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a b s t r a c t

Up to switching isomorphism, there are six ways to put signs on the edges of the Petersen
graph. We prove this by computing switching invariants, especially frustration indices and
frustration numbers, switching automorphism groups, chromatic numbers, and numbers
of proper 1-colorations, thereby illustrating some of the ideas andmethods of signed graph
theory. We also calculate automorphism groups and clusterability indices, which are not
invariant under switching. In the process, we develop new properties of signed graphs,
especially of their switching automorphism groups.
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1. Introduction

The Petersen graph P is a famous example and counterexample in graph theory, making it an appropriate subject for a
book (see [11]). With signed edges, it makes a fascinating example of many aspects of signed graph theory as well. There
are 215 ways to put signs on the edges of P , but in many respects only six of them are essentially different. We show how
and why that is true as we develop basic properties of these six signed Petersens.

The fundamental property of signed graphs is balance. A signed graph is balanced if all its circles (circuits, cycles, polygons)
have positive sign product. Harary introduced signed graphs and balance [9] (though theywere implicit in [12, Section X.3]).
Cartwright and Harary used them to model social stress in small groups of people in social psychology [6]. Subsequently,
signed graphs have turned out to be valuable in many other areas, some of which we shall allude to in what follows.

The opposite of balance is frustration. Most signatures of a graph are unbalanced; but they can be made balanced by
deleting (or, equivalently, negating) edges. The smallest number of edges whose deletion makes the graph balanced is
the frustration index, a number which is implicated in certain questions of social psychology [1,10] and spin-glass physics
[16,3]. We find the frustration indices of all signed Petersen graphs (Theorem 7.2).

The second basic property of signed graphs is switching equivalence. Switching is a way of turning one signature of
a graph into another, without changing circle signs. Many properties of signed graphs are unaltered by switching, the
frustration index being a notable example. The first of our main theorems is that there are exactly six equivalence classes
of signatures of P under the combination of switching and isomorphism (Theorem 5.1). Fig. 1.2 shows a representative of
each switching isomorphism class. In each representative, the negative edges form a smallest set whose deletion makes
the signed Petersen balanced. Hence, we call them minimal signatures of P (see Theorem 7.2). Because there are only six
switching isomorphism classes of signatures, the frustration index of every signature of P can be found from those of the
minimal signatures.
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Fig. 1.1. P , the Petersen graph.

Fig. 1.2. The six switching isomorphism types of signed Petersen graph. Solid lines are positive; dashed lines are negative.

The second main theorem, which occupies the bulk of this paper, is a computation of the automorphism and switching
automorphism groups of the six minimal signatures (Theorem 8.12). An automorphism has the obvious definition: it is a
graph automorphism that preserves edge signs. This group is not invariant under switching. It is not even truly signed-
graphic, since in what concerns automorphisms a signed graph is merely an edge 2-colored graph. The proper question for
signed graphs regards the combination of switching with an automorphism of the underlying graph. The group of switching
automorphisms of a signed graph is, by its definition, invariant under switching, so just six groups are needed to know them
all. Some of the groups are trivial, but one is so complicated that it takes pages to describe it thoroughly.

Isomorphicminimal signaturesmay not be equivalent under the action of the switching group. The number of switching-
inequivalent signatures of a given minimal isomorphism type is deducible from the order of the switching automorphism
group (Section 8.3).

Two further properties are treated more concisely. First, a signed graph can be colored by signed colors. This leads to
two chromatic numbers, depending on whether or not the intrinsically signless color 0 is accepted. The chromatic numbers
are invariant under switching (and isomorphism); thus they help to distinguish the six minimal signatures by showing
their inequivalence under switching isomorphism (Theorem 9.2). The two chromatic numbers are aspects of two chromatic
polynomials, but we make no attempt to compute those polynomials, as they have degree 10.

Finally, we take a brief excursion into a natural generalization of balance called clusterability (Section 10). This, like the
automorphism group, is not switching invariant, but it has attracted considerable interest, most recently in connection with
the organization of data (see [2]), and has complex properties that have been but lightly explored.

Signed graphs, signed Petersen graphs in particular, have other intriguing aspects thatwedonot treat. Two arementioned
in the concluding section, but they hardly exhaust the possibilities.
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2. Graphs and signs

We write V and E for the vertex and edge sets of a graph Γ or signed graphΣ , except when they may be confused with
the same sets of another graph. The complement of X ⊆ V is X c

:= V \ X . The (open) neighborhood of a vertex v is N(v);
the closed neighborhood is N[v] = N(v) ∪ {v}. A cut in a graph is a non-empty set ∇X := {uv ∈ E : u ∈ X and v ∉ X},
where X ⊆ V . We call two or more substructures of a graph, such as edge sets or vertex sets, automorphic if there are graph
automorphisms under which any one is carried to any other.

A signed graph is a pair Σ := (Γ , σ ), where Γ = (V , E) is a graph and σ : E → {+,−} is a signature that labels each
edge positive or negative. Hence, a signed Petersen graph is (P, σ ). Two examples are +P := (P,+), where every edge is
positive, and −P := (P,−), where every edge is negative. The underlying graph of Σ is Σ without the signs, denoted by
|Σ |. We say that Σ is homogeneous if it is all positive or all negative, and heterogeneous otherwise; so +P and −P are the
homogeneous signed Petersens. The set of positive edges of Σ is E+, and that of negative edges is E−; Σ+ and Σ− are the
corresponding (unsigned) graphs (V , E+) and (V , E−). The negation ofΣ is −Σ = (Γ ,−σ), the same graph with all signs
reversed. A compact notation for a signed Petersen graph with negative edge set S is PS .

The sign of a circle (i.e., a cycle, circuit, or polygon) C is σ(C) := the product of the signs of the edges in C . The most
essential fact about a signed graph usually is not, as one might think, the edge sign function itself, but only the set C+(Σ)
of circles that have positive sign. If this set consists of all circles, we call the signed graph balanced. Such a signed graph is
equivalent to its unsigned underlying graph in most ways. We callΣ antibalanced if −Σ is balanced.

Proposition 2.1 (Harary [9]). Σ is balanced if and only if V can be divided into two sets so that all positive edges are within a
set and all negative edges are between the sets.

We say ‘divided’ rather than ‘partitioned’ because one set may be empty. If that is so, the signature is all positive.

3. Petersen structure

The Petersen graph P is the complement of the line graph of K5: P = L(K5). Thus, its vertices vij are in one-to-one
correspondence with the 10 unordered pairs from the set {1, 2, 3, 4, 5} and its 15 edges are all the pairs vijvkl such that
{i, j} ∩ {k, l} = ∅. (For readability, in subscripts we often omit the v of vertex names.) We usually write V and E for V (P)
and E(P)when discussing the Petersen graph, as there can be no confusion with the vertex and edge sets of a general graph.

For use later, we want structural information about P .
As P has edge connectivity 3, the smallest cut has three edges.
The automorphism group Aut P is well known to be the symmetric group S5 with action on V induced by the

permutations of the set {1, 2, 3, 4, 5}. Writing ST for the group of permutations of the set T , we identify Aut P with
S{1,2,3,4,5}. We use the same symbol for a permutation of {1, 2, 3, 4, 5} and the corresponding automorphism of P , as there
is little danger of confusion. Aut P carries any oriented path of length 3 to any other; hence it is also transitive on pairs of
adjacent edges (distance 1) and on pairs of edges at distance 2. (For these properties, see, e.g., [8, Section 4.4].) Furthermore,
Aut P carries any non-adjacent vertex pair to any other.

The maximum size of a set of independent vertices in P is 4. Each maximum independent vertex set has the form
Xm :=


vim : i ∈ {1, 2, 3, 4, 5} \ m


, and any three vertices in Xm determine m. For any m, n ∈ {1, 2, 3, 4, 5}, Xm and

Xn are automorphic. An independent set of three vertices is either the neighborhood of a vertex, or a subset of a maximum
independent set Xm. Deleting an independent vertex set leaves a connected graph, except that P \N(v) = C6∪· K1 and P \ Xm
is a 3-edge matching. If |W | = 3 and W ⊂ Xm, then P \ W is a tree consisting of three paths of length 2 with one endpoint
in common.

3.1. Hexagons

Each hexagon is E(P \ N[v]) for a vertex v. Thus there is a one-to-one correspondence between vertices and hexagons;
we write Hv = Hlm for the hexagon that corresponds to v = vlm. The stabilizer of Hlm is S{l,m} × S{1,2,3,4,5}\{l,m}. A hexagon
is determined by any two of its edges that have distance 2. Furthermore, any two hexagons are automorphic.

3.2. Matchings

We need to know all automorphism types of a matching in P . LetMk denote a matching of k edges.
Matchings of one edge are obviously all automorphic.
Let M2,d denote a pair of edges at distance d = 2 or 3. Any 2-edge matching is an M2,2 or M2,3. All M2,2 matchings are

automorphic because Aut P is transitive on paths of length 3. All M2,3 matchings are automorphic; for the proof see the
treatment ofM3,3.

An M5 can only be a cut between two pentagons, since P \ M5 is a 2-factor and P is non-Hamiltonian. All are clearly
automorphic.

A matching of four edges leaves two vertices unmatched. If they are adjacent, M4 = M5 \ edge; all such matchings are
automorphic. If they are non-adjacent, say they are vik and vjk in Fig. 3.1. Then M4 consists of a and one of the two M3,2’s
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Fig. 3.1. The four kinds of 3-edge matching in P .

in Hlm. Call this type of matchingM ′

4. InterpretingM ′

4 as one of the matchings in Hlm together with one of the edges incident
with vlm, it is easy to see that all matchings of typeM ′

4 are automorphic. Consequently, there are two automorphism classes
of 4-edge matchings.

There are four non-automorphic kinds of 3-edge matchingM3. First we describe them; then we prove there are no other
kinds.

ByM3,3 we mean a set of three edges, each pair having the same distance 3. EachM3,3 has the form

M3(m) := E(P \ Xm) =

vijvkl : {i, j, k, l} = {1, 2, 3, 4, 5} \ m


.

There are five such edge sets, one for eachm ∈ {1, 2, 3, 4, 5}; they partition E(P). Obviously, all theM3(m)’s are automorphic.
An M2,3 lies in a unique M3,3, since the M2,3 determines the value of m. This implies that there are 15 different M2,3’s.
Permuting {1, 2, 3, 4, 5} \ m permutes the edges ofM3(m); it follows that anyM2,3 is automorphic to any other.

We defineM3,2 to consist of alternate edges of a hexagon, say Hlm, which we call the principal hexagon of the three edges.
There are two such sets for each hexagon, hence 20 M3,2’s in all, and they are all automorphic to each other. The notation
M3,2 reflects the fact that the edges in the matching all have distance 2 from each other. Each M2,2 is contained in a unique
hexagon, and hence in a uniqueM3,2; thus, there are 60M2,2’s.

There is another way to form a matching of three edges at distance 2 from one another. In a pentagon vijvklvmivjkvlmvij,
take the edges e = vklvim and f = vjlvkm and the edge a = vijvlm. We call this type M ′

3. Another view of M ′

3 is as M5 \ two
edges. All matchings of type M ′

3 are automorphic, but they are not automorphic to any M3,2 because e, f , a do not lie in a
hexagon.

A fourth type of 3-edge matching, call itM3,2/3, consists of e, f , and b = vjkvlm. The distances of these edges are 2, except
that b and f have distance 3. AllM3,2/3’s are automorphic, but the distance pattern proves that anM3,2/3 is not automorphic
to any other type.

Lemma 3.1. Every 3-edge matching in P is an M3,3, an M3,2, an M ′

3,2, or an M3,2/3.

Proof. LetM3 be a 3-edge matching. If its edges are all at distance 3 from each other, thenM3 can only beM3,3, as two edges
at distance 3 have a unique edge at the same distance from both.

If M3 contains edges e, f at distance 2, there are four potential third edges up to the symmetry that interchanges e
and f (see Fig. 3.1). Choosing g for M3, the hexagon Hlm contains M3, so we have M3,2. Choosing a for M3, the pentagon
vijvklvmivjkvlmvij shows we have M ′

3. Choosing b, we have M3,2/3. Choosing c , we have M ′

3 again with the pentagon
vimvjkvilvkmvjlvim. �

4. Switching

Two signed graphs,Σ1 = (Γ1, σ1) andΣ2 = (Γ2, σ2), are switching equivalent (writtenΣ1 ∼ Σ2) if Γ1 = Γ2 and there
is a function ζ : V1 → {+,−} (a switching function) such that σ2(vw) = ζ (v)σ1(vw)ζ (w) for every edge vw. We write
σ2 = σ

ζ

1 andΣ2 = Σ
ζ

1 ; that is, we write the switched signature or graph as if we were conjugating in a group—and indeed
switching is a graphical generalization of conjugation. Another way to define switching is to switch a vertex set X ⊆ V (the
connection is that X = ζ−1(−)); that means negating the sign of every edge in the cut ∇X . Then we write ΣX

= (Γ , σ X )
for the switched graph. The switching function ζX is defined by ζX (v) := + if v ∉ X and − if v ∈ X .

Switching functions multiply pointwise: (ζη)(v) = ζ (v)η(v). Multiplication corresponds to set sum (symmetric
difference) of switching sets: ζXζY = ζX⊕Y . The group of switching functions is {+,−}

V . We write ε for its identity element,
the all-positive switching function. Certain switching functions have no effect on Σ; that is, the action of {+,−}

V on a
signature has a kernel,

KΓ := {ζ : Σζ
= Σ} = {ζ : ζ is constant on each component of Γ }.
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The kernel is independent of the signature, in fact, of everything except the partition of V into vertex sets of connected
components of Γ . The quotient group is the switching group of Γ , written

SwΓ := {+,−}
V/KΓ .

