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Abstract. Dimensionality is one of the greatest challenges when deciphering hyperspectral imaging data. Although
the multi-band nature of the data is beneficial, algorithms are faced with a high computational load and statistical
incompatibility due to the insufficient number of training samples. This is a hurdle to downstream applications. The
combination of dimensionality and the real-world scenario of mixed pixels, the main challenges with imaging data are
identification and classification. Here we address the complications of dimensionality by using specific spectral indices
from band combinations and spatial indices from texture measures for classification, in order to better identify the
classes. We classified spectral and combined spatial-spectral data and calculated measures of accuracy and entropy. A
reduction in entropy and an overall accuracy of 80.50% was achieved when using the spectral-spatial input, compared
to 65% for the spectral indices alone and 59.50% for the optimally determined principal components.
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1 Introduction

A targets spectral information can be acquired in many, contiguous bands of specific wavelengths,

a phenomenon known as hyperspectral imaging1, 2 Due to the nature of the information acquired

(specific, narrow bandwidths detecting minor changes of reflectance), the datasets usually have

intrinsic diagnostic characteristic with respect to the target.3, 4 The identification of targets can be

achieved using variations in spectral responses that can be attributed to situational, conditional or

illumination changes.

Most hyperspectral applications and assessments begin by addressing the dimensionality of the

dataset. Spectral information is reduced using a pre-processing method to either identify features
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on the basis of interest or ‘project’ them into a feature space based on the amount of valuable infor-

mation. Even when attributing credibility to the narrow-bandwidth, contiguous bands for greater

spectral information, the datasets also encounter the “curse of dimensionality.” Usually referred to

as the Hughes Phenomenon,5 the statistical accuracy of class recognition is known to optimise for

a subset of bands and subsequently decline due to inadequate training samples.6 The benefits of

dimensionality reduction including the lower computational load are widely accepted.1, 3, 7

Extending the current literature, we gain insight into the implications of using spectral and spa-

tial information as the input database for the classification algorithm instead of an output of feature

extraction. This paper reports the results of knowledge-based feature selection and transformation

to indices for the improvement of identification for specific classes. A possibilistic c-means (PCM)

classifier was used due to its advantages over other mixed pixel classifiers, i.e. the probability of

classes within a pixel are not constrained. We applied the classifier to the Airborne Prism EXperi-

ment (APEX) Open Science Dataset (OSD). To demonstrate the improvement in the identification

accuracy of individual classes, a baseline classification was established using principal component

analysis (PCA) dimensionality reduction to establish entropy for the statistical quantification of un-

certainty.6 The classification approach is based on our earlier report8 and targeted the identification

of specific, individual classes and the improvements were used to validate the results.

2 Related Work

Like many types of imaging information, hyperspectral data has many applications including

its use determine the extent of vegetation for health analysis,9 species-level classification10 and

biomedical research.11 However, the additional spectral information reduces the classification ac-

curacy, and results in a high computational load. This phenomenon has been described as a statis-

2



tical inadequacy of training samples compared to the number of bands in the dataset.5 A ‘peaking

phenomenon’ was said to occur, with accuracy improving for a subset of bands and thereafter

declining with every additional band. Although this phenomenon has been challenged as appar-

ent in nature,12 the reduction of hyperspectral data dimensionality is nevertheless a key step in

the application of imaging data. In order to avoid the problems associated with dimensionality, nu-

merous methods have been applied for feature extraction, including the use of orthogonal subspace

projections,7 PCA,13, 14 Minimum Noise Fraction (MNF),15 and morphological transformations.16

Information from higher-dimensional imaging data requires methods that can broadly be cate-

gorized as feature selection and feature extraction. Feature selection methods refer to algorithms

that output a subset of the original dimensionality, whereas feature extraction methods create new

features either by transformation or by combining input features.17 Methods such as PCA use

linear transformation to convert the data into a reduced or “intrinsic dimensionality”,18 such trans-

formations are not universally applicable. An attempt has been made to optimise the accuracy

of the feature selection method by using sequential forward selection, steepest ascent and fast

constrained search strategies.19 Another approach attempted simultaneously to reduce the dimen-

sionality and classify the dataset by projecting the signals into orthogonal subspace, eliminating

unwanted signatures and improving signal-to-noise ratios.7 In another, a sequence of morpholog-

ical transformations was use to filter and classify highly-dimensional data.16 As well as reducing

the computational load, dimensionality reduction greatly improves the classification accuracy. It

results in a comparable number of training samples against a subset of bands with the information

from the original image. However, PCA and similar methods have several disadvantages: they

assume the data dimensionality can be reduced by linear transformation when data could be non-

linear in relation, and the initial components are dominated by data showing greater variance while

3



not (with exceptions) maximising the extracted information.13 These disadvantages have prompted

further research into non-linear and/or knowledge-based dimensionality reduction.

