5,345 research outputs found

    Thermality of the Hawking flux

    Get PDF
    Is the Hawking flux "thermal"? Unfortunately, the answer to this seemingly innocent question depends on a number of often unstated, but quite crucial, technical assumptions built into modern (mis-)interpretations of the word "thermal". The original 1850's notions of thermality --- based on classical thermodynamic reasoning applied to idealized "black bodies" or "lamp black surfaces" --- when supplemented by specific basic quantum ideas from the early 1900's, immediately led to the notion of the black-body spectrum, (the Planck-shaped spectrum), but "without" any specific assumptions or conclusions regarding correlations between the quanta. Many (not all) modern authors (often implicitly and unintentionally) add an extra, and quite unnecessary, assumption that there are no correlations in the black-body radiation; but such usage is profoundly ahistorical and dangerously misleading. Specifically, the Hawking flux from an evaporating black hole, (just like the radiation flux from a leaky furnace or a burning lump of coal), is only "approximately" Planck-shaped over a bounded frequency range. Standard physics (phase space and adiabaticity effects) explicitly bound the frequency range over which the Hawking flux is "approximately" Planck-shaped from both above and below --- the Hawking flux is certainly not exactly Planckian, and there is no compelling physics reason to assume the Hawking photons are uncorrelated.Comment: V1: 13 pages. V2: Now 17 pages. 3 references added; other references updated; new section on the relationship between past and future null infinity; small edits throughout the text. V3: Now 19 pages. 4 more references added; extra discussion/small edits. No physics change

    Planck stars

    Full text link
    A star that collapses gravitationally can reach a further stage of its life, where quantum-gravitational pressure counteracts weight. The duration of this stage is very short in the star proper time, yielding a bounce, but extremely long seen from the outside, because of the huge gravitational time dilation. Since the onset of quantum-gravitational effects is governed by energy density ---not by size--- the star can be much larger than planckian in this phase. The object emerging at the end of the Hawking evaporation of a black hole can then be larger than planckian by a factor (m/mP)n(m/m_{\scriptscriptstyle P})^n, where mm is the mass fallen into the hole, mPm_{\scriptscriptstyle P} is the Planck mass, and nn is positive. We consider arguments for n=1/3n=1/3 and for n=1n=1. There is no causality violation or faster-than-light propagation. The existence of these objects alleviates the black-hole information paradox. More interestingly, these objects could have astrophysical and cosmological interest: they produce a detectable signal, of quantum gravitational origin, around the 10−14cm10^{-14} cm wavelength.Comment: 6 pages, 3 figures. Nice pape

    Why Black Hole Information Loss is Paradoxical

    Get PDF
    I distinguish between two versions of the black hole information-loss paradox. The first arises from apparent failure of unitarity on the spacetime of a completely evaporating black hole, which appears to be non-globally-hyperbolic; this is the most commonly discussed version of the paradox in the foundational and semipopular literature, and the case for calling it `paradoxical' is less than compelling. But the second arises from a clash between a fully-statistical-mechanical interpretation of black hole evaporation and the quantum-field-theoretic description used in derivations of the Hawking effect. This version of the paradox arises long before a black hole completely evaporates, seems to be the version that has played a central role in quantum gravity, and is genuinely paradoxical. After explicating the paradox, I discuss the implications of more recent work on AdS/CFT duality and on the `Firewall paradox', and conclude that the paradox is if anything now sharper. The article is written at a (relatively) introductory level and does not assume advanced knowledge of quantum gravity.Comment: 26 pages. Corrected error in one diagram; other minor revision

    Holography without strings?

    Full text link
    A defining feature of holographic dualities is that, along with the bulk equations of motion, boundary correlators at any given time t determine those of observables deep in the bulk. We argue that this property emerges from the bulk gravitational Gauss law together with bulk quantum entanglement as embodied in the Reeh-Schlieder theorem. Stringy bulk degrees of freedom are not required and play little role even when they exist. As an example we study a toy model whose matter sector is a free scalar field. The energy density (\rho) sources what we call a pseudo-Newtonian potential (\Phi) through Poisson's equation on each constant time surface, but there is no back-reaction on the matter. We show the Hamiltonian to be essentially self-adjoint on the domain generated from the vacuum by acting with boundary observables localized in an arbitrarily small neighborhood of the chosen time t. Since the Gauss law represents the Hamiltonian as a boundary term, the model is holographic in the sense stated above.Comment: 13 page
    • …
    corecore