The element of this group that corresponds to a switching function ζ is ζ̄ , but for simplicity of notation we often use the
same symbol ζ without the bar when it should not cause confusion.

We say Σ1 and Σ2 are isomorphic (written Σ1 ∼= Σ2) if there is a graph isomorphism ψ : Γ1 → Γ2 that preserves
edge signs, i.e., σ2((vw)ψ ) = σ1(vw) for every edge. (As we are restricting ourselves to simple graphs, ψ can be treated
as a bijection V1 → V2 and (vw)ψ = vψwψ .) They are switching isomorphic (written Σ1 ≃ Σ2) if Σ2 is isomorphic to a
switching ofΣ1; that is, there are a graph isomorphism ψ : Γ1 → Γ2 and a switching function ζ : V1 → {+,−} such that
σ2((vw)

ψ ) = σ
ζ

1 (vw) for every edge.

Lemma 4.1 ([15,17]). Switching preserves circle signs. Conversely, if two signatures of Γ have the same circle signs, then one is
a switching of the other.

For instance, Σ is balanced if and only if it is switching equivalent to the all-positive signature. Because of this lemma,
switching-equivalent signed graphs are in most ways the same.

Lemma 4.1 shows that switching isomorphism is a true isomorphism: not of graphs or signed graphs, but of the structure
on signed graphs consisting of the underlying graph and the class of positive circles, i.e., of the pair (|Σ |,C+(Σ)) (which
constitutes a type of ‘biased graph’ [21]).

Switching equivalence and switching isomorphism are equivalence relations on signed graphs. An equivalence class
under switching equivalence is a switching equivalence class of signed graphs. An equivalence class under switching
isomorphism is a switching isomorphism class. (Many writers say ‘switching equivalence’ when they mean ‘switching
isomorphism’, but I find it better to separate the two concepts.)

5. Switching isomorphism types

Themost patently obvious signatures of the Petersen graph are+P and−P . Twomore are P1, which has only one negative
edge, and its negative −P1, with only one positive edge. Two more signatures are P2,d where d = 2, 3, which have two
negative edges at distance d; and the last two that mainly concern us are P3,d for d = 2, 3, which have three negative edges,
all at distance d; in P3,2 the negative edges must be alternate edges of a hexagon. In terms of our classification of matchings,
Pk,d := PMk,d ; that is, E

−(Pk,d) = Mk,d. These signed graphs are illustrated in Fig. 1.2.

Theorem 5.1. There are exactly six signed Petersen graphs up to switching isomorphism. They are +P ≃ −P3,3, P1 ≃ −P2,3,
P2,2 ≃ −P2,2, P2,3 ≃ −P1, P3,2 ≃ −P3,2, and P3,3 ≃ −P.
Proof. The first step is to establish the switching isomorphisms stated in the theorem. To switch −P to P3,3, switch an
independent set X = Xm of four vertices; this negates ∇X , leaving three negative edges, which have distance 3. If we begin
with −P1 with positive edge uv, by choosing X to contain neither u nor v we get uv ∉ ∇X , so, after switching, uv retains its
sign; therefore (−P1)X = P2,3. To switch −P3,2, where the positive edges belong to a hexagon Hv , switch N[v]. This negates
all edges except those of Hv , giving P3,2, whose negative edges are the originally negative edges of the hexagon. To switch
−P2,2, note that the two positive edges e and f , having distance 2, lie in a unique pentagon J . Switch the three vertices of J
that are not incident to e and the two vertices outside J that are adjacent to e. The result is P2,2.

For the rest of the theorem we need two more steps. First, we must prove that every signed Petersen graph belongs to
the switching isomorphism class of one of the six types +P, P1, Pk,d listed in the theorem. This is implied by Theorem 7.2.
Second, we must show that none of the six types is switching isomorphic to any other. The second step follows from the
calculation of invariants of the six switching isomorphism classes, by which we mean numbers or other objects that are
the same for every element of a switching isomorphism class. Relevant invariants are the numbers c−

5 and c−

6 of negative
circles of lengths 5 and 6 (Theorem 6.1), the frustration index l (Theorem 7.2) and frustration number l0 (Theorem 7.7), the
switching automorphism groups (Theorem 8.12), and some chromatic invariants (Section 9). The six classesmust be distinct
because no two have all the same invariants. In fact, c−

5 and c−

6 suffice to distinguish them; and so do the numbers of proper
3-colorations (Theorem 9.4). �

6. Circle signs

Lemma 4.1 leads to an effective method of distinguishing switching isomorphism classes, by comparing the numbers of
negative circles of each length.

Theorem 6.1. The numbers of negative pentagons and hexagons in each of the six signed Petersen graphs of Theorem 5.1 are
those listed in Table 6.1.
Proof. The Petersen graph has c5 = 12 pentagons and c6 = 10 hexagons. The number of cases to consider is lessened if
we notice that negating (P, σ ) leaves the number c−

6 (P, σ ) of negative hexagons the same but complements the number
c−

5 (P, σ ) of negative pentagons to c−

5 (P,−σ) = 12 − c−

5 (P, σ ).
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Table 6.1
The numbers of negative pentagons and hexagons in each switching isomorphism type.

(P, σ ) +P P1 P2,2 P2,3 ≃ −P1 P3,2 P3,3 ≃ −P

Negative C5 ’s 0 4 6 8 6 12
Negative C6 ’s 0 4 6 4 10 0

For +P both numbers are 0, and the values for −P follow.
In P1 there are as many negative pentagons, or hexagons, as the number of each that lie on a fixed edge e. There are four

ways to add an edge at each end of e to get a path of length 3, and each such path completes uniquely to a pentagon or
hexagon. Thus, c−

5 (P1) = c−

6 (P1) = 4. The numbers for −P1 are immediate.
If we also negate an edge f at distance 2 from e, the number of negative k-gons equals 2(c−

k (P1) − dk) where dk is the
number of k-gons that contain both e and f . It is easy to see that d5 = d6 = 1. (Use the 3-path transitivity of P , by which
under the symmetries of P there is only one orbit of pairs of edges at distance 2.) It follows that c−

5 (P2,2) = c−

6 (P2,2) = 6.
For an f at distance 3 from e there is a similar calculation. However, f cannot lie in a common pentagon with e, so now

d5 = 0. The value of d6 is not quite obvious. There are four ways to form a path of length 3 by extending e at each end.
Inspection reveals that two of these paths cannot be completed to a hexagon on f , but the other two can be completed
uniquely. Thus, d6 = 2. We conclude that c−

5 (P2,3) = 8 and c−

6 (P2,3) = 4. �

7. Frustration

The proofs of Theorems 5.1 and 9.4 make use of the measurement of imbalance by edges or vertices. The frustration
index l(Σ) := the smallest number of edges whose deletion leaves a balanced signed graph. It is equivalent to finding the
largest number of edges in a balanced subgraph ofΣ , which is the signed-graph equivalent of the maximum cut problem in
an unsigned graph; in fact, l(−Γ ) = the smallest number of edges whose complement is bipartite. The frustration number
(or vertex frustration number) l0(Σ) is the smallest number of vertices whose deletion leaves a balanced signed graph. Its
complement, |V | − l0, is the largest order of a balanced induced subgraph. For an all-negative graph, l0(−Γ ) is the smallest
number of vertices whose deletion leaves a bipartite graph.

7.1. Frustration index

The frustration index is the most significant way to measure how unbalanced a signed graph is. For instance, in social
psychology, l(Σ) is the minimum number of relations that must change to achieve balance. In the non-ferromagnetic Ising
model of spin-glass theory, the frustration index determines the ground-state energy of the spin glass. (The frustration index
was called ‘complexity’ by Abelson and Rosenberg [1], who introduced the idea, and ‘line index of balance’ by Harary; my
name for it was inspired by the picturesque terminology of Toulouse [16].)

Harary [10] proved that l(Σ) = the smallest number of edges whose negation or deletion makes the signed graph
balanced. (Negating an edge is equivalent to deleting it, so one can delete or negate the edges in any combination.) An
edge set whose deletion leaves a balanced graph is called a balancing set (of edges); thus, l(Σ) = the size of a minimum
balancing set.

Lemma 7.1 (Implicit in [3]). Switching does not change l(Σ). Indeed, l(Σ) = minζ |E−(Σζ )|, the minimum number of negative
edges in a switching of Σ .

That is, a signed graph has the smallest number of negative edges in its switching equivalence class if and only if
|E−(Σ)| = l(Σ). Let us callΣ minimal if it satisfies this equation.

By Lemma 7.1, we can distinguish switching isomorphism classes by their having different frustration indices. This helps
to prove the six signed P ’s are not switching isomorphic.

Theorem 7.2. There are precisely the following six isomorphism types of minimal signed Petersen graph: +P, P1, P2,2, P3,2, P2,3,
and P3,3. Each is the unique minimal isomorphism type in its switching isomorphism class. The frustration indices of the six types
are as stated in Table 7.1.

To find the frustration index of any signature of P , switch it to beminimal and consult the table. As frustration index is an
NP-complete problem (its restriction to all-negative signatures is equivalent to the well known NP-complete maximum-cut
problem) that may not be so easy, but in small examples like the Petersen graph Lemma 7.3 is a great help.

Proof. First we show that every signature of P switches to one of the six.

Lemma 7.3. If every cut in Σ has at least as many positive as negative edges, then l(Σ) = |E−
|. If some cut has more negative

than positive edges, then l(Σ) < |E−
|.
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Table 7.1
The frustration index of each switching isomorphism type.

(P, σ ) +P P1 P2,2 P2,3 P3,2 P3,3

l(P, σ ) 0 1 2 2 3 3

Proof. If |E−(X, X c)| > |E+(X, X c)|, then switching X reduces the number of negative edges. If |E−(X, X c)| ≤ |E+(X, X c)|
for every X , then no switching can reduce the number of negative edges; so l(Σ) = |E−

| by Lemma 7.1. �

Lemma 7.3 has a pleasing effect on a cubic graph.

Corollary 7.4. In any minimal signature of a cubic graph, the negative edges are a matching.

Thus,we need only examine all the automorphism types ofmatchings in P fromSection 3. Let E−
= Mk, where 0 ≤ k ≤ 5.

Matchings of 0 or 1 edge are trivial:Σ is minimal. When k = 2, E−
= M2,2 orM2,3, so we have P2,2 or P2,3.

When E−
= M5, switching the vertices of one of the pentagons separated by E− makes all edges positive, which is +P .

When E−
= M5 \ edge or E−

= M ′

3 = M5 \ 2 edges, the same switching gives P1 or P2,2, respectively.
For E−

= M ′

4, switch {vkl, vij, vkm, vjl}. This also results in P2,2.
The last case is E−

= M3,2/3. Here, we switch {vjk, vjl, vim}, getting P2,3.
This proves that every signature is switching isomorphic to one of the six basic types.
It remains to show that each of the six types is actually minimal. We have shown that a signature in which E− is a

matching is not minimal if it is not one of the six. Thus, if no two of the six are switching isomorphic, each must be the
unique minimal element of its switching isomorphism class. The switching invariants c−

5 and c−

6 are enough to prove that
none of the six can switch to any other. Thus, the theorem is proved. �

Corollary 7.5. In each switching equivalence class, and in each switching isomorphism class of signed Petersen graphs, there is
exactly one minimal isomorphism type.

The corollary cannot say that there is a unique minimal signature in each switching equivalence class, because that is
false. In the switching equivalence class of −P the unique minimal isomorphism type is P3,3, but the exact choice of the
three negative edges is not unique. The number of minimal graphs in that switching equivalence class equals the number
of sets of three edges all at distance 3, which is 5.

It is a remarkable fact that not just some but every switching equivalence class, and every switching isomorphism class,
of signed Petersens has only oneminimal signature up to isomorphism. It is not surprising that some switching equivalence
classes have this property, but that all do is. Byway of contrast, Kn (with n ≥ 4) has some switching equivalence classes with
unique minimal elements, either absolutely or only up to isomorphism, and some with multiple minimal members. In the
class of the signature Kn(e), which has exactly one negative edge e, clearly the onlyminimal signed graph is Kn(e). In the class
of −Kn, the minimal elements are all the signatures of Kn where the positive edges form a cut of maximum size, i.e., where
V (Kn) is partitioned into two sets whose sizes differ by at most 1 [14]. There are many such signatures and all are switching
equivalent to −Kn; but they are all isomorphic. Now, assume that n = 2r + 1 ≥ 5 and consider one more signature, where
the negative edges are e1i for i = 2, 3, . . . , r + 1 and e2,3. Here, E− is a connected subgraph. This signature is minimal in its
switching equivalence class, by Lemma 7.3. Switching v1, the negative edges are e1i for i = r + 2, r + 3, . . . , 2r + 1 and e2,3.
The number of negative edges is unchanged, but they now form a disconnected subgraph. Thus, this switching equivalence
class contains (at least) two minimal graphs that are not isomorphic. We see that for Kn there are switching equivalence
classes whoseminimal graph is unique, those in which theminimal graph is unique only up to isomorphism, and those with
non-isomorphic minimal members.

Thus, the behavior of the Petersen signatures is not totally ordinary. I suspect it is unusual, but the truth is that no one
knows whether, in regard to the uniqueness of either minimal signatures or isomorphism types of minimal signatures in
either their switching equivalence or isomorphism class, most graphs resemble Kn or P .

7.2. Frustration number

The (vertex) frustration number has been less deeply explored than the frustration index, perhaps because it seems less
suitable to the social psychologymodel and is certainly less relevant to spin-glass theory. Besides, it appears to be less subtle
in distinguishing between different signatures of a graph, becausemost graphs have fewer vertices than edges. Nevertheless,
we find a use for it in counting colorations in Section 9.

