42 research outputs found

    The rise of fully turbulent flow

    Full text link
    Over a century of research into the origin of turbulence in wallbounded shear flows has resulted in a puzzling picture in which turbulence appears in a variety of different states competing with laminar background flow. At slightly higher speeds the situation changes distinctly and the entire flow is turbulent. Neither the origin of the different states encountered during transition, nor their front dynamics, let alone the transformation to full turbulence could be explained to date. Combining experiments, theory and computer simulations here we uncover the bifurcation scenario organising the route to fully turbulent pipe flow and explain the front dynamics of the different states encountered in the process. Key to resolving this problem is the interpretation of the flow as a bistable system with nonlinear propagation (advection) of turbulent fronts. These findings bridge the gap between our understanding of the onset of turbulence and fully turbulent flows.Comment: 31 pages, 9 figure

    Theoretical perspective on the route to turbulence in a pipe

    Get PDF
    The route to turbulence in pipe flow is a complex, nonlinear, spatiotemporal process for which an increasingly clear theoretical understanding has emerged. This understanding is explained to the reader in several steps, exploiting analogies to co-existing thermodynamic phases and to excitable and bistable media. In the end, simple equations encapsulating the keys physical properties of pipe turbulence provide a comprehensive picture of all large-scale states and stages of the transition process. Important among these are metastable localized puffs, localized edge states, puff splitting and interactions between puffs, the critical point for the onset of sustained turbulence via spatiotemporal intermittency (directed percolation), and finally the rise of fully turbulent flow in the form of expanding weak and strong turbulent slugs

    Turbulent-laminar patterns in shear flows without walls

    Get PDF
    Turbulent-laminar intermittency, typically in the form of bands and spots, is a ubiquitous feature of the route to turbulence in wall-bounded shear flows. Here we study the idealised shear between stress-free boundaries driven by a sinusoidal body force and demonstrate quantitative agreement between turbulence in this flow and that found in the interior of plane Couette flow -- the region excluding the boundary layers. Exploiting the absence of boundary layers, we construct a model flow that uses only four Fourier modes in the shear direction and yet robustly captures the range of spatiotemporal phenomena observed in transition, from spot growth to turbulent bands and uniform turbulence. The model substantially reduces the cost of simulating intermittent turbulent structures while maintaining the essential physics and a direct connection to the Navier-Stokes equations. We demonstrate the generic nature of this process by introducing stress-free equivalent flows for plane Poiseuille and pipe flows which again capture the turbulent-laminar structures seen in transition.Comment: 13 pages, 9 figure

    Transition to turbulence in pulsating pipe flow

    Full text link
    Fluid flows in nature and applications are frequently subject to periodic velocity modulations. Surprisingly, even for the generic case of flow through a straight pipe, there is little consensus regarding the influence of pulsation on the transition threshold to turbulence: while most studies predict a monotonically increasing threshold with pulsation frequency (i.e. Womersley number, α\alpha), others observe a decreasing threshold for identical parameters and only observe an increasing threshold at low α\alpha. In the present study we apply recent advances in the understanding of transition in steady shear flows to pulsating pipe flow. For moderate pulsation amplitudes we find that the first instability encountered is subcritical (i.e. requiring finite amplitude disturbances) and gives rise to localized patches of turbulence ("puffs") analogous to steady pipe flow. By monitoring the impact of pulsation on the lifetime of turbulence we map the onset of turbulence in parameter space. Transition in pulsatile flow can be separated into three regimes. At small Womersley numbers the dynamics are dominated by the decay turbulence suffers during the slower part of the cycle and hence transition is delayed significantly. As shown in this regime thresholds closely agree with estimates based on a quasi steady flow assumption only taking puff decay rates into account. The transition point predicted in the zero α\alpha limit equals to the critical point for steady pipe flow offset by the oscillation Reynolds number. In the high frequency limit puff lifetimes are identical to those in steady pipe flow and hence the transition threshold appears to be unaffected by flow pulsation. In the intermediate frequency regime the transition threshold sharply drops (with increasing α\alpha) from the decay dominated (quasi steady) threshold to the steady pipe flow level

    Speed and structure of turbulent fronts in pipe flow

    Get PDF
    Using extensive direct numerical simulations, the dynamics of laminar-turbulent fronts in pipe flow is investigated for Reynolds numbers between Re=2000Re=2000 and 55005500. We here investigate the physical distinction between the fronts of weak and strong slugs both by analysing the turbulent kinetic energy budget and by comparing the downstream front motion to the advection speed of bulk turbulent structures. Our study shows that weak downstream fronts travel slower than turbulent structures in the bulk and correspond to decaying turbulence at the front. At Re2900Re\simeq 2900 the downstream front speed becomes faster than the advection speed, marking the onset of strong fronts. In contrast to weak fronts, turbulent eddies are generated at strong fronts by feeding on the downstream laminar flow. Our study also suggests that temporal fluctuations of production and dissipation at the downstream laminar-turbulent front drive the dynamical switches between the two types of front observed up to Re3200Re\simeq 3200.Comment: 14 pages, accepted for publication in Journal of Fluid Mechanic