2.1 Pixel-based Spectral Indices

Emphasising the importance of obtaining useful information from the image data, methods of fea-

ture selection can be employed or combinations of bands (feature extraction) can be used. Spectral

indices are derived from distinctive characteristics in the spectral signatures of the target in order

to highlight them against the background. For example, biophysical variables can be quantified

by remote sensing,20 introducing greyscale and colour signatures of features.21–23 The formulation

of spectral indices began with the simple ratio (SR)24 of bands. The contrasting spectral response

(Figure 1) in the infrared (0.8 µm) and red (0.675 µm) wavelength regions was used by defining

the ratio of individual pixel values.

Fig 1 Identifiable biophysical aspects correlated with spectral information.25
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One of the most popular spectral indices is the normalised difference vegetation index (NDVI),26

which is a modified version of the SR index. The ratio of the reflectance values (R) in the near-

infrared and red bands ((RNIR − RR)/(RNIR + RR) for Landsat 1 data) was applied in NDVI

to enhance vegetation features compared to the background, producing results in greyscale val-

ues.27 Although the delineation of vegetation features by NDVI was satisfactory, the correlation

between different vegetation parameters and the underlying soil reflectance affect the results.28 To

address these vegetation-specific aspects, many indices have been formulated to account for the

chlorophyll content,29–31 Leaf Area Index (LAI),32–34 and other parameters.

Interference caused by the soil were addressed by the development of the Soil Adjusted Vege-

tation Index (SAVI), which is shown in Equation 1.28

SAVI =
(RNIR −RR)

(RNIR +RR + L)
× (1 + L) (1)

where L defines the prior knowledge of the vegetation density, i.e. low vegetation (L = 1), inter-

mediate vegetation cover (L = 0.5) and high density vegetation cover (L = 0.25). The need for

prior knowledge of vegetation density cover was eliminated in the modified SAVI index (MSAVI)35

which is shown in Equation 2.

MSAVI = 0.5(2RNIR + 1−
√

(2RNIR + 1)2 − 8(RNIR −RRed)) (2)

The implications of narrowband data vs broadband data have been considered when estimating

LAI and green cover.36 Applying the basic understanding of chlorophyll absorption in the red

wavelength region and reflectance at NIR wavelengths,37 previously defined vegetation indices
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were explored to highlight the importance of narrow band hyperspectral imagery. LAI and canopy

chlorophyll density (CCD) were investigated using previously defined indices.38

The chlorophyll absorption in reflectance index (CARI)39 was improved by developing a mod-

ified version (MCARI)34 which compares the reflectance at 0.67 to 0.55 µm and 0.7 µm as shown

in Equation 3.

MCARI = [(R0.7 −R0.67)− 0.2(R0.7 −R0.55)]×
R0.7

R0.67

(3)

The diagnostic capability of spectral indices and narrowband imaging were further highlighted

through improved pigment and chlorophyll estimation40, 41 in open-canopy tree crops,42 and viticul-

ture,43, 44 and by measuring physiological characteristics using the physiological reflectance index

(PRI),45 , as well as the accumulation of specific metabolites such as carotenoids.46

The application of mathematical and/or ratio-based spectral indices to enhance certain features

was also applied beyond the analysis of vegetation. The normalised difference built-up index

(NDBI)47 was developed to classify built-up parts of urban areas utilising the broadband data from

the Landsat Thematic Mapper, as shown in Equation 4.

NDBI =
(RTM5 −RTM4)

(RTM5 +RTM4)
(4)

where TM5 is the shortwave infrared-1 band (1.55–1.75 µm) and TM4 is the NIR band (0.76–0.90

µm) of the Landsat Thematic Mapper.

Water bodies have been identified via their infrared absorption properties using the normalised
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difference water index (NDWI)48 as shown in Equation 5.

