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Abstract: Is the Hawking flux “thermal”? Unfortunately, the answer to this seemingly

innocent question depends on a number of often unstated, but quite crucial, technical as-

sumptions built into modern (mis-)interpretations of the word “thermal”. The original

1850’s notions of thermality — based on classical thermodynamic reasoning applied to

idealized “black bodies” or “lamp black surfaces” — when supplemented by specific ba-

sic quantum ideas from the early 1900’s, immediately led to the notion of the black-body

spectrum, (the Planck-shaped spectrum), but without any specific assumptions or conclu-

sions regarding correlations between the quanta. Many (not all) modern authors (often

implicitly and unintentionally) add an extra, quite unnecessary, assumption that there are

no correlations in the black-body radiation; but such usage is profoundly ahistorical and

dangerously misleading. Specifically, the Hawking flux from an evaporating black hole,

(just like the radiation flux from a leaky furnace or a burning lump of coal), is only approx-

imately Planck-shaped over an explicitly bounded range of frequencies. Standard physics

(phase space and adiabaticity effects) explicitly bound the frequency range over which the

Hawking flux is approximately Planck-shaped from both above and below — the Hawking

flux is certainly not exactly Planckian, and there is no compelling physics reason to assume

the Hawking photons are uncorrelated.
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1 Introduction

Stephen Hawking predicted, (now some 40 years ago), that semi-classical black holes will

emit quantum radiation with a temperature proportional to their surface gravity, and

will slowly evaporate due to subtle quantum effects [1–3]. Direct experimental tests of

this phenomenon have so far been impractical, and the best laboratory data comes from

analogue systems such as surface waves in a water tank [4, 5], and more recently, phonons

in a BEC [6]. Faced with this extreme paucity of both experimental and observational

data, the community has focussed almost entirely on gedanken-experiments, with well over

5000 theory papers generated to date.

While there is almost universal agreement that the predicted Hawking flux will actu-

ally occur for a general relativistic black hole, and almost universal agreement that the

associated back-reaction will slowly reduce the black hole’s mass, there is relatively lit-

tle agreement (in fact, considerable disagreement) regarding the endpoint of the Hawking

evaporation process. In particular, the question of the thermality of the Hawking flux,

(and the precise sense in which it is thermal), is a crucial and important ingredient in

the so-called “information puzzle”, and its more recent “firewall” variant [7–19]; this has

important implications regarding the quantum unitarity of the Hawking evaporation pro-

cess [20–24]. A key point is this: there is a crucial difference between the “qualitative” and

“quantitative” information loss problems.
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• The “qualitative” problem is this: if a spacelike singularity forms (in the strict math-

ematical sense), then there will be a (strict mathematical) event horizon, and un-

avoidably some loss of unitarity associated with any matter that might cross the

event horizon.1

• The “quantitative” problem is this: How much information is lost behind the event

horizon, (if it forms), and how much comes out in the Hawking radiation?

Many authors have argued that no information comes out in the Hawking radiation, but

that is rather begging the question. Other authors only address part of the puzzle. This

subtlety has often been lost in the sometimes heated exchange of comments and criticisms.

There is another way of saying this:

• Hawking radiation is associated with the apparent/trapping horizon, and couldn’t

care less about the event horizon (if present).

• Unitarity violation (if present) is associated with the event horizon (if present), and

couldn’t care less about the apparent/trapping horizon.

Only if you assume that the event horizon actually forms, and that it closely tracks the

apparent/trapping horizon, is there ever any significant information loss. To expand on

these issues, let us first consider the spectral shape, and then the correlation structure, of

the Hawking flux.

2 Spectrum of the Hawking flux

Hawking’s 1974 derivation [1, 2], the many and quite varied subsequent re-derivations

thereof, and the modern adiabatic variants of Hawking’s original calculation [26, 27], all

agree that the shape of the spectrum is approximately a Planckian black-body spectrum,

but with certain key modifications and limitations. Specifically, the Planckian shape of the

Hawking spectrum will, at an absolute minimum, be modified by at least three distinct

physical effects:

1. greybody factors;

2. adiabaticity constraints;

3. available phase space.