Lemma 7.6. Switching does not change l0(Σ). Moreover, l0(Σ) ≤ l(Σ) in every signed graph.

Proof. The first part is obvious from Lemma 4.1, because imbalance depends only on the set of negative circles. The second
part follows from the fact that, if we delete one endpoint from each edge of aminimumbalancing edge set, we get a balanced
subgraph by deleting at most l vertices. �
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Table 7.2
The frustration number of each switching isomorphism type.

(P, σ ) +P P1 P2,2 P2,3 P3,2 P3,3

l0(P, σ ) 0 1 2 2 3 3

Theorem 7.7. The frustration numbers of signed Petersen graphs are given in Table 7.2. All have frustration number equal to the
frustration index.

Proof. Consult Fig. 1.2. The values for +P and P1 are obvious.
A signature that has two vertex-disjoint negative pentagons cannot have l0 < 2; if the frustration index is 2, as in P2,2

and P2,3, that must be l0.
In P3,2 the negative pentagons are the inner star and all pentagons with two outer edges. To achieve balance we must

delete an inner vertex. Deleting one such vertex v gives P3,2\v, which is a subdivision of K4 inwhich the paths corresponding
to two opposite edges in K4 are negative and the paths that correspond to other edges in K4 are positive. Every circle in P3,2\v
that corresponds to a triangle of K4 is negative. It is impossible to make this graph balanced by deleting only one vertex;
hence l0(P3,2) = 3.

Because P3,3 is antibalanced, every pentagon is negative. This means that a vertex set whose deletion makes for balance
must cover all the pentagons. No two vertices can do that, as one can verify by inspecting adjacent and non-adjacent pairs;
but any vertex neighborhood N(v) does. Hence, l0(−P) = 3.

Comparing Tables 7.1 and 7.2 shows that l0 = l in every case. �

One can easily see that l0 = l is not true in general. However, I verified that equality holds for every signature of K4 or
K3,3. I offer the following proposal.

Conjecture 7.1. For every signed cubic graphΣ , l0(Σ) = l(Σ).

8. Automorphisms and orbits

In this section, we develop a general theory of switching automorphism groups of signed graphs. Then we compute the
automorphism and, more importantly, switching automorphism groups of the six basic signed Petersen graphs and their
negatives. Lastly, we apply that information to find the number of isomorphic but switching-inequivalent copies of each of
the six basic signatures.

We regard an automorphism of Γ as a permutation of V , and we write actions as superscripts, so products are read from
left to right.

8.1. Automorphisms and switching automorphisms of signed graphs

An automorphism of a signed graph is an isomorphismwith itself; that is, it is an automorphism of the underlying graph
that preserves edge signs. A switching automorphism of a signed graph is a switching isomorphism with itself. (As with
switching isomorphisms, cf. near Lemma 4.1, switching automorphisms really are automorphisms: of the biased graph
(|Σ |,C+(Σ)).) The group of automorphisms is Aut(Σ) and that of switching automorphisms is SwAut(Σ).

8.1.1. Automorphisms
As concerns automorphisms, a signed graph is just a graph whose edges are colored with two colors; an automorphism

is a color-preserving graph automorphism. There is not much to say except the following elementary observations.

Proposition 8.1. For a signed graphΣ = (Γ , σ ),

AutΣ = AutΓ ∩ AutΣ+
= AutΓ ∩ AutΣ−

= AutΣ+
∩ AutΣ−.

8.1.2. Switching permutations and switching automorphisms
Switching automorphisms are more complicated; to treat themwe need precise definitions and notation. We begin with

the action of automorphisms of Γ upon signatures:

σ α(vαwα) := σ(vw),

andΣα
:= (Γ , σ α). The action of an automorphism on a switching function is similar:

ζ α(vα) := ζ (v).



1566 T. Zaslavsky / Discrete Mathematics 312 (2012) 1558–1583

This leads to the commutation law

ζα = αζ α, (8.1)

because

σ ζα(vαwα) = (σ ζ )α(vαwα) = σ ζ (vw) = ζ (v)σ (vw)ζ (w),

while

σ αζ
α
(vαwα) = (σ α)ζ

α
(vαwα) = ζ α(vα)σ α(vαwα)ζ α(wα) = ζ (v)σ (vw)ζ (w).

Rewriting (8.1) as α−1ζα = ζ α , we see that the action of α is that of conjugation, as the notation suggests. Rewriting it in
terms of ζX , we obtain the important equation

(ζX )
α

= ζXα , (8.2)

since ζXα(vα) = ζX (v) = ζXα (v
α).

Now,we can define a preliminary group to the switching automorphism group. The ground set is {+,−}
V
×AutΓ , whose

elements we call, for lack of a better name, switching permutations of Γ , because when they act on a signature of Γ they
switch signs and permute the vertices. A switching permutation of Σ is any ζγ ∈ {+,−}

V
×AutΓ such thatΣζγ

= Σ . The
multiplication rule is

(ζ , α)(η, β) = (ζηα
−1
, αβ).

Because {+,−}
V and AutΓ embed naturally into {+,−}

V
× AutΓ as {+,−}

V
× {id} and {ε} × AutΓ , we regard them as

subgroups of {+,−}
V

×AutΓ , and we write the element (ζ , α) as a product, ζα. The equation of multiplication is given by
the next lemma.

Lemma 8.2. The product of switching permutations ζXγ and ζY ξ , where ζX , ζY ∈ {+,−}
V and γ , ξ ∈ AutΓ , is given by

ζXγ · ζY ξ = ζXζYγ−1 · γ ξ. (8.3)

The inverse of a switching permutation is

(ζXγ )
−1

= ζXγ γ
−1. (8.4)

Proof. The product formula is a restatement of the previous equations. We verify the inversion formula with a short
calculation:

ζXγ γ
−1

· ζXγ = ζXγ ζXγ · γ−1γ = ζXγ⊕Xγ id = ε id,

by (8.2). �

The commutation laws (8.1) and (8.2) imply that the conjugate of a switching function by an automorphism is another
switching function. Consequently, {+,−}

V is a normal subgroup. This makes the group of switching permutations a
semidirect product of {+,−}

V and AutΓ , so we write it as {+,−}
V o AutΓ . We write pA for the projection onto AutΓ .

The action of {+,−}
V o AutΓ on signed graphs (Γ , σ ) has kernel KΓ × {id}. The quotient group is the switching

automorphism group of Γ ,

SwAutΓ :=

{+,−}

V o AutΓ

/

KΓ × {id}


.

Since SwΓ can be identified with the normal subgroup SwΓ × {id}, KΓ with KΓ × {id}, and AutΓ with the subgroup
{ε̄} × AutΓ , the switching automorphism group of Γ is a semidirect product,

SwAutΓ = SwΓ o AutΓ ,

which projects onto AutΓ by a mapping p̄A. We refer to elements of SwAutΓ as switching automorphisms of Γ . (This is a
slight abuse of terminology, since they do not actually switch Γ ; they switch signatures of Γ .)

A switching automorphismofΓ canbewritten in several equivalentways. As amember of

{+,−}

VoAutΓ

/

KΓ×{id}


,

it is (ζ , α) = ζα. As a member of SwΓ o AutΓ , it is (ζ̄ , α) = ζ̄ α. By the natural embeddings, ζ id = ζ̄ id = ζ̄ and
εα = ε̄α = α. In particular, the identity element of SwAutΓ is ε id = ε̄ id = id. Lemma 8.2 applies in SwAutΓ simply by
putting a bar over the switching functions. (Sometimes we omit the bar, as it is obvious which element of SwAutΓ is meant
by ζα.)

The switching automorphism group of Γ contains the switching automorphism group of each signed graphΣ = (Γ , σ ).
The latter group is

SwAutΣ := {ζ̄ α : α ∈ AutΓ and α : Σζ ∼= Σ}.

That is, α must be an isomorphism from the switched signed graph to the original signed graph. This group projects
into AutΓ by the mapping p̄A|SwAutΣ , which for simplicity we also write as p̄A. We identify AutΣ with the subgroup
{ε̄α ∈ SwAutΓ : α ∈ AutΣ}. Note that a switching permutation of Σ is any switching permutation of Γ such that
ζ̄ γ ∈ SwAutΣ .
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8.1.3. Automorphisms and switching automorphisms
Now,we can state relationships amongst the automorphisms and switching automorphismsofΣ and the automorphisms

of Γ .

Proposition 8.3. As a function from SwAutΣ to AutΓ , p̄A is a monomorphism. The groups satisfy AutΣ ≤ p̄A(SwAutΣ) ≤

AutΓ .

Proof. It is obvious that p̄A is a homomorphism. To prove it is injective, we examine a switching function ζ such that ζ id is
a switching automorphism. This means thatΣζ

= Σ; in other words, ζ ∈ KΓ . But that means that the only element of the
form ζ̄ id in SwAutΣ is the trivial one, ε̄ id. Hence, p̄A is injective.

The relationships of the groups are now obvious. �

Another relationship makes an obvious but valuable lemma.

Lemma 8.4. The automorphisms of Σ are the automorphisms of |Σ | that stabilizeΣ+, or equivalentlyΣ−.

Switching automorphisms of homogeneously signed graphs are not very interesting in themselves.

Proposition 8.5. The automorphisms and the switching automorphisms of a homogeneous signature, +Γ or −Γ , are the
automorphisms of the underlying graph.

Proof. This follows at once from Lemma 8.4. �

A heterogeneously signed graph, in contrast, is likely to have switching automorphisms that are not automorphisms of
the signed graph. We see this in most, though not all, of the heterogeneous signatures of P .

Switching can change the automorphism group drastically. Fortunately, the isomorphism type of the switching
automorphism group is invariant under switching. In addition, negations need not be considered separately.

Proposition 8.6. Aut(−Σ) = Aut(Σ) and SwAut(−Σ) = SwAut(Σ). Also, SwAut(Σζ ) ∼= SwAut(Σ) by the mapping
η̄γ → ζ̄ η̄γ .

Proof. The first statement is immediate from Lemma 8.4.
The second follows from considering how a switching automorphism acts. (ζ , α) is a switching automorphism of Σ if

and only ifΣζ ∼= Σ , the isomorphism being viaα. Thismeans that the same graph automorphism is an isomorphism both of
(Σζ )+ ∼= Σ+ and of (Σζ )− ∼= Σ−. It follows that ζα is a switching automorphism of−Σ under exactly the same conditions
as it is a switching automorphism ofΣ .

For the third statement, we simply write down the action of η̄γ : it convertsΣζ to (Σζ )ηγ = Σ ζ̄ η̄γ . �

Corollary 8.7. Switching Σ does not change the automorphisms in the switching automorphism group: pA(SwAutΣζ ) =

pA(SwAutΣ) for any switching function ζ .

Proof. Examine the mapping in Proposition 8.6. �

Suppose that ζα is a switching automorphism. Since (Σζ )− ∼= Σ−, the switching cannot change the number of negative
edges. As switching means negating the signs of edges in a cut, the cut must have equally many positive and negative edges.
Thus we have a necessary condition for a switching automorphism.

Proposition 8.8. If ζXα is a switching automorphism of Σ , then ∇X has equally many edges of each sign. �

8.1.4. Coset representation
We treat multiplication in a switching automorphism group SwAutΣ through the left cosets of AutΣ . Choose a system

R̄ of representatives of the cosets and a system R of representatives ζXγX ∈ {+,−}
V oAutΓ of the elements ζ̄XγX ∈ R̄. Then

SwAutΣ is the disjoint union of the left R̄-cosets of AutΣ:

SwAutΣ =


ζX γX∈R

ζ̄XγX AutΣ . (8.5)

Thus we have two levels of representation: a switching automorphism ζ̄XγX representing each coset, and a switching
permutation ζXγX to represent each ζ̄XγX ∈ R̄. Note that ζX and ζXc = −ζX are equally valid representatives of ζ̄X ; thus
we can choose X so that |X | ≤

1
2 |V |.

Proposition 8.9. The following three statements about two switching automorphisms, ζ̄Xγ and ζ̄Y ξ ∈ SwAutΣ , are equivalent.

(i) They belong to the same coset of AutΣ in SwAutΣ .
(ii) They have the same switching operation, ζ̄X = ζ̄Y .
(iii) γ and ξ belong to the same coset of AutΣ in AutΓ .
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Proof. The switching automorphisms are in the same coset ⇐⇒ there is an α ∈ AutΣ such that ζ̄Xγ = ζ̄Y ξα. Because
SwAutΣ ⊆ SwAutΓ and p̄A is a monomorphism, this implies (iii), γ = ξα ∈ ξ AutΣ , and (ii), ζ̄X = ζ̄Y .

Now suppose that (ii) holds, i.e., there are cosets ζ̄Xγ AutΣ and ζ̄Xξ AutΣ with the same switched set X . Then
(ζ̄Xγ )

−1(ζ̄Xξ) ∈ AutΣ . Simplifying, (ζ̄Xγ )−1(ζ̄Xξ) = γ−1ζ̄X
−1ζ̄Xξ = γ−1ξ . Thus, γ−1ξ ∈ AutΣ , which implies (iii).

Finally, suppose that (iii) holds, i.e., ξ = γα. Then ζ̄Xγ = ζ̄Yγα. As in the first part of the proof, this implies (ii), ζ̄X = ζ̄Y ,
and consequently ζ̄Y ξ = ζ̄Xγα ∈ ζ̄Xγ AutΣ , which is (i). �

Corollary 8.10. Each left coset representative ζ̄XγX ∈ R̄ has a different switching function ζ̄X .

By Corollary 8.10, X determines γX ; thus, we define

ρX := ζXγX := the unique element of R that has switching set X .

