiment) is a project for the realisation of an airborne dispersive pushbroom imaging spectrometer, a dedicated data Processing and Archiving Facility (PAF, hosted at VITO) and a Calibration Home Base (CHB, hosted at DLR) for instrument calibration operation. It has been developed by a joint Swiss-Belgian consortium. The APEX instrument is facing its finalisation phase undergoing intense experimental activities in view of its validation and performance assessment. Environmental tests were executed to simulate flight environment conditions. The first APEX airborne campaign has been held in June 2009 covering a variety of water targets over Switzerland and Belgium. Extensive pre- and postflight characterisation and calibration campaigns were accomplished. Instrument data evaluation, performance analysis and optimisation of the data processing schemes adopted have followed. This paper outlines the activities performed and presents the first products achieved

    APEX: Current Status of the Airborne Dispersive Pushbroom Imaging Spectrometer

    Get PDF
    ABSTRACT Over the past few years, a joint Swiss/Belgium ESA initiative resulted in a project to build a precursor mission of future spaceborne imaging spectrometers, namely APEX (Airborne Prism Experiment). APEX is designed to be an airborne dispersive pushbroom imaging spectrometer operating in the solar reflected wavelength range between 400 and 2500 nm. The system is optimized for land applications including limnology, snow, and soil, amongst others. The instrument is optimized with various steps taken to allow for absolute calibrated radiance measurements. This includes the use of a pre-and post-data acquisition internal calibration facility as well as a laboratory calibration and a performance model serving as a stable reference. The instrument is currently in its breadboarding phase, including some new results with respect to detector development and design optimization for imaging spectrometers. In the same APEX framework, a complete processing and archiving facility (PAF) is developed. The PAF not only includes imaging spectrometer data processing up to physical units, but also geometric and atmospheric correction for each scene, as well as calibration data input. The PAF software includes an Internet based web-server and provides interfaces to data users as well as instrument operators and programmers. The software design, the tools and its life cycle are discussed as well

    APEX: Current Status of the Airborne Dispersive Pushbroom Imaging Spectrometer

    Get PDF
    ABSTRACT Over the past few years, a joint Swiss/Belgium ESA initiative resulted in a project to build a precursor mission of future spaceborne imaging spectrometers, namely APEX (Airborne Prism Experiment). APEX is designed to be an airborne dispersive pushbroom imaging spectrometer operating in the solar reflected wavelength range between 400 and 2500 nm. The system is optimized for land applications including limnology, snow, and soil, amongst others. The instrument is optimized with various steps taken to allow for absolute calibrated radiance measurements. This includes the use of a pre-and post-data acquisition internal calibration facility as well as a laboratory calibration and a performance model serving as a stable reference. The instrument is currently in its breadboarding phase, including some new results with respect to detector development and design optimization for imaging spectrometers. In the same APEX framework, a complete processing and archiving facility (PAF) is developed. The PAF not only includes imaging spectrometer data processing up to physical units, but also geometric and atmospheric correction for each scene, as well as calibration data input. The PAF software includes an Internet based web-server and provides interfaces to data users as well as instrument operators and programmers. The software design, the tools and its life cycle are discussed as well

    Entropy Based Determination of Optimal Principal Components of Airborne Prism Experiment (APEX) Imaging Spectrometer Data for Improved Land Cover Classification

    Get PDF
    Hyperspectral data finds applications in the domain of remote sensing. However, with the increase in amounts of information and advantages associated, come the "curse" of dimensionality and additional computational load. The question most often remains as to which subset of the data best represents the information in the imagery. The present work is an attempt to establish entropy, a statistical measure for quantifying uncertainty, as a formidable measure for determining the optimal number of principal components (PCs) for improved identification of land cover classes. Feature extraction from the Airborne Prism EXperiment (APEX) data was achieved utilizing Principal Component Analysis (PCA). However, determination of optimal number of PCs is vital as addition of computational load to the classification algorithm with no significant improvement in accuracy can be avoided. Considering the soft classification approach applied in this work, entropy results are to be analyzed. Comparison of these entropy measures with traditional accuracy assessment of the corresponding „hardened‟ outputs showed results in the affirmative of the objective. The present work concentrates on entropy being utilized for optimal feature extraction for pre-processing before further analysis, rather than the analysis of accuracy obtained from principal component analysis and possibilistic c-means classification. Results show that 7 PCs of the APEX dataset would be the optimal choice, as they show lower entropy and higher accuracy, along with better identification compared to other combinations while utilizing the APEX dataset

    Genetic constraints on temporal variation of airborne reflectance spectra and their uncertainties over a temperate forest