NDWI =
(R0.86 −R1.24)

(R0.86 +R1.24)
(5)

2.2 Texture-based Spatial Indices

Although spatial indices can be interpreted in many ways,8 current research focusses on utilising

the spatial variation of pixels and the influence of a neighbourhood of pixels on the detection of

targets. Spatial textures are used to discriminate spectrally-similar targets and are therefore applied

to the spectral index output(s).

The primary pattern elements are spectral, textural and contextual features.8 Whereas early

research focused on the coarseness of features and edge definition, a discussion of textural features

identified the important influence of pixel neighbourhoods.21 Derived textures used angular near-

est neighbourhood grey-tone spatial dependence matrices.21, 49 The neighbourhood of the pixels

depend on the variation across pixels in the image. This correlates with the resolution of the im-

age data and the extent of the targets. For example, if a large neighbourhood is considered for a

much smaller target (e.g. house roofs, as used in the current study), the target is lost in the larger

window of texture calculation. Alternatively, larger neighbourhoods can be considered for targets

(vegetation) that occupy a larger area of the image and show less spatial variation.

Texture is important for the accurate interpretation of images22 (Figure 2). Applications have

expanded to the interpretation of synthetic aperture radar (SAR) imagery using grey-tone co-

occurrence textural matrices.50 However, the most suitable texture analysis elements should be

selected rather than using all elements, and this is the approach we have followed.
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Fig 2 Priority ordering of image elements, the basis of image analysis procedures22

Texture analysis can provide quantitative discriminators along with spatial metrics,49 in order

to improve the identification of spatial information from datasets. We set out to improve the clas-

sification accuracy of datasets when using spatial and spectral information together as input to the

classifier for identification of specific classes.

3 Methods

Many methods for the assessment of hyperspectral imaging for classification purposes perform

dimensionality reduction before employing a classifier for target identification.1, 3, 7, 14, 16, 51 The

need for a versatile airborne imaging system resulted in the European Space Agency (ESA) APEX

project funded by Switzerland and Belgium.6, 52 Detailed information about the APEX project can

be found elsewhere.52–54

The APEX instrument operates in the range 0.38–2.5 µm and can collect data in 313 freely con-

figurable bands.55 The APEX OSD is freely available online (http://www.apex-esa.org/content/free-
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data-cubes). Raw data acquired by the sensor in June 2011 was processed to a Level 1 processed

dataset.56 The spectral and spatial resolutions are 285 bands and 1.8 metres respectively. The cap-

tured dataset included a variety of targets including grass, forests, roofs and roads. The classes

were identified using the SwissTopo web portal57 and specific pixels and regions of interest were

shared by the data providers. The classes investigated were (1) Artificial Turf; (2) Black Roof; (3)

Building; (4) Clay Soil; (5) Grass; (6) Lawn Tennis Court; (7) Coniferous Forest; (8) Deciduous

Forest; (9) Pasture; (10) Railway; (11) Red Roof; (12) Red Synthetic Ground; (13) Road; (14)

Roofs; (15) Sand; (16) Stressed Grass; (17) Synthetic Sports Surface; (18) Vineyard; (19) Water

and (20) Yellow Tartan. Training and testing datasets were developed and denoted in Figure 4.

The ‘baseline’ classification using PCA for dimensionality reduction was used to provide a

means of comparison with the indices-based method.8 Entropy measures were used to ascertain

the minimum number of principal components needed for classification. When more than seven

components were present, there was no significant increase in classification accuracy to justify the

increase of number of input bands to the PCM classifier. The classification and the accuracy as-

sessment of the baseline classification (Figure 3) were therefore achieved using seven components,

establishing the overall baseline accuracy of 59.50%.

The spectral signatures of each type of forest were similar, due to the presence of vegetation,

but varied in terms of intensity (Figure 5). This variation was caused by difference of physical

structure of coniferous and deciduous leaves, the latter having a larger surface area, and thus higher

reflectance. Similar observations were recorded when comparing other classes (Figure 6).

There were key differences in the spectral responses of healthy and stressed grass. The red

edge represents absorption by leaf pigments and reflectance based on cell structure. The lack of

leaf pigments in stressed grass contributes to the poorly-developed red edge. When comparing the
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Fig 3 The methodology followed in the study is presented. We would like clarify that the proposed dimensionality
reduction approach in this study is the knowledge-based identification of hyperspectral bands that will be used to
evaluate the spectral indices. These identified spectral and spatial indices will be used as input to the classification
algorithm.

sports surfaces (Figure 7), the Red Sports Surface shows distinguishable characteristics at ≈ 0.8

µm when the spectral curve (shown in red) shows reflectance whereas the other two surfaces show

absorption.