Also, define ρXc = ζXcγXc . Then ρ̄X = ρ̄Xc , because ζ̄X = −ζ̄X = ζ̄Xc . Thus, assuming that Σ is connected, each ρ̄ ∈ R̄ has
associated switching sets X and X c , each of which serves equally well to represent ρ̄. (There are only two if Γ is connected,
because then KΓ = {±ε}.)

The task now is to express the product of switching automorphisms in terms of coset representatives. In the next
subsection, we do that for the more complicated signed Petersen examples by setting up multiplication tables for R, which
combine with a general formula to give all products. Here, we explain the format of such tables and obtain the general
product formula.

The product of representatives, ζXγX · ζYγY , has the form (ζUγU)ν, where ζUγU ∈ R and the permutation ν ∈ AutΣ is
a correction due to the fact that the product of representatives need not be a representative itself. We need formulas for U
and ν in terms of R. (The application to R̄ consists merely of placing bars over the switching functions.) For simplicity, we
assume thatΣ is connected, to ensure that ζ̄U is represented only by ζU or ζUc = −ζU .

Proposition 8.11. Assume that Σ = (Γ , σ ) is connected. For switching automorphisms (ζ̄XγX )α and (ζ̄YγY )β , where
ζXγX , ζYγY ∈ R and α, β ∈ AutΣ , there is the multiplication formula

(ζXγX )α · (ζYγY )β = (±ζUγU)ν · αβ, (8.6)

where U = X ⊕ Y α
−1γX

−1
, γU and the sign are determined by ±ζUγU ∈ R, and ν = γU

−1γXγY
α−1

∈ AutΣ .

Proof. Most of the proof is a calculation:

(ζXγX )α · (ζYγY )β = (ζXγX )(ζY
α−1
γY
α−1
) · αβ

= (ζXγX )(ζYα−1 γY
α−1
) · αβ

= (ζXζ
γX

−1

Yα−1 )(γXγY
α−1
) · αβ

= (ζXζYα−1γX−1 )(γXγY
α−1
) · αβ

= ζ
X⊕Yα

−1γX−1 (γXγY
α−1
) · αβ.

By Corollary 8.10, ζ̄U determines γU ∈ AutΓ such that ζ̄UγU ∈ R̄; consequently,

(ζXγX )α · (ζYγY )β = (±ζUγU)(γU
−1γXγY

α−1
) · αβ.

The sign is determined by whether U := X ⊕ Y α
−1γX

−1
or its complement is the set U ′ switched by the representative

ζU ′γX ∈ R. In the former case, U ′
= U and the sign is +, while, in the latter case, U ′

= U c , which introduces the minus sign.
U ′ must be one or the other, because switching any other set will give some edge in a spanning tree a different sign.

The reason that ν ∈ AutΣ is that, by the definition of U , (ζ̄XγX )α · (ζ̄YγY )β ∈ ζ̄UγU AutΣ . Thus, ν · αβ ∈ AutΣ , which
entails that ν ∈ AutΣ . �

Ideally, to use Eq. (8.6) in conjunction with the multiplication table of R, one first finds Y ′
:= Y α

−1
, then looks up the

product (±ρU)ν = ρXρY ′ in the table and combines it with αβ . (It is not necessary to find Y α
−1γX

−1
or U .) For this method

to work, R should be closed under conjugation by AutΣ . With Σ = P3,2 and P3,3, one can choose R suitably; that is, so it
is a union of orbits of AutΣ acting on SwAutΣ . However, it may not always be possible to choose such an ideal system of
representatives.

Question 8.1. Does a system of representatives R̄, or R, that is closed under conjugation by AutΣ exist for every signed
graph?

A necessary condition for such a system is that, if (ζXγX )α is in the same coset as ζXγX , then it must equal ζXγX . Thus γX
should commute with every automorphism α ofΣ for which ζ̄Xα = ζ̄X (equivalently whenΣ is connected, Xα = X or X c).
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Table 8.1
The automorphismand switching automorphismgroups of theminimal signedPetersens and their negatives.
Sk , Ak , Dk , and Zk are the symmetric and alternating groups on k letters, the dihedral group of a k-gon, and
the cyclic group of order k. V4 is the Klein four-group.

(P, σ ) Aut(P, σ ) SwAut(P, σ )

+P,−P S5 S5
P1,−P1 D4 D4
P2,2,−P2,2 Z2 V4
P2,3,−P2,3 D4 D4
P3,2,−P3,2 S3 A5
P3,3,−P3,3 S4 S5

Table 8.2
The exact groups corresponding to specific negative edge sets. i, j, k, l,m are the five elements of {1, 2, 3, 4, 5}, in any order. For G ≤ Sn , G+ denotes the
set of even permutations in G. ζX is the switching function that switches X ⊆ V (with ij denoting vertex vij for readability).

(P, σ ) Aut(P, σ ) SwAut(P, σ )

+P,−P S{1,2,3,4,5} {ε̄} × S{1,2,3,4,5}
P1,−P1 with E−

= {vijvkl} ⟨(ij), (ikjl)⟩ {ε̄} × ⟨(ij), (ikjl)⟩
P2,2,−P2,2 with E−

= {vilvjm, vklvim} ⟨(jk)(lm)⟩ ⟨ε̄(jk)(lm), ζ{jm,kl}(jl)(km)⟩
P2,3,−P2,3 with E−

= {vikvjl, vilvjk} ⟨(ij), (ikjl)⟩ {ε̄} × ⟨(ij), (ikjl)⟩
P3,2,−P3,2 with E−

= {vilvjm, vklvim, vjlvkm} (S{i,j,k} × S{l,m})
+ See Eq. (8.11)

P3,3,−P3,3 with E−
= {vijvkl, vikvjl, vilvjk} S{i,j,k,l} See Eq. (8.9)

8.2. Petersen automorphisms and switching automorphisms

Here, we find the automorphism and switching automorphism groups of the six minimal signed Petersen graphs and
their negations. Between them, they have six automorphism groups and six switching automorphism groups, but only four
abstract types of switching automorphism group. By Proposition 8.6, the negative signature, (P,−σ), has exactly the same
groups as does (P, σ ), and furthermore SwAut(P3,3) ∼= SwAut(−P) and SwAut(P2,3) ∼= SwAut(−P1). By Propositions 8.5
and 8.5, both groups of +P and −P equal Aut(P) = S5. Thus, as abstract groups, we have five automorphism groups and
three switching automorphism groups to discover; but there are five switching automorphism groups to find as explicit
subgroups of SwAut P .

Theorem 8.12. The abstract automorphism and switching automorphism groups of theminimal signed Petersen graphs and their
negatives are as shown in Table 8.1. As subgroups of SwAut P, they are shown in Table 8.2.

We preface the proof with a structural lemma.

Lemma 8.13. Let (P, σ ) be a minimal signature of P. Suppose that ∇X is a cut that contains equally many edges of each sign, as
when X is switched in a switching automorphism. Then
(a) |∇X | = 4, X = V (e0) for some edge e0, and (P, σ ) = Pk,2 for k = 2 or 3, or
(b) |∇X | = 6, X = V (Q ) for a path Q of order 4, and (P, σ ) = P3,2, or
(c) |∇X | = 6, X = N[v] for some vertex v, and (P, σ ) = P3,3.

Note that Lemma 8.13 does not apply to a switching automorphism in which there is no switching.
Proof. Suppose that the subgraph P:X induced on X , with edge set E:X , is disconnected; then ∇X is the disjoint union of
two or more cuts, hence it has at least six edges. As (P, σ ) is minimal, there are no more than three negative edges; hence
|∇X | = 6, and X consists of two non-adjacent vertices. Then∇X does not contain three independent edges; by Corollary 7.4
this case is impossible.

Therefore P:X is connected, so |∇X | = 3|X |−2|E:X |. As |∇X | is even, this implies that |X | is even, so wemay assume that
|X | ≤ 4. Then P:X is acyclic; being connected, it is a tree. Consequently, |E:X | = |X |−1, and we deduce that |∇X | = |X |+2.

If the cut has four edges, |X | = 2; so X = V (e0) for some edge e0 and ∇X consists of the four edges adjacent to e0.
Amongst them the largest distance is 2. It follows that (P, σ ) = Pk,2 as in (a).

If the cut has six edges, |X | = 4. P:X is a tree which may be either a path Q of length 3 or a vertex star. If it is a path Q ,
then X = V (Q ), and the six edges of ∇X contain no three edges at distance 3 from one another. Hence, d = 2, and we have
(b). If P:X is a vertex star, X = N[v] for some v ∈ V . In this case, d = 3, since it is not possible to choose three edges in ∇X
whose distances are all 2. Thus, we are in case (c). �

Proof of Theorem 8.12. In the course of the proof, we establish many important facts about the groups, in particular
multiplication tables for the most complicated ones, SwAut P2,3 and SwAut P3,3. The proofs of these facts could not easily be
separated from that of the main theorem, so it seemed best, though unconventional, to incorporate them all, including their
formal statements, into one large proof. In order to keep the reader (and the author) from getting lost, the proof is divided
into subsections treating different aspects.

The groups of +P follow from Proposition 8.5. We take up the others in turn.
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Fig. 8.1. Switching two positively adjacent vertices (circled) on the principal hexagon in P3,2 for Case (a). Left: P{e,f ,g} , before switching. The principal
hexagon Hv is the outer hexagon. Heavy lines indicate the cut ∇X . Right: PX

{e,f ,g} , after switching X = {vjm, vkl}. Heavy lines indicate the new principal
hexagon Hu and dotted lines mark the two new negative edges.

8.2.1. Signatures of type P1.
The automorphism group of P1 is the stabilizer of an edge in Aut P . Suppose P1 to have negative edge e = vijvkl; i.e., it is

P{e}. An automorphism α can preserve the vertices; then it is in the four-element group generated by (ij) and (kl). Or, it can
exchange the vertices; this is done, for instance, by a permutation (ikjl). The group


(ij), (kl), (ikjl)


is the dihedral group of

a square with corners labelled, in circular order, i, k, j, l; it is generated by (ij) and (ikjl).
Due to Proposition 8.8 and the fact that no cut in P has fewer than three edges, there are no switching automorphisms

of P1 other than its automorphisms.

8.2.2. Signatures of type P2,d.
We write P{e,f } for P2,d with negative edges e and f . An automorphism of P{e,f } preserves {e, f }.
In P2,3, there is a unique third edge g at distance 3 from e and f forming amatchingM3(m). As any edge inM3(m) determines

the whole matching, an automorphism of P that stabilizes {e, f } must fix g , and vice versa. Thus, Aut P{e,f } = Aut P{g}.
In P2,2 = P{e,f }, e and f are at distance 2 in a hexagon Hlm. The hexagon is uniquely determined by {e, f }. There is a unique

edge g at distance 2 from e and f in H . Let e = vilvjm, f = vklvim, and g = vjlvkm. Since an automorphism α of P{e,f } preserves
distance, the adjacent vertices vjm, vkl of E− are either fixed or interchanged, and the remaining vertices vil, vim are also fixed
or interchanged. This implies that i is fixed under α, so α, if not the identity, transposes l and m, and consequently α = id
or (jk)(lm). Hence, Aut P{e,f } =


(jk)(lm)


∼= Z2, the cyclic group of order 2.

Now, let us examine possible switching automorphisms ζXγ of P{e,f } = P2,d for d = 2, 3. By Lemma 8.13, |∇X | = 4 and
P{e,f } = P2,2. It follows that a non-trivial switching of P2,3 cannot be isomorphic to P2,3, so SwAut P2,3 = {ε̄}×Aut P2,3. There
is a non-trivial switching of P2,2 by X = {vjm, vkl} forming new negative edges e′

= vjmvik and f ′
= vklvim, so γ must fix i

and transpose either j, l and k,m or else j,m and k, l. Thus, γ = (jl)(km) or (jm)(kl). We conclude that

SwAut P{e,f } = {ε̄ id, ε̄(jk)(lm), ζ{jm,kl}(jl)(km), ζ{jm,kl}(jm)(kl)}.

8.2.3. Signatures of type P3,d.
The next groups are those of P3,d = P{e,f ,g} for d = 2, 3. For each distance d, choose the same negative edges e, f , g as in

the previous analyses of P2,d. In P3,2, the negative edges lie in the hexagon H = Hlm = P \ N[vlm]. In P3,3, the negative edges
are e = vijvkl, f = vikvjl, g = vilvjk, so E−

= M3(m).
We begin with the automorphism groups.
To determine Aut P3,2, note that the hexagon containing e, f , g isHv = P \N[v] for v = vlm. An automorphism α of P{e,f ,g}

must fix v and thus must fix or exchange l and m. It can also permute the other indices i, j, k. Suppose that α fixes l and m.
As the vertices of Hv , in order, are vli, vmk, vlj, vim, vlk, vjm, with vertex indices alternating between l and m, and as α must
preserve the set {e, f , g}, it must rotate Hv by a multiple of one-third of a full rotation. This means that it permutes i, j, k
cyclically, so it is a power of (ijk). Now, suppose that α exchanges l with m. Then it reverses the direction of Hv , so in order
to leave {e, f , g} invariant it must fix one of e, f , g and one of i, j, k; thus, α = (ij)(lm), (ik)(lm), or (jk)(lm). The conclusion
is that α is an even permutation of {1, 2, 3, 4, 5} and is an element of S{l,m} × S{i,j,k}. Thus, Aut P{e,f ,g} = (S{l,m} × S{i,j,k})

+,
the superscript + denoting even permutations only. As the factor (lm) is predictable by evenness given the S{i,j,k} part of an
automorphism, Aut P3,2 ∼= S3.

