5 research outputs found

    Multiscale structure of meanders

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record..River meander planforms can be described based on wavelet analysis, but an objective method to identify the main characteristics of a meander planform over all spatial scales is yet to be found. Here we show how a set of simple metrics representing meander shape can be retrieved from a continuous wavelet transform of a planform geometry. We construct a synoptic multiple looping tree to establish the meander structure, revealing the embedding of dominant meander scales in larger-scale loops. The method can be applied beyond the case of rivers to unravel the meandering structure of lava flows, turbidity currents, tidal channels, rivulets, supraglacial streams, and extraterrestrial flows.This research was supported by the Royal Netherlands Academy of Arts and Sciences (KNAW), project SPIN3-JRP-29, and by NWO-WOTRO Science for Global Development, project WT76-269. We thank Meinhard Bayani Cardenas, the Associate Editor, Efi Foufoula-Georgiou, Jon Schwenk, and one anonymous reviewer for their comments and suggestions. The data used in this study can be obtained by contacting the corresponding author. The processing routines can be downloaded at https://github.com/bartverm/ meanderscribe.git

    Edge Contours

    Get PDF
    The accuracy with which a computer vision system is able to identify objects in an image is heavily dependent upon the accuracy of the low level processes that identify which points lie on the edges of an object. In order to remove noise and fine texture from an image, it is usually smoothed before edge detection is performed. This smoothing causes edges to be displaced from their actual location in the image. Knowledge about the changes that occur with different degrees of smoothing (scales) and the physical conditions that cause these changes is essential to proper interpretation of the results obtained. In this work the amount of delocalization and the magnitude of the response to the Normalized Gradient of Gaussian operator are analyzed as a function of σ, the standard deviation of the Gaussian. As a result of this analysis it was determined that edge points could be characterized as to slope, contrast, and proximity to other edges. The analysis is also used to define the size that the neighborhood of an edge point must be in order to assure its containing the delocalized edge point at another scale when σ is known. Given this theoretical background, an algorithm was developed to obtain sequential lists of edge points. This used multiple scales in order to achieve the superior localization and detection of weak edges possible with smaller scales combined with the noise suppression of the larger scales. The edge contours obtained with this method are significantly better than those achieved with a single scale. A second algorithm was developed to allow sets of edge contour points to be represented as active contours so that interaction with a higher level process is possible. This higher level process could do such things as determine where corners or discontinuities could appear. The algorithm developed here allows hard constraints and represents a significant improvement in speed over previous algorithms allowing hard constraints, being linear rather than cubic

    Shape-based image retrieval in iconic image databases.