The reduction of reflectance and shift of red edge position (REP) towards the red wavelengths

is indicative of less absorption by chlorophyll. The REP is estimated using the first derivative of

the spectral response as a function of reflectance, yielding a specific band number of the red edge.59
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Fig 4 Airborne Prism EXperiment (APEX) Open Science Data (OSD) false colour composite (FCC) image of Baden,
Switzerland,58 showing representative areas of the different classes in the study.

The spectral curve of Stressed Grass illustrates a poorly defined red edge (Figure 8) with the first

derivative of the spectral curve indicating a shift of REP (Figure 9) compared to the typical red

edge for Grass and the position of the red edge peak at the 64th band (Figure 9).
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Fig 5 Spectral response of Deciduous and Coniferous forests

Fig 6 Spectral response of Soil, Grass, Stressed Grass and Vineyards

3.1 Classification Approach

When image data are collected from a target, the pixel is not composed of a single class in every

situation. When more than one class is present in a single pixel, it is considered to be ‘mixed’.

Classifiers that constrain a pixel to a single class are not suitable for the classification of mixed

pixels. Soft or fuzzy classification approaches are better suited to such cases because they esti-
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Fig 7 Spectral response of Synthetic Sports Surface, Artificial Turf and Red Synthetic Ground

Fig 8 Reflectance curves of Healthy Grass and Stressed Grass showing the variation of the NIR plateau, indicating
that the chlorophyll concentration in the leaf declines under stress.

mate the probability of a pixel belonging to a class, allowing multiple classes to have a degree of

presence in a single pixel.

Fuzzy c-means (FCM) and possibilistic c-means (PCM) algorithms were considered for clas-

sification but FCM was not suitable for this application because it only achieves dependable ac-

curacy when all the classes are exhaustively defined (the membership function of the classifier is

constrained to 1). In contrast, due to the lack of a membership function constraint, the PCM clas-
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Fig 9 The red edge position (REP) shifts towards the red wavelengths when the amount of chlorophyll in vegetation
declines. The shift is indicative of the health of the vegetation, which is grass in this case.

sifier better evaluates the presence of the class in a pixel as a function of its signature without the

constraints of other classes.60 In the case of PCM, the membership function of each class is defined

using the following constraints (Equations 6 –8.60, 61

uij ∈ [0, 1] for all i and j (6)

0 <
n∑

j=1

uij ≤ N for all i (7)

maxi uij > 0for all j (8)

where uij is the membership value of pixel xi belonging to a class βi; and N is the number of

pixels (or feature points).
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3.2 Spectral Indices

Spectral inferences about the classes were made by using identification ‘keys’ or specific bands that

allow the classifier to distinguish between targets. These keys are contrasting spectral behaviour of

absorption and reflection (troughs and peaks) in the spectral curve. The spectral properties of all the

identified classes were compared. Table 1 shows the identifiable properties and their corresponding

wavelength regions for the vegetation features. Using this method of feature selection, we reduced

the dimensionality of the hyperspectral dataset to bands with the most appropriate information, so

we consider this to be a knowledge-based dimensionality reduction approach. The bands selected

in this process form the input database for the classifier.

Fig 10 Spectral Curve comparison of Artificial Turfs and Roofs

Following the identification of keys with the necessary spectral information, spectral indices

were defined using band combinations (Table 2). The indices did not always uniquely identify a

specific class, e.g. the increase in reflectance for Artificial Turf and Roof spectral curves (indicated

in Figure 10). Therefore, when spectral indices are defined in these regions, both classes are
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highlighted. Such conflicts among the 20 classes considered in this study are listed in Table 3.

Table 1 Correlations between wavelength regions and their biological significance62–64

Wavelength
Region

Wavelength
(λ)

Band Description and
Significance

Blue 0.49 µm
Sensitive to loss of chlorophyll, browning, ripening, senescence and
soil background effects. Also sensitive to carotenoid pigments.

Green 1 0.52 µm
Maximum “positive change in reflectance per unit variation in
wavelength” of visible spectrum is seen around this green
wavelength and is sensitive to pigment content

Green 2 0.55 µm
Green peak in the visible spectrum; strongly related to chlorophyll
content.