The automorphism group of P3,3 is determined by the fact that the negative edge set {e, f , g} = M3(m). An automorphism
permutes e, f , g , whence it permutes i, j, k, l arbitrarily and fixesm. Thus, Aut P{e,f ,g} = S{i,j,k,l} ∼= S4.

Now, we examine the switching automorphism groups. We assume that P3,d = P{e,f ,g} switches by X to P{e′,f ′,g ′}.
Lemma 8.13 presents three cases to consider.
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Fig. 8.2. Switching the four vertices of a path in P3,2 for Case (b). Left: P{e,f ,g} , before switching X = {w, x, y, z}. The principal hexagon Hv is the outer
hexagon. Heavy lines indicate the cut ∇X . Right: PX

{e,f ,g} , after switching. Heavy lines indicate the new principal hexagon Hu and dotted lines mark the new
negative edges.

In Case (a), d = 2, so the three negative edges lie in the hexagon Hv (Fig. 8.1). As switching changes two edges from
negative to positive, this resembles the case of P2,2, but now there are three possible switching sets X , namely X = {w, x}
for each positive edgewx inHv . Switching X gives a P3,2 with negative edge set {e′, f ′, g ′

} ⊆ Hu. The vertex u can be described
in terms of the 3-edge path in Hv centered uponwx: there is a unique pentagon containing this path, and u is its only vertex
not in Hv . It follows that each different edge wx yields a different principal hexagon after switching. Now, suppose that
X = {vjm, vkl}; then u = vjk and PX

{e,f ,g} is isomorphic to P{e,f ,g} by the even permutation γX := (jm)(kl). Similarly, each of the
other two switching setsX gives PX

{e,f ,g}, which is isomorphic to P{e,f ,g} by an evenpermutation. It follows fromProposition 8.9
that each different ζXγX belongs to a different left coset of Aut P{e,f ,g} in SwAut P{e,f ,g}. Thus we have three cosets besides
Aut P{e,f ,g} itself.

The three coset representatives are a single orbit of the action of Aut P{e,f ,g} on SwAut P{e,f ,g}. To prove this, we may
point to symmetry or we may compute the action on a coset representative ζ̄XγX , or rather on the switching permutation
ζXγX . The argument from symmetry is that each switching automorphism is obtained from one of them, say ζ̄jm,kl(jm)(kl), by
rotating Fig. 8.1 through 120° once or twice. The rotation is carried out by the permutation (kji). As for a double transposition,
say (jk)(lm) ∈ Aut P{e,f ,g}, applying it reflects the figure across a line parallel to vjkvlm, and therefore does not change the
switching automorphism ζ̄jm,kl(jm)(kl); the other double transpositions similarly fix the other switching automorphisms.
For the computational proof, first, we note the action of powers of (ijk):

[ζjm,kl(jm)(kl)](ijk) = ζkm,il(km)(il),
[ζjm,kl(jm)(kl)](kji) = ζim,jl(im)(jl).

(8.7)

This shows the chosen representatives are in one orbit. Next, we show the action of (jk)(lm):

[ζjm,kl(jm)(kl)](jk)(lm) = ζjm,kl(jm)(kl).

As Aut P{e,f ,g} = ⟨(ijk)⟩ ∪ (jk)(lm)⟨(ijk)⟩, this proves there are no other switching permutations in the orbit. Thus,
the computational proof gives the slightly stronger result that these switching permutations, not only the switching
automorphisms, are a whole orbit of Aut P{e,f ,g}.

In Case (b), d = 2 and P:X is a pathwxyz. Again e, f , g are alternating edges on Hv (Fig. 8.2).
Given Hv , we need to know which sets X = {w, x, y, z} can be. To determine that, we reverse the question; we fix X and

ask which hexagons Hv can be. (There are 60 paths of length 3, but, as Aut P is transitive on them, there is only one type.)
Since e, f , g ∈ ∇X , it must be true that |Hv ∩ ∇X | = 3. One finds by checking every vertex of P that only two hexagons Hv
have this property; the vertices v are the neighbors of x and y in X c . By choice of notation, wemay assume that v is adjacent
to y.

Now we can describe the relationship between the path wxyz and P{e,f ,g}. The path begins with the positive edge wx of
Hv , which is followed by y ∉ V (Hv), and then ends at z in Hv . The original negative edges e, f , g are the alternating triple in
Hv that excludeswx. The vertex y is the neighbor of x along Hv . Thus, there are six possible paths forwxyz. Once we choose
w and x, the rest is determined.

After switching X = {w, x, y, z}, we again have three negative edges on a hexagon; this hexagon is Hu, where u is the
neighbor of x alongHv .Hv ∩Hu is the 2-edge path fromw to z inHv; the first edge is one of e, f , g and hence is positive (after
switching), while the next, call it e′, is negative. The negative edge set of PX

{e,f ,g} consists of e
′ and the edges f ′, g ′ at distance

2 from it along Hu. Thus, P{e,f ,g} switches to P{e′,f ′,g ′}.
To find a permutation α bywhich PX

{e,f ,g} is isomorphic to P{e,f ,g}, we need only examine one case, because each pathwxyz
maps to any other,w′x′y′z ′, by the unique automorphism of P{e,f ,g} which carries (w, x) to (w′, x′). Let e = vilvjm, f = vklvim,
and g = vjlvkm, so v = vlm, and let the pathwxyz = vjmvklvijvkm. Then u = vim. The even permutation (ilm) is one choice for
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Fig. 8.3. Switching the closed neighborhood X = N[v] of a totally positive vertex in P3,3 for Case (c). The original negative edges e, f , g are dashed; the
new ones after switching, e′, f ′, g ′ , are dotted. The heavy lines show the cut ∇X .

the desired isomorphism. The switching automorphism of P{e,f ,g} is ζ̄{jm,kl,ij,mk}(ilm). (In the notation of Section 8.1.4, this is
ρ̄{jm,kl,ij,mk}.)

These six switching automorphisms are another orbit of Aut P{e,f ,g} acting on SwAut P{e,f ,g}. The proof by symmetry is
contained in the observation that the six paths are automorphic under the automorphismgroup.We show the computational
proof in order to demonstrate that the switching permutations are also a single orbit of Aut P{e,f ,g}. We compute the non-
trivial actions on one of the switching permutations:

[ζ{jm,kl,ij,mk}(ilm)](ijk) = ζ{km,il,jk,mi}(jlm),
[ζ{jm,kl,ij,mk}(ilm)](kji) = ζ{im,jl,ki,mj}(klm),
[ζ{jm,kl,ij,mk}(ilm)](jk)(lm) = ζ{kl,jm,ik,lj}(mli),
[ζ{jm,kl,ij,mk}(ilm)](ij)(lm) = ζ{il,km,ji,lk}(mlj),
[ζ{jm,kl,ij,mk}(ilm)](ik)(lm) = ζ{jl,im,kj,li}(mlk).

(8.8)

This displays all six switching permutations of P{e,f ,g}.
In Case (c), X = N[v], {e, f , g} = M3(m) :=


vijvkl : {i, j, k, l} = {1, 2, 3, 4, 5} \ m


, and Aut P{e,f ,g} = S{1,2,3,4,5}\m. The

complement ofV (M3(m)) isXm. Any vertex inXm can be taken as v; choosing v = vlm, ζN[vlm](lm) is a switching automorphism
of P3,3 (Fig. 8.3). This is the only way to switch P{e,f ,g} for a switching automorphism, so

SwAut P3,3 = S{1,2,3,4,5}\m ∪


i∈{1,2,3,4,5}\m

ζN[vim](im)S{1,2,3,4,5}\m. (8.9)

We may rewrite Eq. (8.9) as

SwAut P3,3 = S{1,2,3,4,5}\m ∪


α∈S{1,2,3,4,5}\m

[ζN[vim](im)]α S{1,2,3,4,5}\m

(where i ≠ m is fixed).
Thus, as with P3,2, the switching permutations and switching automorphisms of P3,3 are unions of whole orbits of the

actions of Aut P{e,f ,g} acting on switching permutations and switching automorphisms of P . This is obvious both pictorially,
as Aut P{e,f ,g} permutes {1, 2, 3, 4, 5}\{m} and therefore Xm, and computationally, asN[vim]

α
= N[viαm], so [ζN[vim](im)]α =

ζN[viαm](iαm) (Fig. 8.3).

8.2.4. The structure of SwAut P3,2.
A switching automorphism of P3,2, if not an automorphism, falls under Case (a) or Case (b). Thus,

SwAut P3,2 = Aut P3,2 ∪


λ∈⟨(ijk)⟩

[ζ{jm,kl}(jm)(kl)]λ Aut P3,2 ∪


µ∈Aut P3,2

[ζ{jm,kl,ij,mk}(il)(jk)]µ Aut P3,2. (8.10)

This tells us the set SwAut P3,2, but to know the groupwe need the rules formultiplication and for how to determine, for each
permutation in pA(SwAut P3,2), which switching must be done before the permutation to get a switching automorphism.

The description is simplified if we fix the P3,2 by choosing a specific negative edge set. Our choice for E− is {e =

v14v25, f = v34v15, g = v24v35} ⊆ H45. (That is, we are setting i, j, k = 1, 2, 3 and l,m = 4, 5.)
To describe the group we fix two switching sets,

W := {v15, v24} and Z := {v34, v25, v13, v24},

and corresponding switching permutations,

υW := ζW (15)(24) and ωZ := ζZ (145).
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Table 8.3
The transformsWµ and Zµ and associated switching automorphisms, for µ ∈ Aut P3,2 . Recall that υ

µ

W = υWµ and ωµZ = ωZµ .

λ Wµ υWµ Zµ ωZµ

id W = {v15, v24} ζW (15)(24) Z = {v34, v25, v13, v24} ζZ (145)

(123) {v25, v34} ζ
(123)
W (25)(34) {v14, v35, v12, v34} ζ

(123)
Z (245)

(321) {v35, v14} ζ
(321)
W (35)(14) {v24, v15, v23, v14} ζ

(321)
Z (345)

(12)(45) {v15, v24} υW {v35, v14, v23, v15} ζ
(12)(45)
Z (542)

(23)(45) {v14, v35} υ
(321)
W {v25, v34, v12, v35} ζ

(23)(45)
Z (541)

(13)(45) {v34, v25} υ
(123)
W {v15, v24, v13, v25} ζ

(13)(45)
Z (543)

Table 8.4
Themultiplication table of elements of {+,−}×Aut P that represent coset representatives of the second kind times the second and third kinds in SwAut P3,2 .

· υW υ
(123)
W υ

(321)
W

υW ε̄ id ω
(321)
Z (123) ω

(13)(45)
Z (321)

υ
(123)
W ω

(12)(45)
Z (321) ε̄ id ωZ (123)

υ
(321)
W ω

(123)
Z (123) ω

(23)(45)
Z (321) ε̄ id

· ωZ ω
(123)
Z ω

(321)
Z ω

(12)(45)
Z ω

(23)(45)
Z ω

(13)(45)
Z

υW ω
(12)(45)
Z ω

(123)
Z (12)(45) υ

(123)
W (321) ωZ −ω

(23)(45)
Z (12)(45) υ

(23)(45)
W (123)

υ
(123)
W υ

(321)
W (321) ω

(13)(45)
Z ω

(321)
Z (23)(45) −ω

(12)(45)
Z (23)(45) υW (123) ωZ

υ
(321)
W ωZ (13)(45) υW (321) ω

(13)(45)
Z υ

(13)(45)
W (123) ω

(321)
Z −ω

(13)(45)
Z (13)(45)

(W is the X = {vim, vjl} of Case (a) and Z is the X = {vjm, vkl, vij, vkm} of Case (b). The permutation part is what was called
γW and γZ ; as before, it is partly arbitrary, since it is determined only up to right multiplication by elements of Aut P3,2.) For
the systems of representatives in Proposition 8.11 we choose

R := {ε id} ∪ {υλW : λ ∈ ⟨(123)⟩} ∪ {ω
µ

Z : µ ∈ Aut P3,2},

whichwemay do because the coset representatives constitute three orbits of Aut P3,2 acting on {+,−}
V
×Aut P3,2, as shown

in Section 8.2.3, and R̄ := {ζ̄XγX : ζXγX ∈ R}. As in Cases (a) and (b), W (12)(45)
= W and ρµX = ρXµ for any ρX = ζXγX ∈ R

and µ ∈ Aut P3,2, so R is closed under the action of Aut P3,2. The setsWµ and Zµ are found in Table 8.3.
The switching set X associated with ρ̄ ∈ R̄ is uniquely determined if we insist that |X | ≤ 4. (That is how we chose R.)

Thus, we are representing SwAut P3,2 as the disjoint union of the left R̄-cosets of Aut P3,2:

SwAut P3,2 =


ζX γX∈R

ζ̄XγX Aut P3,2. (8.11)

Note again that ζX and −ζX = ζXc are equally valid representatives of ζ̄X ; this fact helps to calculate and interpret the
multiplication tables we provide for SwAut P3,2.

The product (ζ̄XγX )α · (ζ̄YγY )β of any two switching automorphisms is completely specified by Proposition 8.11. To find
the product follow this procedure.

(1) Set Y ′
= Y α

−1
and ζY ′ = ζY

α−1
. Then ζY ′γY ′ is an element of R, because R is closed under the action of Aut P3,2.

(2) Calculate U = X ⊕ Y ′ or (X ⊕ Y ′)c , the former if |X ⊕ Y ′
| ≤ 4 and the latter otherwise.

(3) Find ζUγU ∈ R to determine γU .
(4) The product is (ζ̄UγU)(γU−1γXγY ′) · αβ , which lies in the coset (ζ̄UγU)Aut P3,2.
(5) The product (ζXγX )α · (ζYγY )β in {+,−} × Aut P , if desired, is ±(ζUγU)(γU

−1γXγY ′) · αβ , with the positive sign if
|X ⊕ Y ′

| ≤ 4 and the negative sign if not.