    Full text link
    Remote sensing enhances large-scale biodiversity monitoring by overcoming temporal and spatial limitations of ground-based measurements and allows assessment of multiple plant traits simultaneously. The total set of traits and their variation over time is specific for each individual and can reveal information about the genetic composition of forest communities. Measuring trait variation among individuals of one species continuously across space and time is a key component in monitoring genetic diversity but difficult to achieve with ground-based methods. Remote sensing approaches using imaging spectroscopy can provide high spectral, spatial, and temporal coverage to advance the monitoring of genetic diversity, if sufficient relation between spectral and genetic information can be established. We assessed reflectance spectra from individual Fagus sylvatica L. (European beech) trees acquired across eleven years from 69 flights of the Airborne Prism Experiment (APEX) above the same temperate forest in Switzerland. We derived reflectance spectra of 68 canopy trees and correlated differences in these spectra with genetic differences derived from microsatellite markers among the 68 individuals. We calculated these correlations for different points in time, wavelength regions and relative differences between wavelength regions. High correlations indicate high spectral-genetic similarities. We then tested the influence of environmental variables obtained at temporal scales from days to years on spectral-genetic similarities. We performed an uncertainty propagation of radiance measurements to provide a quality indicator for these correlations. We observed that genetically similar individuals had more similar reflectance spectra, but this varied between wavelength regions and across environmental variables. The short-wave infrared regions of the spectrum, influenced by water absorption, seemed to provide information on the population genetic structure at high temperatures, whereas the visible part of the spectrum, and the near-infrared region affected by scattering properties of tree canopies, showed more consistent patterns with genetic structure across longer time scales. Correlations of genetic similarity with reflectance spectra similarity were easier to detect when investigating relative differences between spectral bands (maximum correlation: 0.40) than reflectance data (maximum correlation: 0.33). Incorporating uncertainties of spectral measurements yielded improvements of spectral-genetic similarities of 36% and 20% for analyses based on single spectral bands, and relative differences between spectral bands, respectively. This study highlights the potential of dense multi-temporal airborne imaging spectroscopy data to detect the genetic structure of forest communities. We suggest that the observed temporal trajectories of reflectance spectra indicate physiological and possibly genetic constraints on plant responses to environmental change

    The Laegeren site: an augmented forest laboratory combining 3-D reconstruction and radiative transfer models for trait-based assessment of functional diversity

    Full text link
    Given the increased pressure on forests and their diversity in the context of global change, new ways of monitoring diversity are needed. Remote sensing has the potential to inform essential biodiversity variables on the global scale, but validation of data and products, particularly in remote areas, is difficult. We show how radiative transfer (RT) models, parameterized with a detailed 3-D forest reconstruction based on laser scanning, can be used to upscale leaf-level information to canopy scale. The simulation approach is compared with actual remote sensing data, showing very good agreement in both the spectral and spatial domains. In addition, we compute a set of physiological and morphological traits from airborne imaging spectroscopy and laser scanning data and show how these traits can be used to estimate the functional richness of a forest at regional scale. The presented RT modeling framework has the potential to prototype and validate future spaceborne observation concepts aimed at informing variables of biodiversity, while the trait-based mapping of diversity could augment in situ networks of diversity, providing effective spatiotemporal gap filling for a comprehensive assessment of changes to diversity

    Implications of spectral and spatial features to improve the identification of specific classes

    Get PDF
    Dimensionality is one of the greatest challenges when deciphering hyperspectral imaging data. Although the multiband nature of the data is beneficial, algorithms are faced with a high computational load and statistical incompatibility due to the insufficient number of training samples. This is a hurdle to downstream applications. The combination of dimensionality and the real-world scenario of mixed pixels makes the identification and classification of imaging data challenging. Here, we address the complications of dimensionality using specific spectral indices from band combinations and spatial indices from texture measures for classification to better identify the classes. We classified spectral and combined spatial–spectral data and calculated measures of accuracy and entropy. A reduction in entropy and an overall accuracy of 80.50% was achieved when using the spectral–spatial input, compared with 65% for the spectral indices alone and 59.50% for the optimally determined principal components

    Imaging spectroscopy to assess the composition of ice surface materials and their impact on glacier mass balance