Green 3 0.575 µm
Maximum “negative change in reflectance per unit variation in
wavelength” of visible spectrum is seen around this green
wavelength and is sensitive to pigment content.

Red 1 0.66 µm Chlorophyll absorption pre-maxima (reflectance minima - 1)

Red 2 0.675 µm
Chlorophyll absorption maxima. Greatest soil-crop contrast seen at
this wavelength.

Red edge - 1 0.7 µm

Chlorophyll absorption post-maxima (reflectance minima - 2). This
point marks the change of maximum red-absorption to dramatic
increase in red reflectance along the red edge. This has been found
to be sensitive to stress levels in vegetation.

Red edge - 2 0.72 µm
Critical point on the red edge where the “maximum change of slope
reflectance spectra per unit change in wavelength” occurs. Sensitive
to temporal changes in crop growth, stress, etc.

NIR 0.845 µm Centre of the “NIR shoulder”. Strongly correlated to chlorophyll.

NIR Peak - 1 0.905 µm
Peak of the NIR spectrum. Sensitive to stress or growth stages of
some crops, where there is a significant change in reflectance along the
NIR shoulder. Useful for calculating crop moisture sensitive index.

NIR Peak - 2 0.920 µm Peak of the NIR spectrum
NIR - Moisture
Sensitive 0.975 µm

Centre of moisture-sensitive portion of NIR. Various measures of
plant moisture can be made from this wavelength’s reflectance.
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Table 2 Spectral indices database chosen for classification input; 20 classes are identified in these indices, as some
indices identify more than 1 class. Note that the band numbers correspond to APEX OSD data

Object Class Formulated/Applied
Index APEX Band Combination

Artificial Turf Band Ratio 95, 76 (0.8752 µm, 0.7716 µm)
Black Roof Band Ratio 160, 149 (1.45 µm, 1.343 µm)
Buildings NDBI 160, 145 (1.45 µm, 1.304 µm)
Clay Soil Band Ratio 236, 225 (2.09 µm, 2.007 µm)
Coniferous Forest Band Ratio 85, 53 (0.8167 µm, 0.6816 µm)

Deciduous Forest MTVI1
81, 17, 52 (0.7958 µm, 0.5567 µm,
0.6784 µm)

Red Synthetic Ground Band Ratio 197, 192 (1.782 µm, 1.74 µm)
Stressed Grass Band Ratio 234, 226 (2.074 µm, 2.015 µm)

Vineyard
Modified NDVI (devised
from spectral curve behaviour
in SWIR)

236, 225 (2.09 µm, 2.007 µm)

Water NDWI 183, 146 (1.662 µm, 1.314 µm)
Roof Band Ratio 142, 122 (1.275 µm, 1.082 µm)
Basic Vegetation Index MSAVI 85, 53 (0.8167 µm, 0.6816 µm)

Table 3 Conflicting classes from identified spectral keys
Object class-specific

index Additional Classes Identified

Artificial Turf Roof
Black Roof Water
Buildings Multiple classes
Clay Soil Artificial Turf, Vineyards
Coniferous Forest -
Deciduous Forest Grass
Red Synthetic Ground Multiple Classes
Stressed Grass Clay Soil, Vineyard
Vineyard Clay Soil, Stressed Grass
Water -
Roof -
Basic Vegetation Index All vegetation in the study area

3.3 Spatial Indices from Texture Analysis

The class-specific feature extraction of the spectral characteristics provided us with the second

input database (the first being the input of principal components6) for the classifier. However,
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when dealing with classes that have comparable spectral behaviour (e.g. forests and grass), spa-

tial distribution would act as a distinguishing factor. Therefore, texture analysis (neighbourhood

distribution) was considered for the purpose of exploiting the spatial distribution of the classes.

Grey-Level Co-occurrence Matrix (GLCM) texture analysis has been described in detail.21 The

texture measurement involves the selection of a neighbourhood of pixels followed by quantifying

the grey-level variation to identify the most appropriate textural feature. The analysis is performed

on the spectral indices output, in order to distinguish between spectrally similar targets. The choice

of neighbourhood for the pixels is dependent on the spectral resolution of the image data and the

extent of the target. Smaller targets that span a few pixels require smaller windows of texture analy-

sis, whereas larger targets benefit from the flexibility of larger spectral windows. After considering

the available texture measures, we chose the following (Equations 9 – 11).