Steps (2) and (3) can be combined by using Tables 8.4–8.6, which give the products of elements ζXγX , ζY ′γY ′ ∈ R.
To illustrate the calculations involved in preparing the multiplication tables for P3,2, we solve three representative cases.

Example 8.1. For the first two examples, we compute the product ofωZ times two other switching permutations in R. First,

ωZωZ = ζ{34,25,13,24}(145) · ζ{34,25,13,24}(145)
= ζ{34,25,13,24}ζ

{34,25,13,24}(145)−1 (145)(145)

= ζ{34,25,13,24}ζ{31,24,53,21}(541) = ζ{34,25,13,24}⊕{31,24,53,21}(541)

= ζ{34,25,53,21}(541) = ζZ(23)(45)(541) = ω
(23)(45)
Z .
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Table 8.5
The multiplication table of elements of {+,−}×Aut P that represent coset representatives of the third kind
times the second kind in SwAut P3,2 .

· υW υ
(123)
W υ

(321)
W

ωZ −ω
(12)(45)
Z (12)(45) υ

(123)
W (321) ω

(13)(45)
Z

ω
(123)
Z ω

(23)(45)
Z −ω

(13)(45)
Z (23)(45) υ

(321)
W (321)

ω
(321)
Z υW (321) ω

(12)(45)
Z −ω

(23)(45)
Z (13)(45)

ω
(12)(45)
Z −ωZ (12)(45) ω

(321)
Z υ

(321)
W (123)

ω
(23)(45)
Z ω

(123)
Z υ

(123)
W (123) −ω

(321)
Z (13)(45)

ω
(13)(45)
Z υW (123) −ω

(123)
Z (23)(45) ωZ

Table 8.6
The multiplication table of elements of {+,−}×Aut P that represent coset representatives of the third kind
in SwAut P3,2 .

· ωZ ω
(123)
Z ω

(321)
Z

ωZ ω
(23)(45)
Z υW −υ

(321)
W (13)(45)

ω
(123)
Z −υW (12)(45) ω

(12)(45)
Z υ

(123)
W

ω
(321)
Z υ

(321)
W −υ

(123)
W (23)(45) ω

(13)(45)
Z

ω
(12)(45)
Z −ω

(23)(45)
Z (12)(45) ε̄ id −ω

(13)(45)
Z (23)(45)

ω
(23)(45)
Z ε̄ id ω

(12)(45)
Z (12)(45) ω

(13)(45)
Z (13)(45)

ω
(13)(45)
Z −ω

(23)(45)
Z (13)(45) −ω

(12)(45)
Z (23)(45) ε̄ id

· ω
(12)(45)
Z ω

(23)(45)
Z ω

(13)(45)
Z

ωZ −ω
(123)
Z (12)(45) ε̄ id −ω

(321)
Z (13)(45)

ω
(123)
Z ε̄ id −ωZ (12)(45) −ω

(321)
Z (23)(45)

ω
(321)
Z −ω

(123)
Z (23)(45) −ωZ (23)(45) ε̄ id

ω
(12)(45)
Z ω

(123)
Z υ

(12)(45)
W −υ

(13)(45)
W (23)(45)

ω
(23)(45)
Z −υ

(12)(45)
W (12)(45) ωZ υ

(13)(45)
W

ω
(13)(45)
Z υ

(12)(45)
W −υ

(23)(45)
W (13)(45) ω

(321)
Z

Next, we give a more complicated example involving complementation of the switching set and a residual permutation
that is an automorphism of P3,2.

ωZω
(321)
Z = ζ{34,25,13,24}(145) · ζ{24,15,23,14}(345)

= ζ{34,25,13,24}ζ
{24,15,23,14}(145)−1 (145)(345)

= ζ{34,25,13,24}ζ{21,54,23,51}(15)(34) = ζ{34,25,13,24}⊕{12,45,23,15}(15)(34)

= −ζ{14,35}(15)(34) = [−ζ{14,35}(14)(35)] · [(14)(35)]−1(15)(34)

= −υ{14,35} · (35)(14)(15)(34) = −υ
(321)
W (13)(45).

Example 8.2. We use Example 8.1 to compute left multiplication by a transform of ωZ .

ω
(321)
Z ω

(123)
Z =


ωZω

(123)(321)−1

Z

(321)
=


ωZωZ

(321)
,

which, by Example 8.1,

=

−υ

(321)
W (13)(45)

(321)
= −υ

(123)
W (32)(45).

By explicitly inverting the isomorphism p̄A : SwAut P3,2 → A5 : ζ̄ ξ → ξ , we can say, for any ξ ∈ A5, exactly which
switching function ζXγX should be associated with it.
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Table 8.7
The multiplication table of SwAut P3,3 with negative edge set M3(5) = {v12v34, v13v24, v14v23}. i, j ∈

{1, 2, 3, 4} and α, β ∈ S{1,2,3,4} .

Left · Top β ζ̄N[j5](j5)β

α αβ ζ̄N[jα−1 5](j
α−1

5)αβ

ζ̄N[i5](i5)α ζ̄N[i5](i5)αβ


αβ if j = iα

ζ̄N[jα−1 5](ij
α−1

5)αβ if j ≠ iα

Proposition 8.14. For a permutation ξ ∈ A5, the corresponding switching automorphism of P3,2 is ζ̄Xξ = ζ̄XγXα ∈

ζ̄XγX Aut P3,2, where ζXγX ∈ R is given by

ζXγX =


ζ∅ id = ε id if {4, 5}ξ

−1
= {4, 5},

ζ{34,25,13,24}λ(i45) if {4, 5}ξ
−1

= {i, 4}, where λ = (123)i−1,

ζ{25,34,12,35}λ(54i) if {4, 5}ξ
−1

= {i, 5}, where λ = (123)i−1,

ζ{i5,j4}(i5)(j4) if {4, 5}ξ
−1

= {i, j} ⊂ {1, 2, 3}, where j = i(123),

and α = γX
−1ξ ∈ Aut P3,2.

Proof. The question is to find the vertex set X such that γX , of ζXγX ∈ R, satisfies ξ ∈ γX Aut P3,2; in other words,
γX

−1ξ = α ∈ Aut P3,2. By this definition of α, {4, 5}ξ
−1

= {4, 5}α
−1γX

−1
. But {4, 5} is invariant under Aut P3,2. Therefore,

{4, 5}ξ
−1

= {4, 5}γX
−1

, which depends only on the coset of Aut P3,2 towhich ξ belongs. In otherwords,we need only consider
the case α = id, which means that we examine only all ξ = γX . Now, the proposition follows easily, by inspection of the
ten cases of γX .

A better method is to show that the proposition for one X implies it for Xλ, for every λ = (123)p. Replacing X by Xλ,

{4, 5}(γXλ )
−1

= {4, 5}(γ
λ
X )

−1
= {4, 5}λ

−1(γX )
−1λ

= ({4, 5}(γX )
−1
)λ.

Supposing that {4, 5}γX
−1

= {4, 5}, {i, 4}, {i, 5}, or {i, i(123)}, we deduce that {4, 5}(γXλ )
−1

= {4, 5}, {iλ, 4}, {iλ, 5}, or
{iλ, (iλ)(123)}, respectively. This proves the claim for λ = (123)p. Thus, we need only check the proposition’s validity for
X = ∅, Z, Z (12)(45), and W , which is easier than checking all ten X ’s. �

A natural question is whether SwAut P3,2 can bewritten as a product of subgroups,H ·Aut P3,2, whereH∩Aut P3,2 = {id},
or in otherwordswhether there exists a systemof left coset representatives that is a subgroup. There does not, for it is known
that no subgroup of A5 of order 6 has such a complementary subgroup.

8.2.5. The structure of SwAut P3,3.
We know the set SwAut P3,3, but for a full description we need the rule of multiplication and the rule for inverting the

projection pA. It is easier to do this if we fixm, so we assume thatm = 5. Then E−
= M3(5), Aut P3,3 = S{1,2,3,4}, and

SwAut P3,3 = S{1,2,3,4} ∪

4
j=1

ζ̄N[j5](j5)S{1,2,3,4}. (8.12)

An element of the group has the form β or ζ̄N[j5](j5)β for β ∈ S{1,2,3,4} and j ∈ {1, 2, 3, 4}. To compute a product, refer to
Table 8.7.

The second product column in Table 8.7 requires proof, for which themain step is this computation (done for a switching
permutation ζα and consequently the same for the switching automorphism ζ̄ α):

α · ζN[j5](j5) = ζN[jα−15]α(j5) = ζN[jα−15](j
α−1

5) · α.

This gives the first product. For the second, we continue the calculation; first, when j = iα:

ζN[i5](i5)α · ζN[iα5](iα5) = ζN[i5](i5)ζN[i5](i5)α = ζN[i5]ζN[5i](i5)(i5)α = α;

second, when j ≠ iα:

ζN[i5](i5)α · ζN[j5](j5) = ζN[i5](i5)ζN[jα−15](j
α−1

5)α

= ζN[i5]ζN[jα−1 i](i5)(j
α−1

5)α = −ζN[jα−15](ij
α−1

5)α,

because N[pq] ⊕ N[qr] = N[pr]c , whence ζN[pq]ζN[qr] = ζN[pr]c = −ζN[pr].
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Table 8.8
The number of different signatures of P that are isomorphic to eachminimal signed Petersen graph and its negative (‘copies’); and the number of switching
equivalence classes of such signatures (‘[copies]’).

(P, σ ) +P,−P P1,−P1 P2,2,−P2,2 P2,3,−P2,3 P3,2,−P3,2 P3,3,−P3,3

# copies 1 15 60 15 20 5
# [copies] 1 15 30 15 2 1

Every permutation ξ ∈ S{1,2,3,4,5} is the projection of a unique element ζ̄XγX · α ∈ SwAut P3,3 belonging to the coset
ζ̄XγX Aut P3,3. The following formulas give ζX , γX , and α in terms of ξ , thereby inverting pA. Let ζXγXα := pA−1(ξ). Then ζXγX
identifies the coset of S{1,2,3,4}, and α identifies the element of S{1,2,3,4} that gives ξ .

(ζX , γX , α) =


(ε, id, ξ) if 5 is fixed by ξ,
(ζN[5ξ−15], (5

ξ−1
5), (5ξ

−1
5)ξ) if 5 is not fixed. (8.13)

(Note that (5ξ
−1

5)ξ in cycle form is ξ with 5 deleted from whichever cycle it is in. Also note that, if we interpret N[kk] as
the empty set, so ζN[kk] is ε, and (55) as the trivial cycle (5), then the first line is subsumed in the second line.)

8.2.6. The end of the proof
This concludes the proof of Theorem 8.12. �

8.3. Orbits and copies

There are two ways signed graphs Σ and Σ ′ based on the same graph Γ can be isomorphic. They may have the same
set of positive circles, which (by Lemma 4.1) is the same as saying they are switching equivalent; then for many purposes
they are essentially the same. The other possibility is that they belong to different switching equivalence classes; in other
words, their positive circles are not the same ones even though they correspond under an automorphism of Γ . From the
automorphism and switching automorphism groups we can deduce the number of signatures of Γ that are isomorphic to
Σ and also the number that are switching inequivalent to Σ and to each other, i.e., the number of switching equivalence
classes of signatures isomorphic toΣ .

There is a nice bonus to this: we get an interpretation of the part of AutΓ that does not belong to p̄A(SwAutΣ). Apply any
automorphism γ ∈ AutΓ toΣ . ThenΣγ

∼ Σ if and only if γ ∈ p̄A(SwAutΣ). This means thatΣγ for γ ∉ p̄A(SwAutΣ),
while isomorphic toΣ , belongs to a different switching equivalence class.

A fine example is SwAut P3,2, whose projection is the alternating groupA5. Any single transposition changes (P, σ ) ∼= P3,2
to an inequivalent (P, σ ′), but there is one that is simplest. In the notation of Table 8.2, it is (lm). This permutation preserves
the hexagon Hlm that contains E− while reversing the signs of the hexagon’s edges. Whether there are such distinguished
permutations to change one switching automorphism class of P1, P2,2, or P2,3 to another is not known.

The number of different isomorphic (but possibly switching-equivalent) copies of a particular signatureΣ is the number
of orbits of AutΣ , which equals |AutΓ |/|AutΣ |. The number of different copies that are not switching equivalent, i.e., the
number of switching equivalence classes of signatures isomorphic toΣ , is |AutΓ |/| SwAutΣ |, the number of orbits of AutΓ
acting on SwAutΣ . For instance, |Aut P1| = | SwAut P1| = |D4| = 8; |Aut P|/|Aut P1| = |Aut P|/| SwAut P1| = 5!/8 = 15;
and (obviously) there are |E| = 15 ways to have one negative edge, none of which is switching equivalent to any other. See
Table 8.8 for the numbers.

9. Coloring

A coloration (in full, proper k-coloration, where k ≥ 0) of a signed graph is a function κ : V → {0,±1,±2, . . . ,±k} such
that, if vw is an edge, then κ(w) ≠ σ(vw)κ(v). The chromatic number χ(Σ) is the smallest k such that there is a proper
k-coloration ofΣ . A signed graph has a second chromatic number, the zero-free chromatic number χ∗(Σ); it is the smallest
k such that there is a proper k-coloration of Σ that does not use the color 0. As the color 0 can be replaced by +(k + 1) to
turn a coloration into a zero-free coloration, χ∗(Σ) = χ(Σ)+ 0 or 1.

The chromatic numbers pair with chromatic polynomials. The chromatic polynomial ofΣ is the function χΣ (2k + 1) :=

the number of proper k-colorations, and the zero-free chromatic polynomial is χ∗
Σ (2k) := the number that are zero free.