Let us consider these three effects in turn.

1In his 1976 article [3] on the breakdown of predicability, Hawking phrased the discussion in terms of

“hidden surfaces”, reserving the phrase “event horizons” specifically for black holes. By doing things in

this way his discussion applied also to the branching-off of baby universes, or indeed any sort of nontrivial

temporal topology associated with what is now typically called a “causal horizon”. For the purposes of this

current article I will focus on the event horizons (possibly) associated with physical black holes, and the

apparent/trapping horizons definitely associated with physical black holes [25]. Hawking’s 1976 argument

will apply whenever there is a causally inaccessible region in which one can hide correlations. Certainly

that argument applies to the event horizons (possibly) associated with physical black holes.

– 2 –
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Greybody factors: these well-known effects arise when the Hawking flux is back-

scattered by the non-trivial gravitational field between the quasi-local horizon (the appar-

ent/trapping horizon) and spatial infinity; the existence of these greybody effects is entirely

standard and well-known, though quantitative estimates are sometimes tricky. Early work

dates back to the mid-to-late 1970’s [28–30], and interest in these quantities is active and

ongoing, see for instance [31–33]. A key feature is to note that the greybody factors will

always suppress the Hawking flux.

Adiabaticity constraints: these lesser-known effects arise from including back-reaction,

and depend on the fact that the spacetime geometry must be slowly evolving (on the time-

scale set by the frequency of the Hawking photon) in order for Hawking’s calculation, or

any of its more modern variants, to apply. Implications of the adiabaticity condition were

carefully analyzed and discussed in both references [26] and [27]. Specifically, to obtain an

approximately Planckian spectrum the surface gravity must be “slowly evolving” in the

sense that:

|κ̇| ≪ κ2. (2.1)

This is the constraint that a photon at the peak of the Hawking spectrum should not see

any significant change in the surface gravity during one oscillation period.

More generally and quantitatively, let us now consider the conditions for the validity of

Hawking’s “exponential approximation” for the relative e-folding of the affine null param-

eters between past and future null infinity (scri− and scri+) [1, 2]. Whenever the surface

gravity is time-varying, κ̇ 6= 0, then the exponential approximation is at best valid over a

bounded time interval of width [26, 27]:

∆t ≪ 1
√

|κ̇|
. (2.2)

See the discussion surrounding equation (10) of reference [26] or equation (3.22) of ref-

erence [27] for extensive technical details. But then Hawking’s argument, (or its more

modern variants), can be applied only to wave packets which can be localized within this

time interval. This implies the wave-packet must be built out of modes of frequency at

least ωmin =
√

|κ̇|. In particular, a suitable extension of Hawking’s argument leading to a

Planckian spectrum only works for the limited range of frequencies

ω & ωmin =
√

|κ̇|. (2.3)

Thus this adiabaticity argument provides an infrared frequency cutoff on the Hawking

flux. If Hawking’s argument (suitably extended) is to apply not just in the exponential

Boltzmann tail, but also to include the peak of the Planck spectrum, then one recovers the

quantitative condition |κ̇| ≪ κ2.

Phase space effects: though typically ignored, there is also a phase space ultraviolet

frequency cutoff in the Hawking flux. At its crudest, the emitted photon energy can never

exceed the available mass energy: ω < m. A slightly safer statement, for charged or

rotating black holes, is ω < m−mextremal.

– 3 –
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More carefully, applying (standard flat-space) Lorentz kinematics in the far distant

asymptotically flat region, it is easy to see that for a black hole of mass mi emitting, (in

its rest frame), a photon of energy ω, and thereby reducing its mass to mf , one has:

ω =
m2

i −m2
f

2mi

. (2.4)

Applied to the photons in the Hawking flux this yields the purely kinematic bound:

ω ≤ m2 −m2
extremal

2m
. (2.5)

Thus this argument provides an ultraviolet frequency cutoff on the Hawking flux.2,3

Combined effects: combining these adiabaticity and phase space constraints, and not-

ing the existence of grey-body effects, we can make the quantitative statement that

the Hawking flux can (at best) be approximately Planckian only over the limited fre-

quency range:

ω ∈
(

√

|κ̇|, m2 −m2
extremal

2m

)

. (2.6)

Even within this range, where the (suitably extended modern variants of the) Hawking

calculation can be trusted, greybody factors (barrier transmission probabilities) will to

some extent suppress the Hawking flux below that of an ideal Planck spectrum.

