2,605 research outputs found

    Surface enhanced Raman spectroscopy using a single mode nanophotonic-plasmonic platform

    Get PDF
    Surface Enhanced Raman Spectroscopy (SERS) is a well-established technique for enhancing Raman signals. Recently photonic integrated circuits have been used, as an alternative to microscopy based excitation and collection, to probe SERS signals from external metallic nanoparticles. However, in order to develop quantitative on-chip SERS sensors, integration of dedicated nanoplasmonic antennas and waveguides is desirable. Here we bridge this gap by demonstrating for the first time the generation of SERS signals from integrated bowtie nanoantennas, excited and collected by a single mode waveguide, and rigorously quantify the enhancement process. The guided Raman power generated by a 4-Nitrothiophenol coated bowtie antenna shows an 8 x 10^6 enhancement compared to the free-space Raman scattering. An excellent correspondence is obtained between the theoretically predicted and observed absolute Raman power. This work paves the way towards fully integrated lab-on-a-chip systems where the single mode SERS-probe can be combined with other photonic, fluidic or biological functionalities.Comment: Submitted to Nature Photonic

    Transport and optical response of molecular junctions driven by surface plasmon-polaritons

    Full text link
    We consider a biased molecular junction subjected to external time-dependent electromagnetic field. The field for two typical junction geometries (bowtie antennas and metal nanospheres) is calculated within finite-difference time-domain technique. Time-dependent transport and optical response of the junctions is calculated within non-equilibrium Green's function approach expressed in a form convenient for description of multi-level systems. We present numerical results for a two-level (HOMO-LUMO) model, and discuss influence of localized surface plasmon polariton modes on transport.Comment: 9 pages, 6 figure

    Antenna-coupled silicon-organic hybrid integrated photonic crystal modulator for broadband electromagnetic wave detection

    Full text link
    In this work, we design, fabricate and characterize a compact, broadband and highly sensitive integrated photonic electromagnetic field sensor based on a silicon-organic hybrid modulator driven by a bowtie antenna. The large electro-optic (EO) coefficient of organic polymer, the slow-light effects in the silicon slot photonic crystal waveguide (PCW), and the broadband field enhancement provided by the bowtie antenna, are all combined to enhance the interaction of microwaves and optical waves, enabling a high EO modulation efficiency and thus a high sensitivity. The modulator is experimentally demonstrated with a record-high effective in-device EO modulation efficiency of r33=1230pm/V. Modulation response up to 40GHz is measured, with a 3-dB bandwidth of 11GHz. The slot PCW has an interaction length of 300um, and the bowtie antenna has an area smaller than 1cm2. The bowtie antenna in the device is experimentally demonstrated to have a broadband characteristics with a central resonance frequency of 10GHz, as well as a large beam width which enables the detection of electromagnetic waves from a large range of incident angles. The sensor is experimentally demonstrated with a minimum detectable electromagnetic power density of 8.4mW/m2 at 8.4GHz, corresponding to a minimum detectable electric field of 2.5V/m and an ultra-high sensitivity of 0.000027V/m Hz^-1/2 ever demonstrated. To the best of our knowledge, this is the first silicon-organic hybrid device and also the first PCW device used for the photonic detection of electromagnetic waves. Finally, we propose some future work, including a Teraherz wave sensor based on antenna-coupled electro-optic polymer filled plasmonic slot waveguide, as well as a fully packaged and tailgated device.Comment: 20 pages, 16 figure
    • …
    corecore