Mean (µi) =
N−1∑
i,j=0

i (Pi,j) ; Mean (µj) =
N−1∑
i,j=0

j (Pi,j) (9)

Entropy =
N−1∑
i,j=0

Pi,j (−ln Pi,j) (10)

Second Moment =
N−1∑
i,j=0

(Pi,j)
2 (11)

where Pi,j is the (i, j)th entry in the grey tone spatial dependence matrix and N is the number of

grey levels in the quantised image.

We initially tested multiple window sizes and choice of the neighbourhood was dependent on

the spatial extent of the classes. Thus, classes such as Roof did not need window sizes larger than
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3x3. Due to variations in the extent of vegetation across the image, larger window-sizes could be

accommodated and provided better results. The chosen spatial indices (Table 4) were added to the

spectral indices to make up the third input for classification.

Table 4 Selected texture measures (spatial indices) for input to the classifier
Source Index Texture Window size (Neighbourhood)

Black Roof Entropy 3 x 3 window
Clay Soil Mean 3 x 3 window
Coniferous Forest Second Moment 3 x 3 window
MSAVI Vegetation Index Second Moment 5 x 5 window
Roof Mean 3 x 3 window

Vegetation classes benefit from using the second moment texture because the second moment

generates better results when a few pixels in the neighbourhood are higher in intensity.

Entropy generates high output values when measured on neighbourhoods that have a continu-

ous and consistent pixel values. The texture measure derives the desired output when applied to

features such as Black Roof, which have a consistent distribution of pixel values. The mean dis-

tribution of pixel values highlights pixels of high intensity and increases the separability of classes

such as Roof and Clay Soil.

The spectral indices input database and the combined spectral and spatial indices database

were evaluated for classification accuracy using the PCM classifier and the results were compared

to determine the suitability of the method. The primary motivation for this research was to better

understand the implications of combining spectral and spatial information for the classification

of the dataset, following entropy analysis and accuracy assessment after defuzzification.6 The

accuracy assessment includes:

1. User’s Accuracy (UA) which is the reliability or probability that a pixel class on the image

represents the same on the ground.
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2. Producer’s Accuracy (PA) which represents how well a certain area has been classified

3. Overall Accuracy (OA) which represents the number of pixels correctly classified when

compared with ground truth and knowledge information.

4 Results

We selected the 12 spectral and 5 spatial input bands. Combinations of these were used to create

the input database for classification. The results are presented in the order of baseline classification,

followed by spectral indices alone, followed by a combination of texture features in addition to the

spectral indices input. Entropy measures were not calculated in scenarios where classes were not

identified and are shown using the symbol ‘/’ in Tables 5 – 7.

The first inputs to the classifier were the principal components derived by PCA. The appro-

priate number of principal components was determined by entropy analysis.6 The classification

using these principal components yielded an overall accuracy of 59.50%. The second input to the

classifier was the spectral indices database (12 features shown in Table 2). As well as improving

the overall classification accuracy to 65% (Table 5), the spectral indices input database also iden-

tified seven classes that were previously unidentified when using the principal components alone.

Entropy measures were calculated for an average of 50 membership vectors per class.

When comparing the indices input (Table 5) and the spectral-spatial indices (Table 6) for clas-

sification, we observed a decrease in entropy measures for the majority of the classes, inferring

a reduction in the level of uncertainty when applying class labels to the pixels. Although the en-

tropy was lower, the defuzzified outputs also achieved a lower classification accuracy of 62.50%.

However, a significant improvement in classification accuracy was achieved for vegetation classes,

such as Vineyard (Table 6).
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Table 5 Entropy determination and classification results when using the optimally chosen principal components (7
PCs) and only the spectral indices as input for the classifier. The symbol ‘/’ indicates that the class was not identified
in the classification process.