3 Schwarzschild black holes

Let us now see what this quantitatively implies for Schwarzschild black holes: for the spe-

cific case of the Schwarzschild black hole mextremal = 0, so the phase space cutoff is simply

ω < m/2. Indeed, for Schwarzschild black holes the phase space cutoff never intersects the

peak (ω ∼ κ) of the approximately Planck-shaped spectrum while one remains within the

semi-classical regime.

2My own early views on the importance of the phase-space cutoff can be found in reference [34]. Although

I am no longer in favour of the particular way that I discretized black hole entropy in that article, the

comments regarding the importance of the phase-space cutoff and the final “particle cascade” leading to

complete evaporation of Planck-scale black holes still hold.
3More recently the Parikh-Wilczek approach to Hawking radiation viewed as quantum tunnelling also

explicitly (but somewhat indirectly) includes at least some phase-space effects and also adds nonlinear

frequency-dependent terms in the action [35]. Parikh and Wilczek consider the emission of spherically

symmetric thin shells, so 3-momentum conservation is trivial, and the phase space cutoff simplifies to

ω ≤ m−mextremal. For the Schwarzschild black hole Parikh and Wilczek find: Im(Action) = 4πωm(1− ω

2m
),

and relate this to ∆(Entropy) = 8πωm(1 − ω

2m
), subject to ω ≤ m. Some authors prefer to interpret this

as a frequency-dependent temperature, Teffective(ω) = THawking ×
(

1− ω

2m

)

−1
. The situation for Reissner-

Nordström black holes is considerably more subtle. There

∆(Entropy) = 2π
{

ω(2m− ω)− (m− ω)
√

(m− ω)2 − q2 +m
√

m2 − q2
}

, subject to ω ≤ m− |q|.

If desired, an effective temperature can be defined by Teffective(ω) = ω/∆(Entropy), with a low-frequency

expansion Teffective(ω) = THawking + O(ω). Thus the Parikh-Wilczek approach provides both an explicit

phase-space cutoff, and a modified emission amplitude.

– 4 –



J
H
E
P
0
7
(
2
0
1
5
)
0
0
9

Because the phase space cutoff is so high, (compared to the location of the Hawking

peak at ω ∼ κ), it is perfectly acceptable, (at least as a zeroth-order approximation), to

approximate the Hawking flux by a complete Planck spectrum, integrate over all of phase

space, and so get the Stefan-Boltzmann law, (ṁ = −σ T 4 Ahorizon). But I emphasise that

the applicability of the Stefan-Boltzmann law is intrinsically an approximate result; in view

of the physical arguments presented above it cannot be exact.

Then, introducing Planck quantities for simplicity, we have κ ∼ m2
P /m. Thereby

we deduce:

κ̇ = −ṁm2
P

m2
=

{(

m2
P

m

)4

× 4π(2m)2
}

m2
P

m2
∼ m6

P

m4
. (3.1)

Consequently the Hawking flux from a Schwarzschild black hole is approximately Planckian

(up to greybody factors) over the rather broad frequency interval

ω ∈
(

m3
P

m2
,
m

2

)

. (3.2)

This interval is certainly non-empty for macroscopic black hole masses, and even for meso-

scopic black hole masses all the way down to the Planck scale. Furthermore

|κ̇|
κ2

∼ m6
P /m

4

m4
P /m

2
=

m2
P

m2
. (3.3)

So, as claimed, the peak of the Planck blackbody spectrum is indeed contained in the

approximately Planckian interval all the way down to the Planck scale, (where one should

stop believing semiclassical physics anyway).