    Get PDF
    Glacier surfaces are not only composed of ice or snow but are heterogeneous mixtures of different materials. The occurrence and dynamics of light-absorbing impurities affect ice surface characteristics and strongly influence glacier melt processes. However, our understanding of the spatial distribution of impurities and their impact on ice surface characteristics and the glacier's energy budget is still limited. We use imaging spectroscopy in combination with in-situ experiments to assess the composition of ice surface materials and their respective impact on surface albedo and glacier melt rates. Spectroscopy data were acquired in August 2013 using the Airborne Prism EXperiment (APEX) imaging spectrometer and were used to map the abundances of six predominant surface materials on Glacier de la Plaine Morte, Swiss Alps. A pixel-based classification revealed that about 10% of the ice surface is covered with snow, water or debris. The remaining 90% of the surface can be divided into three types of glacier ice, namely ~ 7% dirty ice, ~ 43% pure ice and ~ 39% bright ice. Spatially distributed spectral albedo derived from APEX reflectance data in combination with in-situ multi-angular spectroscopic measurements was used to analyse albedo patterns present on the glacier surface. About 85% of all pixels exhibit a low albedo between 0.1 and 0.4 (mean albedo 0.29 ± 0.12), indicating that Glacier de la Plaine Morte is covered with a significant amount of light-absorbing impurities, resulting in a strong ice-albedo feedback during the ablation season. Using a pixel-based albedo map instead of a constant albedo for ice (0.34) as input for a mass balance model revealed that the glacier-wide total ablation remained similar (10% difference). However, the large local variations in mass balance can only be reproduced using the pixel-based albedo derived from APEX, emphasizing the need to quantify spatial albedo differences as an important input for glacier mass balance models

    Effects of atmospheric, topographic, and BRDF correction on imaging spectroscopy-derived data products

    Full text link
    Surface reflectance is an important data product in imaging spectroscopy for obtaining surface information. The complex retrieval of surface reflectance, however, critically relies on accurate knowledge of atmospheric absorption and scattering, and the compensation of these effects. Furthermore, illumination and observation geometry in combination with surface reflectance anisotropy determine dynamics in retrieved surface reflectance not related to surface absorption properties. To the best of authors’ knowledge, no comprehensive assessment of the impact of atmospheric, topographic, and anisotropy effects on derived surface information is available so far.This study systematically evaluates the impact of these effects on reflectance, albedo, and vegetation products. Using three well-established processing schemes (ATCOR F., ATCOR R., and BREFCOR), high-resolution APEX imaging spectroscopy data, covering a large gradient of illumination and observation angles, are brought to several processing states, varyingly affected by mentioned effects. Pixel-wise differences of surface reflectance, albedo, and spectral indices of neighboring flight lines are quantitatively analyzed in their respective overlapping area. We found that compensation of atmospheric effects reveals actual anisotropy-related dynamics in surface reflectance and derived albedo, related to an increase in pixel-wise relative reflectance and albedo differences of more than 40%. Subsequent anisotropy compensation allows us to successfully reduce apparent relative reflectance and albedo differences by up to 20%. In contrast, spectral indices are less affected by atmospheric and anisotropy effects, showing relative differences of 3% to 10% in overlapping regions of flight lines.We recommend to base decisions on the use of appropriate processing schemes on individual use cases considering envisioned data products

    Remotely sensing ecological genomics

    Full text link
    Solar radiation is the prime energy source on Earth. It reaches any object in the form of electromagnetic radiation that may be absorbed, transmitted or reflected. The magnitude of these optical processes depends on the optical properties of each object, which in the case of plants relate to their biochemical and structural traits. These plant phenotypic traits result from gene expression underpinned by an individual’s genotype constrained by phylogeny, the environment the individual is exposed to, and the interaction between genotype and the environment. Remote observations of plant phenotypes across space and time may thus hold information about the composition and structure of genetic variation, if a link between spectral and genetic information can be established. This dissertation encompasses studies linking information derived from imaging spectrometer acquisitions under natural conditions with in situ collected information about genetic variation within a tree species, the European beech Fagus sylvatica. It presents the correlation between spectral and genetic information by sequentially expanding temporal, spatial and genetic aspects, and simultaneously accounting for environmental contexts that impact gene expression. By evaluating spectral-genetic similarities across decadal airborne imaging spectrometer acquisitions and accounting for spectral phenotypes and whole-genome sequences of tree individuals from across the species range, the studies provide a proof that observed reflectance spectra hold information about genetic variation within the species. Further, by accounting on uncertainties of spectral measurements and deriving genetic structure of the most abundant tree species in Europe, the dissertation advances the current remote sensing approaches and the knowledge on intraspecific genetic variation. The studies focus particularly on the genetic relatedness between the trees of the test species, whereas the acquired data may allow to establish direct associations between genes and spectral features. The methods used may be expanded to other tree species or applied to spectral data acquired by upcoming spaceborne imaging spectrometers, which overcome current spatiotemporal limitations of data collection, and demonstrate further paths towards the association of genetic variation with variation in spectral phenotypes. The thesis presents the potential of spectral derivation of intraspecific genetic variation within tree species and discusses associated limitations induced by spectral, temporal, spatial and genetic scopes of analysis. This sets a stage towards establishing a means of remote observations of spectral signatures to contribute to monitoring biological variation at the fundamental genetic level, which correlates with ecosystem performance and is an insurance mechanism for populations to adapt to global change
    • 

    corecore