(One can prove that these functions are monic polynomials of degree |V | by any method that establishes the chromatic
polynomial χΓ (y) of an ordinary graph; see [19]. There is another connection: χΓ (y) = χ+Γ (y) = χ∗

+Γ (y).)

Proposition 9.1. The chromatic numbers and the chromatic polynomials of a signed graph are invariant under switching and
isomorphism.
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Table 9.1
The chromatic numbers of signed Petersen graphs.

(P, σ ) +P P1 P2,2 P2,3 P3,2 P3,3

χ(P, σ ) 1 1 1 1 1 1
χ∗(P, σ ) 2 2 2 2 2 1

Proof. Isomorphism invariance is obvious. For switching invariance, consider a proper coloration κ . A switching function ζ
acts on κ by transforming it to κζ (v) := κ(v)ζ (v). The condition for a coloration to be proper, κ(w) ≠ κ(v)σ (vw), when
multiplied by ζ (w), takes the form

κζ (w) = κ(w)ζ (w) ≠ κ(v)σ (vw)ζ (w) = [κ(v)ζ (v)][ζ (v)σ (vw)ζ (w)] = κζ (v)σ ζ (vw).

Thus, κζ is a proper coloration ofΣζ if and only if κ is a proper coloration ofΣ . This establishes a bijection between proper
colorations ofΣ and ofΣζ , and hence the proposition. �

9.1. Chromatic numbers

The chromatic numbers are weak invariants; they are nearly the same for all signatures of P .

Theorem 9.2. The chromatic and zero-free chromatic numbers of signed Petersen graphs are as in Table 9.1.

To find the chromatic numbers of any (P, σ ), switch it into one of the minimal forms and look it up in Table 9.1. Note
that +P ≃ −P3,3, P1 ≃ −P2,3, P2,2 ≃ −P2,2, P2,3 ≃ −P1, P3,2 ≃ −P3,2, and P3,3 ≃ −P .

We prepare for the proof of Theorem 9.2 with definitions and a lemma.
By a signed color we mean 0 or +i or −i for i > 0. For consistency with the definition of chromatic numbers, when

coloring a signed graph we call ±1 a single unsigned color and we do not count 0 as an unsigned color. Thus, the counting
of unsigned colors on signed graphs is very different from that on unsigned graphs. We can color an unsigned graph with
signed colors, but each has to be counted separately; for example, 0,+1,−1 are three colors when coloring an unsigned
graph.

Note that the endpoints of a negative edge may have the same signed color as long as that color is not 0.
Contracting a graph Γ by an edge set S means one shrinks each connected component of the spanning subgraph (V , S)

to a vertex. The contracted graph is written Γ /S. (Technically, a vertex W of Γ /S is a subset of V consisting of the vertices
of one component of (V , S); they are the vertices that are coalesced into one by the shrinking.) The edges of S are deleted.
Another edge becomes a loop if its endpoints belong to the same component of (V , S). We say that an original vertex that
is a component of (V , S) remains a vertex of Γ /S. Any other vertex of Γ /S results from coalescing two or more original
vertices; we say it results from contraction to distinguish it from remaining original vertices.

Lemma 9.3. Let Σ be a signed graph, and let m ≥ 1.

(a) Suppose that χ(|Σ |/E−(Σ)) ≤ 2m. Then χ(Σ) ≤ χ∗(Σ) ≤ m.
(b) Suppose that |Σ |/E−(Σ) can be colored with the colors 0,±1, . . . ,±m in such a way that no vertex resulting from

contraction gets the color 0. Then χ(Σ) ≤ m and χ∗(Σ) ≤ m + 1.
(c) If χ(|Σ |/E−(Σ)) ≤ 2 andΣ has at least one edge, then χ(Σ) = χ∗(Σ) = 1.
(d) If χ(|Σ |/E−(Σ)) = 3, then χ∗(Σ) = 2.

Proof. (a) Color |Σ |/E− with the colors ±1, . . . ,±m. This coloration can be pulled back to Σ , because the vertices that
are contracted into W can all be given the signed color of W . Thereby we see that Σ needs at most m unsigned colors,
without using the color 0.

(b) Color |Σ |/E−(Σ) as specified. This coloration can be pulled back toΣ , because the vertices that are contracted into W
can all be given the signed color of W . Thereby we see that Σ needs at most m unsigned colors if 0 is permitted, but it
may needm + 1 if 0 is excluded.

(c) When the contraction is bipartite, assign color +1 to one color class and −1 to the other. Pulling this coloration back to
Σ yields a zero-free coloration, from which the chromatic numbers follow—as long as there is at least one edge inΣ so
one cannot color every vertex 0.

(d) From (a), we conclude that χ∗(Σ) ≤ 2. Trying to color Σ using only ±1, the endpoints of a negative edge must have
the same signed color; therefore, such a coloration ofΣ can only be a pullback of a 2-coloration of |Σ |/E−, which does
not exist. Hence, there is no coloration ofΣ using only one unsigned color without 0, and therefore χ∗(Σ) = 2. �

Proof of Theorem 9.2. The chromatic number of P itself is 3 [11]. Thus, +P needs exactly three signed colors, which may
be 0,+1,−1 if 0 is used and otherwise must be, for example, +1,−1,+2.

The only bipartite contraction is P/E−(P3,3); it can be coloredwith+1,−1, so P3,3 can be colored using±1. (One canmore
easily see this by coloring the switching-isomorphic graph −P .) The other contractions need three or four signed colors.
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P/E−(P2,d) (d = 2, 3) has chromatic number 3, and since there are just two contracted vertices they can get non-zero
signed colors; it follows that P2,d is colorable with signed colors ±1, 0, no contraction vertex being colored 0. Therefore,
χ(P2,d) = 1 and χ∗(P2,d) = 2. The same reasoning holds for P1, where there is one contracted vertex.

The most complicated contraction is P/E−(P3,2). It has a triangle composed of contracted vertices, so its chromatic
number is 3, but there does not exist a coloration with colors ±1, 0 in which no contracted vertex has color 0. However,
one can color P3,2 directly using ±1, 0. The hexagon that contains all negative edges should be colored alternately +1 and
0. The vertices adjacent to the hexagon get color −1 and the remaining vertex is colored 0 or +1. Thus, χ(P3,2) = 1 and
χ∗(P3,2) = 2. �

9.2. Coloration counts

A more refined coloring invariant, the chromatic polynomial, does differ for different signatures of P , and most likely
the zero-free chromatic polynomials differ as well. Since the polynomials have degree 10, computing them is too large a
project for us. (χP(y) is known; perhaps it is possible to imitate the technique for calculating it in [5, Additional Result 12c].)
I propose that the number of proper k-colorations for any k ≥ 1, and also the number of zero-free proper k-colorations for
any k ≥ 2, is a distinguishing invariant. We prove this for proper 1-colorations.

Theorem 9.4. The six minimal signatures of the Petersen graph have different chromatic polynomials, and in particular they have
different numbers χ(P,σ )(3) of proper 1-colorations.

Conjecture 9.1. (a) Any two signed Petersen graphs that are not switching isomorphic have different zero-free chromatic
polynomials; in particular, they have different numbers χ∗

(P,σ )(4) of zero-free proper 2-colorations. (b) For any µ ≥ 2, the six
values χ(P,σ )(2µ+ 1) are different for the six switching isomorphism classes of signature, and so are the six values χ∗

(P,σ )(2µ).

Wewill establish Theorem 9.4 by investigating χ(P,σ )(3)− χ+P(3)with the aid of several general lemmas and formulas.
Calculating the difference give the actual value, because

χ+P(3) = χP(3) = 120.

A proof depends on the fact that every 3-coloration of P has the same form as every other, under graph automorphisms and
permutations of the colors. In a coloration, define a head vertex to be a vertex whose neighbors have only one color. Each
proper 3-coloration of P has a unique head vertex; and there are 12 such colorations for each head vertex. (To prove this,
examine the twoways to 3-colorN[v]where v is the head vertex.We omit the details.) To colorwith a given head vertex, one
chooses its color, then chooses the neighborhood color, then colors the uncolored hexagon with the two non-neighborhood
colors. One concludes that χP(3) = 120.

We begin preparing for the proof of Theorem 9.4 with the balanced expansion formula of [18, Theorem 1.1], which states
that, for any signed graphΣ = (Γ , σ ),

χΣ (2µ+ 1) =


W⊆V :

W independent

χ∗

Σ\W (2µ). (9.1)

(The proof is easy, by counting colorations according to the set W with color 0.) Applying this to the difference of Σ and
+Γ ,

χΣ (2µ+ 1)− χ+Γ (2µ+ 1) =


W⊆V :

W independent

χ∗

Σ\W (2µ)− χ∗

+Γ \W (2µ).

The term ofW disappears ifΣ \ W is balanced; thus,

χΣ (2µ+ 1)− χΓ (2µ+ 1) =


W⊆V :

W independent,
Σ\W unbalanced

χ∗

Σ\W (2µ)− χΓ \W (2µ), (9.2)

since χ∗
+Γ (y) = χΓ (y).

Observe that

χ∗

Σ (2) =


2c(Σ) ifΣ is antibalanced,
0 if it is not. (9.3)

To prove this, suppose that a zero-free, proper 1-coloration exists. Since there are only the two signed colors +1 and −1,
a negative edge must have the same color at both ends, and a positive edge must have oppositely signed colors at its ends.
Taking the bipartition of V into sets of vertices with the same sign, that means that a positive edge in −Σ has both ends
in the same part and a negative edge has ends in opposite parts. Hence, −Σ is balanced and Σ is antibalanced. If Σ is
antibalanced, there are two choices of color in each component.
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Table 9.2
The numbers necessary to prove Theorem 9.4.

(P, σ ) +P P1 P2,2 P2,3 ≃ −P1 P3,2 P3,3 ≃ −P

α0(P, σ ) 1 0 0 0 0 0
α1(P, σ ) 10 2 0 0 0 0
α2(P, σ ) 30 14 6 4 0 0
c−

6 (P, σ ) 0 4 6 4 10 0
χ(P,σ )(3)− χ+P (3) 0 −8 −12 16 −40 82
χ(P,σ )(3) 120 112 108 136 80 202

Lemma 9.5. If Σ has two of the properties of balance, antibalance, and bipartiteness, then it has the third property as well.

Proof. Balancemeans every circle is positive. Antibalancemeans every even circle is positive and every odd circle is negative.
In a bipartite signed graph, balance and antibalance are equivalent. In any signed graph, the conjunction of balance and
antibalance implies that there are no odd circles. �

Now, we can further simplify Eq. (9.2) when µ = 1. By Lemma 9.5, there are three possibilities: Γ \ W may be bipartite
withΣ \W not antibalanced,Σ \W may be antibalanced but non-bipartite, or it may be non-bipartite and not antibalanced.
Then, by Eq. (9.3),

χΣ (3)− χΓ (3) =


W⊆V :

W independent,
Σ\W antibalanced and not bipartite

2c(Γ \W )
−


W⊆V :

W independent,
Σ\W bipartite and not antibalanced

2c(Γ \W ). (9.4)

Proof of Theorem 9.4. We use a formula deduced from Eq. (9.4). For k = 0, 1, 2, let

αk(Σ) := the number of independent sets X ⊆ V such thatΣ \ X is balanced.

Lemma 9.6. For a signed Petersen graph,

χ(P,σ )(3)− χ+P(3) = 2α0(−(P, σ ))+ 2α1(−(P, σ ))+ 2α2(−(P, σ ))− 4c−

6 (P, σ ). (9.5)

Proof. By Section 3, either |W | ≤ 1,W is a pair of non-adjacent vertices, or W = N(v) for some vertex v. In the former
cases, P \ W is connected and non-bipartite. In the last case, it is bipartite.

Suppose that (P, σ ) \ W is antibalanced and not bipartite. Because P \ W is not bipartite, |W | ≤ 2. Therefore, P \ W
is connected, and the term of W contributes 2 to the first summation if (P, σ ) \ W is antibalanced, and 0 otherwise. The
respective contributions ofW of size 0, 1, 2 are 2α0(−(P, σ )), 2α1(−(P, σ )), and 2α2(−(P, σ )).

Suppose that P \ W is bipartite and not antibalanced. Here, W = N(v), so P \ W = Hv∪· K1. Because (P, σ ) \ W is not
antibalanced, the termofW contributes 4 to the second summation. Each hexagon lies in P\W for a uniqueW = N(v). Since
the contribution of each negative hexagon to (9.5) is −4, the total contribution of all negative hexagons is 4c−

6 (P, σ ). �

It remains to evaluate the αk, as c−

6 is given by Table 6.1. The results are in Table 9.2, along with the values of
χ(P,σ )(3)− χ+P(3) and χ(P,σ )(3).

Some of the values αk are not obvious. For P3,2 and −P , all αk = 0 because l0 > 2 (Theorem 7.7). α1(P1) = 2, because
any edge is the intersection of two pentagons, hence only by deleting an endpoint of the negative edge can we balance P1.
α1(P2,2) = α1(P2,3) = 0, because each graph has l0 > 1. That leaves α2 of P2,2, P1, and −P1 ≃ P2,3.

Consider deleting a non-adjacent vertex pair from P2,2 ≃ −P2,2. Suppose that the negative edges are v15v34 and v23v45
(see Fig. 1.1). We get balance by deleting one endpoint of each edge, ignoring {v15, v23} because those vertices are adjacent;
that is, three vertex pairs. If we switch v15 and v23 first so the negative edges are v15v24 and v23v14, we find three more
ways to get balance. Thus, the obvious approach gives six balancing sets. These are all. To prove that, we list four negative
pentagons forming two vertex-disjoint pairs:

A := v24v15v34v12v35 and A′
:= v14v23v45v13v25,

and

B := v14v23v45v12v35 and B′
:= v34v15v24v13v25.