Thus we see that for a Schwarzschild black hole these three bounds on the Planckian

nature of the Hawking flux are (numerically) not particularly stringent. But they do

however provide important qualitative information — at the very least they serve as a

suitable antidote to the often made, (and often repeated, but utterly incorrect), assertion

that the Hawking flux is exactly Planckian.

4 Connecting future and past null infinities

Let U be an affine coordinate on past null infinity, while u is taken to be an affine coordinate

on future null infinity. Much of the physics of the Hawking effect is encoded in the e-folding

relation connecting past and future null infinities [1, 2]

U = UH −A exp(−κHu). (4.1)

Once one includes the effects of a time-dependent evolving black hole one should instead

write [26, 27]

U(u) = U0 +

∫ u

u0

exp

(

−
∫ ū

u0

κ(ũ) dũ

)

dū. (4.2)

Here u0 is merely some convenient starting point, often taken to be the onset of black hole

formation. If we approximate κ(u) ≈ κ0 as a constant then

U(u) ≈ U0 +
1

κ0
− exp(−κ0[u− u0])

κ0
, (4.3)

which is equivalent to the naive result used in the original 1974 calculations [1, 2].

– 5 –
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Now let us make this more explicit and quantitative: when including the effects of

back-reaction, for an evolving Schwarzschild black hole of initial mass m0 we have κ0 ∼
m2

P /m0, and from the previous section κ̇ ∼ m−2
P κ4. We can write this more carefully as the

exact scaling relations κ = κ0(m0/m) and κ̇ = κ̇0(κ/κ0)
4, or even κ̇(u) = Bκ(u)4, where

approximately B ∼ m−2
P . Thereby

κ(u) =
κ0

3
√

1− 3Bκ30[u− u0]
. (4.4)

This approximation will remain valid until the surface gravity rises to the Planck scale,

which will happen when
m3

P

m3
∼ 1− 3[u− u0]

m4
P

m3
. (4.5)

That is when

u− u0 ∼
TP

3

(

m3

m3
P

− 1

)

∼ TP

3

m3

m3
P

. (4.6)

During that entire interval, from u = u0 to u ∼ u0 + 1

3
TP (m

3/m3
P ), the surface grav-

ity (while not constant) is still slowly varying, in the sense of satisfying the adiabaticity

constraint. In this interval κ(u) can be integrated to explicitly yield

∫ u

u0

κ(u) du =
1

2Bκ20

[

1− 3

√

1− 3Bκ30[u− u0]

]

. (4.7)

A second integration now gives

U(u) = U0 +
1

κ0
−
√
2B D

(

1√
2Bκ0

)

− 1

κ(u)
exp

(

1

2B

[

1

κ(u)2
− 1

κ20

])

+
√
2B exp

(

1

2B

[

1

κ(u)2
− 1

κ20

])

D

(

1√
2Bκ(u)

)

. (4.8)

Here D(x) is the Dawson function

D(x) = e−x2

∫ x

0

et
2

dt. (4.9)

If desired the Dawson function can (up to rescaling) be related to the error function for

imaginary argument, but in this real form is more suited to numeric manipulations. In

particular the Dawson function is bounded by D(x) < 0.54105, which means that the

terms involving the Dawson function never shift U(u) by more than one Planck time, and

so can quietly be neglected until one reaches the Planck regime.

So for all practical purposes

U(u) = U0 +
1

κ0
− 1

κ(u)
exp

(

1

2B

[

1

κ(u)2
− 1

κ20

])

+O(TP ). (4.10)

Note that while the relationship between future and past null infinity is now quite con-

siderably more complicated than the simple e-folding of references [1, 2], we see that it is

– 6 –
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nevertheless quite explicit. Furthermore, at any particular time u∗ one can always locally

approximate the exact U(u) with an e-folding expression of the form [26, 27]

U(u ≈ u∗) ≈ U∗ +
1

κ(u∗)
− exp(−κ(u∗) [u− u∗])

κ(u∗)
. (4.11)

This formalism now gives one a slowly evolving Hawking temperature, at least until the

mass of the black hole drops sufficiently low so that one enters the Planck regime.

