967 research outputs found

    Wire mesh design

    Get PDF
    We present a computational approach for designing wire meshes, i.e., freeform surfaces composed of woven wires arranged in a regular grid. To facilitate shape exploration, we map material properties of wire meshes to the geometric model of Chebyshev nets. This abstraction is exploited to build an efficient optimization scheme. While the theory of Chebyshev nets suggests a highly constrained design space, we show that allowing controlled deviations from the underlying surface provides a rich shape space for design exploration. Our algorithm balances globally coupled material constraints with aesthetic and geometric design objectives that can be specified by the user in an interactive design session. In addition to sculptural art, wire meshes represent an innovative medium for industrial applications including composite materials and architectural façades. We demonstrate the effectiveness of our approach using a variety of digital and physical prototypes with a level of shape complexity unobtainable using previous methods

    Dev2PQ: Planar Quadrilateral Strip Remeshing of Developable Surfaces

    Get PDF
    We introduce an algorithm to remesh triangle meshes representing developable surfaces to planar quad dominant meshes. The output of our algorithm consists of planar quadrilateral (PQ) strips that are aligned to principal curvature directions and closely approximate the curved parts of the input developable, and planar polygons representing the flat parts of the input. Developable PQ-strip meshes are useful in many areas of shape modeling, thanks to the simplicity of fabrication from flat sheet material. Unfortunately, they are difficult to model due to their restrictive combinatorics and locking issues. Other representations of developable surfaces, such as arbitrary triangle or quad meshes, are more suitable for interactive freeform modeling, but generally have non-planar faces or are not aligned to principal curvatures. Our method leverages the modeling flexibility of non-ruling based representations of developable surfaces, while still obtaining developable, curvature aligned PQ-strip meshes. Our algorithm optimizes for a scalar function on the input mesh, such that its level sets are extrinsically straight and align well to the locally estimated ruling directions. The condition that guarantees straight level sets is nonlinear of high order and numerically difficult to enforce in a straightforward manner. We devise an alternating optimization method that makes our problem tractable and practical to compute. Our method works automatically on any developable input, including multiple patches and curved folds, without explicit domain decomposition. We demonstrate the effectiveness of our approach on a variety of developable surfaces and show how our remeshing can be used alongside handle based interactive freeform modeling of developable shapes

    A Survey of Developable Surfaces: From Shape Modeling to Manufacturing

    Full text link
    Developable surfaces are commonly observed in various applications such as architecture, product design, manufacturing, and mechanical materials, as well as in the development of tangible interaction and deformable robots, with the characteristics of easy-to-product, low-cost, transport-friendly, and deformable. Transforming shapes into developable surfaces is a complex and comprehensive task, which forms a variety of methods of segmentation, unfolding, and manufacturing for shapes with different geometry and topology, resulting in the complexity of developable surfaces. In this paper, we reviewed relevant methods and techniques for the study of developable surfaces, characterize them with our proposed pipeline, and categorize them based on digital modeling, physical modeling, interaction, and application. Through the analysis to the relevant literature, we also discussed some of the research challenges and future research opportunities.Comment: 20 pages, 24 figures, Author submitted manuscrip

    Shape selection in non-Euclidean plates

    Full text link
    We investigate isometric immersions of disks with constant negative curvature into R3\mathbb{R}^3, and the minimizers for the bending energy, i.e. the L2L^2 norm of the principal curvatures over the class of W2,2W^{2,2} isometric immersions. We show the existence of smooth immersions of arbitrarily large geodesic balls in H2\mathbb{H}^2 into R3\mathbb{R}^3. In elucidating the connection between these immersions and the non-existence/singularity results of Hilbert and Amsler, we obtain a lower bound for the L∞L^\infty norm of the principal curvatures for such smooth isometric immersions. We also construct piecewise smooth isometric immersions that have a periodic profile, are globally W2,2W^{2,2}, and have a lower bending energy than their smooth counterparts. The number of periods in these configurations is set by the condition that the principal curvatures of the surface remain finite and grows approximately exponentially with the radius of the disc. We discuss the implications of our results on recent experiments on the mechanics of non-Euclidean plates

    Uniform convergence of discrete curvatures from nets of curvature lines

    Get PDF
    We study discrete curvatures computed from nets of curvature lines on a given smooth surface, and prove their uniform convergence to smooth principal curvatures. We provide explicit error bounds, with constants depending only on properties of the smooth limit surface and the shape regularity of the discrete net.Comment: 21 pages, 8 figure
    • …
    corecore