    Transition to subcritical turbulence in a tokamak plasma

    Full text link
    Tokamak turbulence, driven by the ion-temperature gradient and occurring in the presence of flow shear, is investigated by means of local, ion-scale, electrostatic gyrokinetic simulations (with both kinetic ions and electrons) of the conditions in the outer core of the Mega-Ampere Spherical Tokamak (MAST). A parameter scan in the local values of the ion-temperature gradient and flow shear is performed. It is demonstrated that the experimentally observed state is near the stability threshold and that this stability threshold is nonlinear: sheared turbulence is subcritical, i.e. the system is formally stable to small perturbations, but, given a large enough initial perturbation, it transitions to a turbulent state. A scenario for such a transition is proposed and supported by numerical results: close to threshold, the nonlinear saturated state and the associated anomalous heat transport are dominated by long-lived coherent structures, which drift across the domain, have finite amplitudes, but are not volume filling; as the system is taken away from the threshold into the more unstable regime, the number of these structures increases until they overlap and a more conventional chaotic state emerges. Whereas this appears to represent a new scenario for transition to turbulence in tokamak plasmas, it is reminiscent of the behaviour of other subcritically turbulent systems, e.g. pipe flows and Keplerian magnetorotational accretion flows.Comment: 16 pages, 5 figures, accepted to Journal of Plasma Physic

    Dynamics of viscoelastic pipe flow in the maximum drag reduction limit

    Full text link
    Polymer additives can substantially reduce the drag of turbulent flows and the upper limit, the so called "maximum drag reduction" (MDR) asymptote is universal, i.e. independent of the type of polymer and solvent used. Until recently, the consensus was that, in this limit, flows are in a marginal state where only a minimal level of turbulence activity persists. Observations in direct numerical simulations using minimal sized channels appeared to support this view and reported long "hibernation" periods where turbulence is marginalized. In simulations of pipe flow we find that, indeed, with increasing Weissenberg number (Wi), turbulence expresses long periods of hibernation if the domain size is small. However, with increasing pipe length, the temporal hibernation continuously alters to spatio-temporal intermittency and here the flow consists of turbulent puffs surrounded by laminar flow. Moreover, upon an increase in Wi, the flow fully relaminarises, in agreement with recent experiments. At even larger Wi, a different instability is encountered causing a drag increase towards MDR. Our findings hence link earlier minimal flow unit simulations with recent experiments and confirm that the addition of polymers initially suppresses Newtonian turbulence and leads to a reverse transition. The MDR state on the other hand results from a separate instability and the underlying dynamics corresponds to the recently proposed state of elasto-inertial-turbulence (EIT).Comment: 18 pages, 5 figure

    Couette-Poiseuille flow experiment with zero mean advection velocity: Subcritical transition to turbulence

    Full text link
    We present a new experimental set-up that creates a shear flow with zero mean advection velocity achieved by counterbalancing the nonzero streamwise pressure gradient by moving boundaries, which generates plane Couette-Poiseuille flow. We carry out the first experimental results in the transitional regime for this flow. Using flow visualization we characterize the subcritical transition to turbulence in Couette-Poiseuille flow and show the existence of turbulent spots generated by a permanent perturbation. Due to the zero mean advection velocity of the base profile, these turbulent structures are nearly stationary. We distinguish two regions of the turbulent spot: the active, turbulent core, which is characterized by waviness of the streaks similar to traveling waves, and the surrounding region, which includes in addition the weak undisturbed streaks and oblique waves at the laminar-turbulent interface. We also study the dependence of the size of these two regions on Reynolds number. Finally, we show that the traveling waves move in the downstream (Poiseuille).Comment: 17 pages, 15 figure

    Turbulence in a localized puff in a pipe

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer Verlag via the DOI in this recordWe have performed direct numerical simulations of a spatio-temporally intermittent flow in a pipe for Rem = 2250. From previous experiments and simulations of pipe flow, this value has been estimated as a threshold when the average speeds of upstream and downstream fronts of a puff are identical (Barkley et al., Nature 526, 550–553, 2015; Barkley et al., 2015). We investigated the structure of an individual puff by considering three-dimensional snapshots over a long time period. To assimilate the velocity data, we applied a conditional sampling based on the location of the maximum energy of the transverse (turbulent) motion. Specifically, at each time instance, we followed a turbulent puff by a three-dimensional moving window centered at that location. We collected a snapshot-ensemble (10000 time instances, snapshots) of the velocity fields acquired over T = 2000D/U time interval inside the moving window. The cross-plane velocity field inside the puff showed the dynamics of a developing turbulence. In particular, the analysis of the cross-plane radial motion yielded the illustration of the production of turbulent kinetic energy directly from the mean flow. A snapshot-ensemble averaging over 10000 snapshots revealed azimuthally arranged large-scale (coherent) structures indicating near-wall sweep and ejection activity. The localized puff is about 15-17 pipe diameters long and the flow regime upstream of its upstream edge and downstream of its leading edge is almost laminar. In the near-wall region, despite the low Reynolds number, the turbulence statistics, in particular, the distribution of turbulence intensities, Reynolds shear stress, skewness and flatness factors, become similar to a fully-developed turbulent pipe flow in the vicinity of the puff upstream edge. In the puff core, the velocity profile becomes flat and logarithmic. It is shown that this “fully-developed turbulent flash” is very narrow being about two pipe diameters long
    corecore