5 Effective temperature

The net effect of these greybody factors, adiabaticity constraints, and phase space con-

straints is to modify the spectrum of the Hawking flux:

n(k) =
f(ω)

exp(~ω/kBTH)− 1
; f(ω) ∈ (0, 1). (5.1)

Here f(ω) is some dimensionless suppression factor now encoding all three effects. This

allows one (in the quite usual manner) to define an effective temperature in terms of the

total energy flux:

σ T 4
effective =

∫

n(k) ~ω
d3k

(2π)3
. (5.2)

Setting z = ~ω/kBTH , and f(ω) → f(z), one sees

T 4
effective =

∫

f(z)z3

ez − 1
dz

∫

z3

ez − 1
dz

T 4
H ≤ T 4

H . (5.3)

That is, Teffective ≤ TH , so the effective temperature (bolometrically defined) of the outgoing

Hawking flux has been suppressed below the naive Hawking temperature.

This then changes (both qualitatively and quantitatively) the entropy budget in the

Hawking evaporation process. As the black hole evaporates, its Bekenstein entropy [36]

decreases as

dSB = −|dM |
TH

, (5.4)

whereas the entropy change of the outgoing radiation can best be estimated as

dSH = +
|dM |

Teffective

. (5.5)

(The outgoing radiation, since it is not exactly Planckian, should really be analyzed using

non-equilibrium thermodynamics; but use of the effective temperature is a well-known

stand-in for such effects.) Overall one has

dStotal = |dM |
(

1

Teffective

− 1

TH

)

≥ 0. (5.6)

– 7 –
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So the Hawking evaporation process actually increases the total entropy of the universe.

(Note this is intrinsically a coarse-graining entropy associated with throwing away detailed

information regarding the Hawking flux; this argument has nothing to say one way or

another regarding the unitarity of the underlying physical process.) This is perhaps some-

what unexpected from the standard point of view, but is utterly unavoidable as soon as

one takes proper cognisance of greybody, adiabaticity, and phase space effects.

6 Wick rotation and the Hawking flux

Ultimately the origin of the often-made but mistaken assertion that the Hawking flux is

exactly Planckian seems to trace back to an over-enthusiastic and uncritical adoption of

Wick rotation (Euclidean quantum gravity) techniques [37]. Certainly the Wick rotation of

a static black hole (t → it, in the manifestly static coordinate system where gti = 0), com-

bined with the condition that there be no conical singularity at the Euclideanized version of

the Lorentzian-signature Killing horizon, picks out the surface gravity as being physically

important, being related (via periodicity in imaginary time) to a notion of temperature —

but this is by construction an intrinsically equilibrium argument for a black hole in exact

thermal equilibrium with a heat bath at the Hawking temperature [37].

• By construction the heat bath has an exactly Planckian spectrum, simply because it

is assumed to be in exact thermal equilibrium; the greybody factors quietly drop out.

• By construction the situation is static; there simply are no adiabaticity conditions

since κ̇ ≡ 0 exactly.

• By construction there are no phase-space constraints; since (typically) one is com-

pletely ignoring back-reaction.

But this Wick-rotated Euclideanized system tells you relatively little regarding the non-

equilibrium emission of the Hawking flux into vacuum; the Unruh quantum vacuum state

is radically different from the Hartle-Hawking quantum vacuum state. (Wick rotation

automatically puts one into the Hartle-Hawking quantum vacuum state, not the physically

relevant Unruh vacuum state.) While the Wick rotation trick provides a “quick and dirty”

way of relating surface gravity to Hawking temperature [38], it misses much of the essential

physics of the evaporation process. Once one considers a real black hole evaporating into

vacuum, the Hawking flux is no longer exactly Planckian — the shape of the spectrum

must at the very least be modified by the three physical effects considered above.