Class
PC Input Database

(7 features)
Indices Input Database

(12 features)
Entropy UA PA Entropy UA PA

Artificial Turf / 20 100 1.94 100 100
Black Roof / 62.5 83.34 / 55.56 100
Building 1.35 100 50 / 100 42.86
Clay Soil 1.334 88.89 80 1.45 90 100
Grass / 40 44.45 / 40 57.14
Lawn Tennis Court 1.26 70 100 / 40 100
Coniferous Forest 1.3 60 40 1.62 80 57.14
Deciduous Forest / 80 29.63 1.6 90 50
Pasture / 30 100 1.46 55.56 100
Railway / 28.57 100 / 30 50
Red Roof 1.1 100 25 / 66.67 54.55
Red Synthetic Ground 1.15 60 85.71 / 60 100
Road 0.86 90 47.37 / 70 23.34
Roof / 40 50 0.68 100 66.67
Sand 1.23 50 100 / 10 100
Stressed Grass / 40 40 1.49 70 70
Synthetic Sports Surface / 100 100 / 44.45 100
Vineyard 1.07 30 50 1.49 66.67 75
Water / 100 90.9 2.06 100 90.91
Yellow Tartan / 33.34 100 0.6 30 100
Overall Classification Accuracy 59.50% 65%

Although the addition of spatial indices improved the classification accuracy for specific indi-

vidual classes (e.g. Synthetic Sports Surface, Pastures), the overall classification accuracy dropped

below the 65% achieved when using spectral indices alone. Therefore, the assignment of spatial

classes was investigated while using a total of 16 spatial indices (without MSAVI-based texture)

and 15 (without MSAVI-based and Black Roof Entropy textures) while including all spectral in-

dices (Table 2). The combination of 16 indices achieved the highest accuracy of 80.50% was

achieved (Table 6) with better individual accuracies and lower degrees of uncertainty for classifi-

cation.
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Table 6 Entropy determination and classification results when using the Indices and Textures database (17 and 16
features) as input for the classifier. The symbol ‘/’ indicates that the class was not identified in the classification
process.

Class
Indices and textures

(17 features)

Indices and textures
without MSAVI-based texture

(16 features)
Entropy UA PA Entropy UA PA

Artificial Turf 1.146 80 80 1.274 100 100
Black Roof / 37.5 75 / 12.5 100
Building 0.63 60 31.58 0.44 100 63.63
Clay Soil 1.212 80 100 1.2 100 100
Grass 1.004 60 85.71 1.25 90 90
Lawn Tennis Court 0.64 80 66.67 0.5 88.89 100
Coniferous Forest 0.956 100 71.43 1.34 100 83.33
Deciduous Forest 1.02 80 61.54 1.35 100 76.92
Pasture 0.966 71.43 83.34 1.25 44.44 100
Railway / 10 33.34 / 25 100
Red Roof / 20 100 0.46 100 91.67
Red Synthetic Ground 0.65 81.82 90 0.55 42.86 100
Road / 50 15.625 0.44 88.89 24.24
Roof / 30 27.27 / 71.43 75
Sand / 20 33.34 / 14.29 100
Stressed Grass 1.126 80 80 1.3 87.5 100
Synthetic Sports Surface 0.65 50 100 0.55 87.5 100
Vineyard 0.94 80 88.89 1.1 90.91 83.34
Water 1.44 100 76.92 1.85 90 75
Yellow Tartan / 10 100 0.5 33.33 100
Overall Classification Accuracy 62.50% 80.50%

The defuzzification of the classification outputs assigns a class label of the highest membership

to a considered pixel. Although a few classes were not identified by the PCM classifier, their results

were measured after defuzzification through which every pixel was assigned a class label.

5 Discussions

Our results confirm that using spectral-spatial indices can improve the accuracy of classification.

However, a key inference from the results is that not all spatial indices added valuable information

to the database. The removal of MSAVI-based texture (Table 6) improved the overall classification
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Table 7 Entropy determination and classification results when using the Indices and Textures database (15 features)
as input for the classifier. The symbol ‘/’ indicates that the class was not identified during the classification process.

Class

Indices and textures
without MSAVI-based and

Black Roof Entropy
(15 features)

Entropy UA PA
Artificial Turf 1.296 100 100
Black Roof / 30 100
Building 0.399 100 70.59
Clay Soil 1.14 100 100
Grass 1.17 80 80
Lawn Tennis Court 0.46 75 100
Coniferous Forest 1.18 100 83.33
Deciduous Forest 1.2 90 81.82
Pasture 1.19 70 100
Railway / 12.5 33.33
Red Roof 0.44 63.64 70
Red Synthetic Ground 0.52 75 85.71
Road 0.41 73.33 28.95
Roof / 72.73 66.67
Sand / 0 0
Stressed Grass 1.16 100 63.64
Synthetic Sports Surface 0.54 75 100
Vineyard 1.1 50 100
Water 1.138 100 83.33
Yellow Tartan 0.5 11.12 100
Overall Classification Accuracy 72%

accuracy of the dataset. This combination of knowledge-based feature selection and extraction for

classification improves classification accuracy for specific classes, while intrinsically reducing the

dimensionality of the hyperspectral dataset by choosing the information input to the classifier.

