2,016 research outputs found

    Chromatic invariants of signed graphs

    Get PDF
    AbstractWe continue the study initiated in “Signed graph coloring” of the chromatic and Whitney polynomials of signed graphs. In this article we prove and apply to examples three types of general theorem which have no analogs for ordinary graph coloring. First is a balanced expansion theorem which reduces calculation of the chromatic and Whitney polynomials to that of the simpler balanced polynomials. Second is a group of formulas based on counting colorings by their magnitudes or their signs; among them are a combinatorial interpretation of signed coloring (which implies an equivalence between proper colorings of certain signed graphs and matching in ordinary graphs) and a signed-graphic switching formula (which for instance gives the polynomials of a two-graph in terms of those of its associated ordinary graphs). Third are addition/deletion formulas obtained by constructing one signed graph from another through adding and removing arcs; one such formula expresses the chromatic polynomial as a combination of those of ordinary graphs, while another (in one example) yields a complementation formula for ordinary matchings. The examples treated are the sign-symmetric graphs (among them in effect the classical root systems), all-negative graphs (corresponding to the even-cycle graphic matroid), signed complete graphs (equivalent to two-graphs), and two varieties of signed graphs associated with matchings and colorings of ordinary graphs. Our results are interpreted as counting the acyclic orientations of a signed graph; geometrically this means counting the faces of the corresponding arrangement of hyperplanes or zonotope

    A Reciprocity Theorem for Monomer-Dimer Coverings

    Full text link
    The problem of counting monomer-dimer coverings of a lattice is a longstanding problem in statistical mechanics. It has only been exactly solved for the special case of dimer coverings in two dimensions. In earlier work, Stanley proved a reciprocity principle governing the number N(m,n)N(m,n) of dimer coverings of an mm by nn rectangular grid (also known as perfect matchings), where mm is fixed and nn is allowed to vary. As reinterpreted by Propp, Stanley's result concerns the unique way of extending N(m,n)N(m,n) to n<0n < 0 so that the resulting bi-infinite sequence, N(m,n)N(m,n) for nZn \in {Z}, satisfies a linear recurrence relation with constant coefficients. In particular, Stanley shows that N(m,n)N(m,n) is always an integer satisfying the relation N(m,2n)=ϵm,nN(m,n)N(m,-2-n) = \epsilon_{m,n}N(m,n) where ϵm,n=1\epsilon_{m,n} = 1 unless mm\equiv 2(mod 4) and nn is odd, in which case ϵm,n=1\epsilon_{m,n} = -1. Furthermore, Propp's method is applicable to higher-dimensional cases. This paper discusses similar investigations of the numbers M(m,n)M(m,n), of monomer-dimer coverings, or equivalently (not necessarily perfect) matchings of an mm by nn rectangular grid. We show that for each fixed mm there is a unique way of extending M(m,n)M(m,n) to n<0n < 0 so that the resulting bi-infinite sequence, M(m,n)M(m,n) for nZn \in {Z}, satisfies a linear recurrence relation with constant coefficients. We show that M(m,n)M(m,n), a priori a rational number, is always an integer, using a generalization of the combinatorial model offered by Propp. Lastly, we give a new statement of reciprocity in terms of multivariate generating functions from which Stanley's result follows.Comment: 13 pages, 12 figures, to appear in the proceedings of the Discrete Models for Complex Systems (DMCS) 2003 conference. (v2 - some minor changes

    Deterministically Isolating a Perfect Matching in Bipartite Planar Graphs

    Get PDF
    We present a deterministic way of assigning small (log bit) weights to the edges of a bipartite planar graph so that the minimum weight perfect matching becomes unique. The isolation lemma as described in (Mulmuley et al. 1987) achieves the same for general graphs using a randomized weighting scheme, whereas we can do it deterministically when restricted to bipartite planar graphs. As a consequence, we reduce both decision and construction versions of the matching problem to testing whether a matrix is singular, under the promise that its determinant is 0 or 1, thus obtaining a highly parallel SPL algorithm for bipartite planar graphs. This improves the earlier known bounds of non-uniform SPL by (Allender et al. 1999) and NC2NC^2 by (Miller and Naor 1995, Mahajan and Varadarajan 2000). It also rekindles the hope of obtaining a deterministic parallel algorithm for constructing a perfect matching in non-bipartite planar graphs, which has been open for a long time. Our techniques are elementary and simple

    A determinant formula for the Jones polynomial of pretzel knots

    Full text link
    This paper presents an algorithm to construct a weighted adjacency matrix of a plane bipartite graph obtained from a pretzel knot diagram. The determinant of this matrix after evaluation is shown to be the Jones polynomial of the pretzel knot by way of perfect matchings (or dimers) of this graph. The weights are Tutte's activity letters that arise because the Jones polynomial is a specialization of the signed version of the Tutte polynomial. The relationship is formalized between the familiar spanning tree setting for the Tait graph and the perfect matchings of the plane bipartite graph above. Evaluations of these activity words are related to the chain complex for the Champanerkar-Kofman spanning tree model of reduced Khovanov homology.Comment: 19 pages, 12 figures, 2 table

    Six signed Petersen graphs, and their automorphisms

    Get PDF
    Up to switching isomorphism there are six ways to put signs on the edges of the Petersen graph. We prove this by computing switching invariants, especially frustration indices and frustration numbers, switching automorphism groups, chromatic numbers, and numbers of proper 1-colorations, thereby illustrating some of the ideas and methods of signed graph theory. We also calculate automorphism groups and clusterability indices, which are not invariant under switching. In the process we develop new properties of signed graphs, especially of their switching automorphism groups.Comment: 39 pp., 7 fi
    corecore