7 Correlations in the Hawking flux

Are the Hawking quanta in any way correlated with each other? This quite deceptively

innocent question can easily initiate a firestorm of quite inconclusive debate.

The original 1850’s notions of thermality, based as they were on entirely classical ther-

modynamic reasoning applied to black bodies, (such as, for instance, the traditional “leaky

cavity” or “lamp-black” surfaces), made no intrinsic assumptions regarding the possibility

– 8 –
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of correlations in the outgoing radiation. But modern abuse of the word “thermal” often

implicitly makes assumptions about a lack of correlations. It is essential to realise that

the physical distinction between “Planckian” (Planck-shaped spectrum) and “thermal” is

both important and subtle. No-one seriously doubts that burning a lump of coal in a leaky

furnace results in an approximately Planckian spectrum, (an approximately “black body”

spectrum), nor that this process implies correlations in the outgoing radiation — which

then cannot be exactly “thermal” in the technical sense that this word has come to be used

(or rather abused) in the modern literature.

Now Hawking’s original 1974 calculation [1, 2], (and its modern adiabatic variants, see

for instance references [26] and [27]), certainly demonstrate that a collapsing ball of matter

will excite the quantum vacuum state, and that the outgoing radiation is approximately

blackbody, that is, has an approximately Planck-shaped spectrum, (at least up to greybody,

adiabaticity, and phase space effects, as discussed above). But the considerably stronger

statement that the outgoing Hawking quanta are completely uncorrelated, (the modern

misuse of the word “thermal”), depends on a separate and very much stronger implicit

assumption: that in a semi-classical astrophysical black hole an event horizon forms to

permanently hide any possible correlations, in such a way that they never again become

visible to the external universe — but the possibility of doing this depends on delicate issues

of global geometry — including what will happen in the infinite future [25]. In contrast

apparent horizons or trapping horizons, while they may temporarily hide correlations, do

not necessarily do so permanently. Without an event horizon, whose very existence is

delicately predicated on assumptions being made about the infinite future, a black hole

defined in terms of apparent or trapping horizons will behave much more like a furnace; a

leaky furnace with a small hole in it, the original 1850’s classical thermodynamic definition

of a “black body”.

8 Analogue Hawking flux

To really drive home the point that the existence of possible correlations in the Hawking

flux is logically independent from the existence of the Hawking flux itself simply consider

an acoustic black hole (dumb hole) [39]. (For various theoretical developments see [40–46]

and [47–49]. For a laboratory implementation using surface waves see [4, 5]. For a more

recent laboratory implementation using BECs see [6].)

There is widespread agreement that an acoustic horizon (defined by the normal com-

ponent of fluid velocity exceeding the local speed of sound) will emit an approximately

Planckian spectrum of Hawking phonons; but there is absolutely no requirement that the

acoustic horizon be an event horizon — in fact by accelerating or decelerating the fluid

flow it is easy to make acoustic horizons appear and disappear at will. Any horizon that

can completely disappear (without any trace of its prior existence, and without any way of

permanently hiding correlations) will qualitatively behave like a leaky furnace with a small

hole in it, the original 1850’s classical thermodynamic definition of a “black body”. So in

these analogue systems, not only is there no reason to believe that there is any “information

puzzle”, but in contrast there is every reason to believe that ordinary unitary evolution

and standard physics applies.

– 9 –
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Consequently, even if one could somehow prove that the Hawking photons coming from

a specifically general relativistic black hole were uncorrelated, this would merely be a side-

effect of the specific details of general relativistic black holes, (as opposed to the generic

features of analogue black holes); it would have nothing to do with the fundamental physics

underlying Hawking radiation itself. In short:

• Hawking radiation is associated with the apparent/trapping horizon, and couldn’t

care less about the event horizon (if present).

• Unitarity violation (if present) is associated with the event horizon (if present), and

couldn’t care less about the apparent/trapping horizon.