The baseline classification used a dimensionality-reduced input from the PCA to reduce the

hyperspectral data to its intrinsic dimensionality of seven principal components. The achieved

an accuracy of 59.50% and the lowest number of classes were successfully identified, and subse-

quently classified. The usage of spectral indices (Table 2), irrespective of the arising conflicts of

classes (Table 3) improved the classification accuracy for the dataset. The knowledge-based selec-
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tion of spectral information and the reduction of dimensionality using indices allowed the classifier

to identify and classify the pixels with greater accuracy. The use of this spectral information im-

proved the classification of vegetation classes (Coniferous Forest, Deciduous Forest, Pasture and

Stressed Grass). Marginal improvement was also observed for the classification of Clay Soil and

Artificial Turf.

Classes such as Black Roof, Grass and Synthetic Sports Surface remained unidentified when

only the spectral information was used. Furthermore, the Railway class remained unclassified for

all the spectral–spatial indices inputs. Due to its nature, the railway network is better identified

using spatial information, so object oriented classification approaches may be more suitable for

the classification of railway networks.

The identification of classes improved when spectral and spatial features were combined as the

input database. Although the overall accuracy was lower when compared to the spectral indices

input, the accuracy of classifying Grass, Coniferous Forest and Deciduous Forest improved. The

entropy measure was substantially reduced in this case, in agreement with better classification re-

sults and lower degrees of uncertainty when assigning class labels. Further investigation is required

to identify the spatial features that add most value against dimensionality, thereby formulating the

next input database of 12 spectral and 4 spatial indices (excluding the MSAVI-based texture). In

comparison with the database of 17 input features (Table 6), entropy measures for classes such

as Buildings, Clay Soil, Lawn Tennis Court, Red Synthetic Ground and Synthetic Sports Surface

was lower than the input database of 17 features. For the same classes, there was also an improve-

ment in classification accuracy (UA). The Road class was identified when the input features were

reduced from 17 to 16, also with a low entropy and high (UA) accuracy. Some of the classes (Vine-

yard and Forest classes) saw an increase in entropy, but also an increase in classification accuracy.
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Conversely, the Water class showed an increase in entropy and a decrease in classification accuracy.

The MSAVI-based texture index formulated from the MSAVI spectral index was initially added to

the input database to distinguish between vegetation classes. However, the overall classification

accuracy is the best of the many combinations of inputs to the classifier, thereby confirming the

value of the remaining texture indices (Table 4). The Second Moment spatial index, derived from

Coniferous Forest spectral index, provided information sufficient to distinguish the Grass and For-

est classes and to simultaneously improve their classification accuracy. Only four classes could not

be identified using PCM and the 16 feature input database, and an overall improvement of accuracy

was achieved.

In order to test the significance of the remaining four spatial indices, various combinations

of usage were tested. The only significant result was achieved when using 15 features (exclud-

ing MSAVI-based Second Moment and Black Roof Entropy texture measures) which achieved an

overall classification accuracy of 72%.

6 Conclusions and Future Work

Our results show that spectral and spatial indices can be combined for classification. The use of

spectral and spatial information improves the accuracy of the classifier, but the input dataset must

be evaluated to find the best possible combination of indices. We find that every dataset is unique,

and the assessment of knowledge-based dimensionality reduction requires an understanding of the

specific class that needs to be identified.

Future research could proceed in the following directions:

1. Evaluating the application of object-oriented classification because it accommodates both

spectral and spatial information.
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2. A few of the classes were not classified regardless of the combination of inputs for the classi-

fier. Although this has been attributed to the smaller spatial distribution of pixels correspond-

ing to these classes, their contribution to this classification approach could be evaluated by

considering a different study area that has a higher distribution of such classes.

3. The optimal choice of hyperspectral bands is an ongoing domain of research, e.g. the selec-

tion of optimal bands for agricultural crop characteristics using field-collected biophysical

variables.62 For specific classes, an automated method that identifies optimal bands could be

developed.
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