We need one vertex from each pair, which means (Case 1) one from A∩ B = {v12, v35} and one from A′
∩ B′

= {v13, v25}, or
else (Case 2) one from A ∩ B′

= {v24, v15, v34} and one from A′
∩ B = {v14, v23, v45}. The two other negative pentagons are

C := v15v23v45v13v24 and D := v34v15v23v14v25.

Case 1 cannot cover both of these. In Case 2, we can take any pair except v24v45, v34v14, or (because they are adjacent) v15v23.
Therefore, α2(P2,2) = 6.
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Next, consider P1 with negative edge v15v23. The obvious pairs are v15 and any non-neighbor, and v23 and any of its non-
neighbors; that is, 12 pairs. Two pairs that are less obvious are {v24, v34} and {v14, v54}, which eliminate all circles on v15
and v23, respectively. To show there are no other possible pairs we list the negative pentagons:

D, C, v12v34v15v23v45, v14v35v24v13v25.

If a pair excludes v15 and v23, it needs one vertex from each of the following triples:

v12v34v45, v45v13v24, v14v35v24, v14v25v34,

in which non-consecutive sets are disjoint. The possible pairs then are v45v14 and v24v34. Thus, α2(P1) = 14.
Finally, consider −P1 ∼ P2,3 with (after switching X4) negative edges e := v12v35 and f := v13v25. The obvious pairs are

one from e and one from f . They are the only ones possible. As with P2,2, A, A′, B, B′ are negative, and we have two cases.
Case 1 gives the four obvious vertex pairs. Case 2 is impossible, because it fails to cover every negative pentagon, which is
every pentagon that does not contain the edge v15v23. Hence, α2(P2,3) = 4.

The values of χ(P,σ )(3) − χ+P(3) and χ(P,σ )(3) follow from Lemma 9.6. (I also calculated χP1(3) and χ−P(3) directly,
confirming the values 112 and 202.) They are different for each switching isomorphism type; that proves the theorem. �

Theorem 9.4 suggests a problem.

Question 9.1. Is it possible for two switching non-isomorphic signatures of the same graph to have the same chromatic
polynomial? Can they have the same zero-free chromatic polynomial?

It is not possible for a 2-regular graph.

Proposition 9.7. Two different, switching non-isomorphic signatures of the same 2-regular graph have different chromatic
polynomials and different zero-free chromatic polynomials.

Proof. It suffices to consider a circle Cl with two signatures, σ0 in which it is positive and σ1 in which it is negative. It is well
known that χCl(y) = (y − 1)


(y − 1)l−1

− (−1)l−1

; thus,

χ(Cl,σ0)(y) = χ∗

(Cl,σ0)(y) = (y − 1)

(y − 1)l−1

− (−1)l−1.
To calculate the polynomials ofΣ1 := (Cl, σ1), we apply the matroid theory of [20,19]. By [20, Theorem 5.1], the matroid

G(Σ1) is the free matroid Fl on l points, whose characteristic polynomial is


A(−1)|A|y|A|, summed over all flats, i.e., all
subsets of E; thus it equals (y − 1)l. By [19, Theorem 2.4], χΣ1(y) equals the characteristic polynomial of Fl. For χ∗

Σ1
(y), we

sum only over balanced sets A; since the only unbalanced flat is E, χ∗
Σ1
(y) = (y − 1)l − (−1)l. �

A possible approach to Question 9.1 may be through the geometrical interpretation of signed-graph coloring in
[4, Section 5].

10. Clusterability

A signed graphΣ is called clusterable if its vertices can be partitioned into sets, called clusters, so that each edge within
a cluster is positive and each edge between two clusters is negative. Such a partition is a clustering ofΣ . By Proposition 2.1,
balance is clusterabilitywith atmost two clusters. Clusterability is the other propertywe discuss, besides the automorphism
group, that is not invariant under switching. Davis proposed it as a possibly more realistic alternative to balance as an ideal
state of a social group [7], and he proved the following criterion.

Proposition 10.1. A signed graph is clusterable if and only if no circle has exactly one negative edge.

Clusterability of signed graphs has recently taken on new life in the field of knowledge and document classification under
the name ‘correlation clustering’ [2].

There are (at least) two ways to measure clusterability. WhenΣ is clusterable, the smallest possible number of clusters
is the cluster number clu(Σ). Even if a signed graph is inclusterable, it becomes clusterable when enough edges are deleted;
the smallest such number is the inclusterability index Q (Σ).

Theorem 10.2. The cluster number of a signed graph is clu(Σ) = χ(|Σ |/E+(Σ)). Σ is clusterable if and only if |Σ |/E+(Σ)
has no loops.

Thus, an all-positive signed graph is a cluster by itself: clu(+Γ ) = 1. For an all-negative signed graph, clu(−Γ ) = χ(Γ ).
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Table 10.1
The clusterability measures of the minimal signed Petersen graphs and their negatives. A dash denotes an inclusterable signature.

(P, σ ) +P −P P1 −P1 P2,2 −P2,2 P2,3 −P2,3 P3,2 −P3,2 P3,3 −P3,3

clu(P, σ ) 1 3 – 3 – 3 – 3 – 4 – 2
Q (P, σ ) 0 0 1 0 2 0 2 0 3 0 3 0

Proof. In the contraction Γ ′
:= |Σ |/E+, let [v] ∈ V ′ denote the vertex corresponding to v ∈ V .

Suppose that Σ has a clustering π = {V1, . . . , Vk} into k parts (with each Vi non-empty). This means, first, that all
positive edges are contained within Vi’s, so each [v] is contained within a set Vi. Furthermore, two vertices [u], [v] ∈ V ′

that lie within the same Vi are non-adjacent, since E ′
= E− and no negative edges are within Vi. Therefore, the function

κ : V → {1, 2, . . . , k} defined by κ(v) = i if [v] ⊆ Vi is a (proper) coloration of Γ ′, and furthermore every color is used at
one or more vertices. (κ is determined by π only up to permutations of the colors.)

Conversely, if κ ′ is a (proper) coloration of Γ ′ using exactly k colors, say with color set {1, 2, . . . , k}, let Vi := {v ∈ V :

κ ′([v]) = i}. This implies that Γ ′ has no loops and that every color is applied to a vertex, so no Vi is empty. Then, in Σ ,
no negative edge can lie within a set Vi and, because every positive edge of Σ is within a set [v], it lies inside a Vi. Hence,
π = {V1, . . . , Vk} is a clustering ofΣ into k clusters.

Consequently, k-clusterings of Σ coincide (modulo permuting the colors) with k-colorations of Γ ′ that use all k colors,
for any k. The theorem follows immediately. �

Observe that |Σ |/E+(Σ) = |Σ |/E−(−Σ). Thus, the contraction used here in connection with Σ is the same one used
in Theorem 9.2 in connection with −Σ .

To supplement Davis’s criterion for clusterability—that is, for zero inclusterability index—we state a criterion for unit
index. The proof is a simple check.

Proposition 10.3. Q (Σ) = 1 if and only if there is a circle with exactly one negative edge and there is an edge common to all
such circles.

Theorem 10.4. The clusterabilities of the minimal signed Petersen graphs and their negatives are as stated in Table 10.1.

Proof. The cluster numbers are obvious for +P , which is balanced, and P1, P2,2, P2,3, P3,2, P3,3, all of which violate Davis’s
criterion for clusterability. The negatives of these graphs are clusterable; their cluster numbers follow from Theorem 10.2.
Specifically, we have the following observations.

The contraction P/E+(−P2,2) has a triangle and is easy to color in three colors; thus, clu(−P2,2) = 3.
The more complex graph P/E+(−P3,2) consists of three triangles overlapping at vertices—which require three colors

arranged so that the three divalent vertices have different colors—and one more vertex adjacent to the divalent vertices;
therefore, the chromatic number is 4. This gives clu(−P3,2) = 4.

The contraction P/E+(−P3,3) = K3,4. Thus, clu(−P3,3) = 2.
The contraction P/E+(−P2,3) is K3,4 with one vertex split, forming a C5. As the contraction is non-bipartite, clu(−P2,3) >

2, but, as only one vertex was split, only one more color is needed.
The fact that clusterability is equivalent to having inclusterability index 0 leaves five signatures with positive

inclusterability index. Clearly, Q (Σ) ≤ |E−
|. This implies that Q (P1) = 1. Proposition 10.3 implies that the other

inclusterability indices are at least 2, since in each Pk,d there are two edge-disjoint circles containing exactly one negative
edge each. Consequently, Q (P2,2) = Q (P2,3) = 2.

In each of P3,2 and P3,3, all the pentagonswith one edge on the outer pentagon in Fig. 10.1 have exactly one negative edge.
Call them the sharp pentagons. To make the signed graph clusterable we must eliminate (at least) all sharp pentagons; thus,
we have to remove at least an edge from each one. Any two sharp pentagons have just one edge in common, and no three
of them have a common edge. Therefore, to eliminate sharp pentagons one has to delete at least three edges. It follows that
Q (P3,2) = Q (P3,3) = 3. �

As clusterability is not a switching invariant, the data in Table 10.1 are not sufficient to describe all signatures of the
Petersen graph. The number of inequivalent clustering problems equals the number of non-isomorphic edge 2-colorations
of P , which is large. This makes it interesting to ask about the maximum inclusterability of P , defined as the maximum
inclusterability index of any signature.

Theorem 10.5. The largest inclusterability index of any signed Petersen graph is 3.

Proof. Several of the signatures in Table 10.1 attain inclusterability 3, so the problem is to prove no higher value is possible.
We begin with two general observations. First, every signed graph satisfies

Σ ′
⊆ Σ H⇒ Q (Σ ′) ≤ Q (Σ). (10.1)

Second, here are properties of general graphs and cubic graphs.
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Fig. 10.1. Signed Petersen graphs with three negative edges. Each sharp pentagon has one negative edge.

Lemma 10.6. If the underlying graph of a signed graphΣ has a cut with more negative than positive edges, then Q (Σ) < |E−
|.

Proof. If there is a cut ∇X with more negative than positive edges, delete the positive edges of ∇X and any negative edges
outside ∇X . In the remaining graph (P, σ ) \ S, the negative edges form a cut, so (P, σ ) \ S is clusterable; but, as the number
of edges that were deleted is less than |E−

|, Q (P, σ ) < |E−
|. �

Proposition 10.7. Let Γ be a graph whose maximum degree is at most 3. The maximum inclusterability index of any signature
is attained only by signatures in which the negative edge set is a matching.

Proof. This follows from Lemma 10.6 by examining the vertex cuts∇{v} in a signature that maximizes inclusterability. �

Proof of Theorem 10.5, continued. Wemay assume that (P, σ ) is a signed Petersen that hasmaximum inclusterability and
that E− is a matching. A matching in P has at most five edges. The matchings were classified in Section 3.2.

If |E−
| has five edges, it separates two pentagons. Since (P, σ ) \ E− is all positive, (P, σ ) is clusterable with two clusters

that are the vertex sets of the pentagons of P \ E−.
Suppose, then, that E− is a matching with four edges.
Lemma 10.6 applies when E−

= M5\ edge, with X = V (C), where C is one of the pentagons separated byM5.
If the matching is M ′

4, there is a hexagon Hlm with three negative edges and the fourth negative edge d is incident with
vlm (Fig. 3.1). The two negative edges at distance 2 from d, together with d, are part of an M5 that is a 5-edge cut with three
negative edges.

It follows that Q (P, σ ) < 4 when E− is a 4-edge matching, so the theorem is proved. �

11. Other aspects

The signed Petersen graphs have other properties that we intend to treat elsewhere.
For instance, we can establish the smallest surface in which each (P, σ ) can be embedded so that a circle is orientable if

and only if it is positive (this is called orientation embedding). This embeddability, by its definition, is a property of switching
isomorphism classes, so there are just six cases. The only signature that embeds in the projective plane is P2,3; as P is
non-planar, every other signature of P embeds only in a higher non-orientable surface (if not balanced) or in the torus
(if balanced).

Another aspect is the relationship between (P, σ ) and its signed covering graph (the ‘derived graph’ of [5, Section 9]), in
which each vertex of P splits into a pair, +v and −v, and edges double as well, with positive edges connecting vertices of
the same sign and negative edges connecting vertices of opposite sign. The switching automorphisms of the signed graph
are closely related to the fibered automorphisms of the signed covering.

As AutΣ is not invariant under switching, there is a very large number of possible automorphism groups of signed
Petersen graphs: as many as there are non-isomorphic sets of signatures withΣ and −Σ paired together. (We should pair
Aut(Σ) with Aut(−Σ) because they have the same automorphisms, by Proposition 8.6.) That is equivalent to finding the
automorphism groups of all edge 2-colored Petersen graphs. The number of non-automorphic ways to edge 2-color P is
given by [13, Eq. (24)]. The number of automorphism groups of such colorations is unknown to me.

Switching and the switching automorphism group generalize from the sign group to any group G. A gain graph is a
graph whose edges are labelled invertibly by elements of G; this means that, if ϕ(e) is the gain of oriented edge e and e−1

is e in the opposite orientation, then ϕ(e−1) = ϕ(e)−1. Gain graphs and switching over arbitrary groups were introduced
in [21]. Many of the basic properties of switching automorphisms should extend to the general case, though some, such as
the simple description of the switching kernel K, may depend on having an abelian group, and some (those that depend
upon the property that the gain is independent of direction) require a group of exponent 2. This brief description is just an
outline; a complete theory of switching automorphisms over an arbitrary gain group, and its application to examples, are
open problems.
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