9 Discussion

In short, the so-called “information puzzle”, (often somewhat excessively referred to as the

“information paradox”), is intimately reliant on the assumed existence of an event horizon,

and much of the force of the information puzzle simply goes away once one uses apparent

horizons or trapping horizons to define what we mean by a black hole [25, 50, 51]. This

observation is closely related to Hawking’s recent arguments regarding the necessity of

making careful physical distinctions between the mathematical concepts of event horizon

and apparent horizon [50]: “The absence of event horizons means that there are no black

holes — in the sense of regimes from which light can’t escape to infinity. There are,

however, apparent horizons which persist for a period of time.” Similarly, a decade ago

Hawking asserted [51]: “The way the information gets out seems to be that a true event

horizon never forms, just an apparent horizon.”

The physical picture that then emerges matches quite nicely with certain proposals

for the Hawking radiation process, both somewhat older and more recent, that make no

intrinsic reference to event horizons per se [52–61]. Exact thermality of the Hawking flux,

and a total absence lack of correlations in the Hawking flux, is often asserted in the scientific

literature — but neither assertion holds up to any level of scrutiny. The spectrum of the

Hawking flux is certainly not exactly Planckian, and the effective temperature (suitably

defined) of the Hawking flux is not equal to, but is instead bounded above, by the Hawking

temperature. Whether or not correlations exist in the Hawking flux is contingent upon

the assumed existence of event horizons (as opposed to apparent/ trapping horizons).

Certainly event horizons are not necessary for the development of a Hawking flux, and the

often assumed survival of classical event horizons in semi-classical physics is an assumption

that is increasingly in doubt [25, 50, 51].

There is a crucial difference between the “qualitative” and “quantitative” information

loss problems.

• The “qualitative” problem is this: if a spacelike singularity forms (in the strict math-

ematical sense), then there will be a (strict mathematical) event horizon, and un-

avoidably some loss of unitarity associated with any matter that might cross the

event horizon.

– 10 –
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• The “quantitative” problem is this: How much information is lost behind the event

horizon, (if it forms), and how much comes out in the Hawking radiation?4

Only if you assume that the event horizon actually forms, and that it closely tracks the

apparent/trapping horizon, is there ever any significant information loss.

Acknowledgments

This research was supported by the Marsden Fund, and by a James Cook fellowship, both

administered by the Royal Society of New Zealand.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] S.W. Hawking, Black hole explosions, Nature 248 (1974) 30 [INSPIRE].

[2] S.W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43 (1975) 199

[Erratum ibid. 46 (1976) 206] [INSPIRE].

[3] S.W. Hawking, Breakdown of predictability in gravitational collapse,

Phys. Rev. D 14 (1976) 2460 [INSPIRE].

[4] S. Weinfurtner, E.W. Tedford, M.C.J. Penrice, W.G. Unruh and G.A. Lawrence,

Measurement of stimulated Hawking emission in an analogue system,

Phys. Rev. Lett. 106 (2011) 021302 [arXiv:1008.1911] [INSPIRE].

[5] S. Weinfurtner, E.W. Tedford, M.C.J. Penrice, W.G. Unruh and G.A. Lawrence, Classical

aspects of Hawking radiation verified in analogue gravity experiment, Lect. Notes Phys. 870

(2013) 167 [INSPIRE].

[6] J. Steinhauer, Observation of self-amplifying Hawking radiation in an analog black hole laser,

Nature Phys. 10 (2014) 864 [arXiv:1409.6550] [INSPIRE].

[7] A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black holes: complementarity or

firewalls?, JHEP 02 (2013) 062 [arXiv:1207.3123] [INSPIRE].

[8] A. Almheiri, D. Marolf, J. Polchinski, D. Stanford and J. Sully, An apologia for firewalls,

JHEP 09 (2013) 018 [arXiv:1304.6483] [INSPIRE].

[9] S.L. Braunstein, Black hole entropy as entropy of entanglement, or it’s curtains for the

equivalence principle, arXiv:0907.1190v1.

[10] S.L. Braunstein, S. Pirandola and K. Życzkowski, Better late than never: information

retrieval from black holes, Phys. Rev. Lett. 110 (2013) 101301.

[11] R. Bousso, Complementarity is not enough, Phys. Rev. D 87 (2013) 124023

[arXiv:1207.5192] [INSPIRE].

[12] Y. Nomura, J. Varela and S.J. Weinberg, Complementarity endures: no firewall for an

infalling observer, JHEP 03 (2013) 059 [arXiv:1207.6626] [INSPIRE].

4Very recent articles specifically addressing this specific point include those by Brustein and Medved [62,

63], and by Saini and Stojkovic [64]. In these articles it is the quantitative estimates of the information

budget that are important.

– 11 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1038/248030a0
http://inspirehep.net/search?p=find+J+Nature,248,30
http://dx.doi.org/10.1007/BF02345020
http://inspirehep.net/search?p=find+J+Comm.Math.Phys.,43,199
http://dx.doi.org/10.1103/PhysRevD.14.2460
http://inspirehep.net/search?p=find+J+Phys.Rev.,D14,2460
http://dx.doi.org/10.1103/PhysRevLett.106.021302
http://arxiv.org/abs/1008.1911
http://inspirehep.net/search?p=find+EPRINT+arXiv:1008.1911
http://inspirehep.net/search?p=find+J+LNPHA,870,167
http://dx.doi.org/10.1038/NPHYS3104
http://arxiv.org/abs/1409.6550
http://inspirehep.net/search?p=find+EPRINT+arXiv:1409.6550
http://dx.doi.org/10.1007/JHEP02(2013)062
http://arxiv.org/abs/1207.3123
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.3123
http://dx.doi.org/10.1007/JHEP09(2013)018
http://arxiv.org/abs/1304.6483
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.6483
http://arxiv.org/abs/0907.1190v1
http://dx.doi.org/10.1103/PhysRevLett.110.101301
http://dx.doi.org/10.1103/PhysRevD.87.124023
http://arxiv.org/abs/1207.5192
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.5192
http://dx.doi.org/10.1007/JHEP03(2013)059
http://arxiv.org/abs/1207.6626
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.6626


J
H
E
P
0
7
(
2
0
1
5
)
0
0
9

[13] S.D. Mathur and D. Turton, Comments on black holes I: the possibility of complementarity,

JHEP 01 (2014) 034 [arXiv:1208.2005] [INSPIRE].

[14] T. Banks and W. Fischler, Holographic space-time does not predict firewalls,

arXiv:1208.4757 [INSPIRE].

[15] R. Brustein, Origin of the blackhole information paradox, Fortsch. Phys. 62 (2014) 255

[arXiv:1209.2686] [INSPIRE].

[16] S. Hossenfelder, Comment on the black hole firewall, arXiv:1210.5317 [INSPIRE].

[17] K. Larjo, D.A. Lowe and L. Thorlacius, Black holes without firewalls,

Phys. Rev. D 87 (2013) 104018 [arXiv:1211.4620] [INSPIRE].

[18] S.B. Giddings, Nonviolent nonlocality, Phys. Rev. D 88 (2013) 064023 [arXiv:1211.7070]

[INSPIRE].

[19] E. Verlinde and H. Verlinde, Passing through the firewall, arXiv:1306.0515 [INSPIRE].

[20] D.N. Page, Is black hole evaporation predictable?, Phys. Rev. Lett. 44 (1980) 301 [INSPIRE].

[21] S.W. Hawking, The unpredictability of quantum gravity,

Commun. Math. Phys. 87 (1982) 395 [INSPIRE].

[22] T. Banks, L. Susskind and M.E. Peskin, Difficulties for the evolution of pure states into

mixed states, Nucl. Phys. B 244 (1984) 125 [INSPIRE].

[23] J. Preskill, Do black holes destroy information?, hep-th/9209058 [INSPIRE].

[24] S.W. Hawking, Virtual black holes, Phys. Rev. D 53 (1996) 3099 [hep-th/9510029]

[INSPIRE].

[25] M. Visser, Physical observability of horizons, Phys. Rev. D 90 (2014) 127502

[arXiv:1407.7295] [INSPIRE].
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