    Get PDF
    by Chan Yuk Ming.Thesis (M.Phil.)--Chinese University of Hong Kong, 1999.Includes bibliographical references (leaves 117-124).Abstract also in Chinese.Chapter 1 --- Introduction --- p.1Chapter 1.1 --- Content-based Image Retrieval --- p.3Chapter 1.2 --- Designing a Shape-based Image Retrieval System --- p.4Chapter 1.3 --- Information on Trademark --- p.6Chapter 1.3.1 --- What is a Trademark? --- p.6Chapter 1.3.2 --- Search for Conflicting Trademarks --- p.7Chapter 1.3.3 --- Research Scope --- p.8Chapter 1.4 --- Information on Chinese Cursive Script Character --- p.9Chapter 1.5 --- Problem Definition --- p.9Chapter 1.6 --- Contributions --- p.11Chapter 1.7 --- Thesis Organization --- p.13Chapter 2 --- Literature Review --- p.14Chapter 2.1 --- Trademark Retrieval using QBIC Technology --- p.14Chapter 2.2 --- STAR --- p.16Chapter 2.3 --- ARTISAN --- p.17Chapter 2.4 --- Trademark Retrieval using a Visually Salient Feature --- p.18Chapter 2.5 --- Trademark Recognition using Closed Contours --- p.19Chapter 2.6 --- Trademark Retrieval using a Two Stage Hierarchy --- p.19Chapter 2.7 --- Logo Matching using Negative Shape Features --- p.21Chapter 2.8 --- Chapter Summary --- p.22Chapter 3 --- Background on Shape Representation and Matching --- p.24Chapter 3.1 --- Simple Geometric Features --- p.25Chapter 3.1.1 --- Circularity --- p.25Chapter 3.1.2 --- Rectangularity --- p.26Chapter 3.1.3 --- Hole Area Ratio --- p.27Chapter 3.1.4 --- Horizontal Gap Ratio --- p.27Chapter 3.1.5 --- Vertical Gap Ratio --- p.28Chapter 3.1.6 --- Central Moments --- p.28Chapter 3.1.7 --- Major Axis Orientation --- p.29Chapter 3.1.8 --- Eccentricity --- p.30Chapter 3.2 --- Fourier Descriptors --- p.30Chapter 3.3 --- Chain Codes --- p.31Chapter 3.4 --- Seven Invariant Moments --- p.33Chapter 3.5 --- Zernike Moments --- p.35Chapter 3.6 --- Edge Direction Histogram --- p.36Chapter 3.7 --- Curvature Scale Space Representation --- p.37Chapter 3.8 --- Chapter Summary --- p.39Chapter 4 --- Genetic Algorithm for Weight Assignment --- p.42Chapter 4.1 --- Genetic Algorithm (GA) --- p.42Chapter 4.1.1 --- Basic Idea --- p.43Chapter 4.1.2 --- Genetic Operators --- p.44Chapter 4.2 --- Why GA? --- p.45Chapter 4.3 --- Weight Assignment Problem --- p.46Chapter 4.3.1 --- Integration of Image Attributes --- p.46Chapter 4.4 --- Proposed Solution --- p.47Chapter 4.4.1 --- Formalization --- p.47Chapter 4.4.2 --- Proposed Genetic Algorithm --- p.43Chapter 4.5 --- Chapter Summary --- p.49Chapter 5 --- Shape-based Trademark Image Retrieval System --- p.50Chapter 5.1 --- Problems on Existing Methods --- p.50Chapter 5.1.1 --- Edge Direction Histogram --- p.51Chapter 5.1.2 --- Boundary Based Techniques --- p.52Chapter 5.2 --- Proposed Solution --- p.53Chapter 5.2.1 --- Image Preprocessing --- p.53Chapter 5.2.2 --- Automatic Feature Extraction --- p.54Chapter 5.2.3 --- Approximated Boundary --- p.55Chapter 5.2.4 --- Integration of Shape Features and Query Processing --- p.58Chapter 5.3 --- Experimental Results --- p.58Chapter 5.3.1 --- Experiment 1: Weight Assignment using Genetic Algorithm --- p.59Chapter 5.3.2 --- Experiment 2: Speed on Feature Extraction and Retrieval --- p.62Chapter 5.3.3 --- Experiment 3: Evaluation by Precision --- p.63Chapter 5.3.4 --- Experiment 4: Evaluation by Recall for Deformed Images --- p.64Chapter 5.3.5 --- Experiment 5: Evaluation by Recall for Hand Drawn Query Trademarks --- p.66Chapter 5.3.6 --- "Experiment 6: Evaluation by Recall for Rotated, Scaled and Mirrored Images" --- p.66Chapter 5.3.7 --- Experiment 7: Comparison of Different Integration Methods --- p.68Chapter 5.4 --- Chapter Summary --- p.71Chapter 6 --- Shape-based Chinese Cursive Script Character Image Retrieval System --- p.72Chapter 6.1 --- Comparison to Trademark Retrieval Problem --- p.79Chapter 6.1.1 --- Feature Selection --- p.73Chapter 6.1.2 --- Speed of System --- p.73Chapter 6.1.3 --- Variation of Style --- p.73Chapter 6.2 --- Target of the Research --- p.74Chapter 6.3 --- Proposed Solution --- p.75Chapter 6.3.1 --- Image Preprocessing --- p.75Chapter 6.3.2 --- Automatic Feature Extraction --- p.76Chapter 6.3.3 --- Thinned Image and Linearly Normalized Image --- p.76Chapter 6.3.4 --- Edge Directions --- p.77Chapter 6.3.5 --- Integration of Shape Features --- p.78Chapter 6.4 --- Experimental Results --- p.79Chapter 6.4.1 --- Experiment 8: Weight Assignment using Genetic Algorithm --- p.79Chapter 6.4.2 --- Experiment 9: Speed on Feature Extraction and Retrieval --- p.81Chapter 6.4.3 --- Experiment 10: Evaluation by Recall for Deformed Images --- p.82Chapter 6.4.4 --- Experiment 11: Evaluation by Recall for Rotated and Scaled Images --- p.83Chapter 6.4.5 --- Experiment 12: Comparison of Different Integration Methods --- p.85Chapter 6.5 --- Chapter Summary --- p.87Chapter 7 --- Conclusion --- p.88Chapter 7.1 --- Summary --- p.88Chapter 7.2 --- Future Research --- p.89Chapter 7.2.1 --- Limitations --- p.89Chapter 7.2.2 --- Future Directions --- p.90Chapter A --- A Representative Subset of Trademark Images --- p.91Chapter B --- A Representative Subset of Cursive Script Character Images --- p.93Chapter C --- Shape Feature Extraction Toolbox for Matlab V53 --- p.95Chapter C.l --- central .moment --- p.95Chapter C.2 --- centroid --- p.96Chapter C.3 --- cir --- p.96Chapter C.4 --- ess --- p.97Chapter C.5 --- css_match --- p.100Chapter C.6 --- ecc --- p.102Chapter C.7 --- edge一directions --- p.102Chapter C.8 --- fourier-d --- p.105Chapter C.9 --- gen_shape --- p.106Chapter C.10 --- hu7 --- p.108Chapter C.11 --- isclockwise --- p.109Chapter C.12 --- moment --- p.110Chapter C.13 --- normalized-moment --- p.111Chapter C.14 --- orientation --- p.111Chapter C.15 --- resample-pts --- p.112Chapter C.16 --- rectangularity --- p.113Chapter C.17 --- trace-points --- p.114Chapter C.18 --- warp-conv --- p.115Bibliography --- p.11

    Computergestützte Inhaltsanalyse von digitalen Videoarchiven

    Full text link
    Der Übergang von analogen zu digitalen Videos hat in den letzten Jahren zu großen Veränderungen innerhalb der Filmarchive geführt. Insbesondere durch die Digitalisierung der Filme ergeben sich neue Möglichkeiten für die Archive. Eine Abnutzung oder Alterung der Filmrollen ist ausgeschlossen, so dass die Qualität unverändert erhalten bleibt. Zudem wird ein netzbasierter und somit deutlich einfacherer Zugriff auf die Videos in den Archiven möglich. Zusätzliche Dienste stehen den Archivaren und Anwendern zur Verfügung, die erweiterte Suchmöglichkeiten bereitstellen und die Navigation bei der Wiedergabe erleichtern. Die Suche innerhalb der Videoarchive erfolgt mit Hilfe von Metadaten, die weitere Informationen über die Videos zur Verfügung stellen. Ein großer Teil der Metadaten wird manuell von Archivaren eingegeben, was mit einem großen Zeitaufwand und hohen Kosten verbunden ist. Durch die computergestützte Analyse eines digitalen Videos ist es möglich, den Aufwand bei der Erzeugung von Metadaten für Videoarchive zu reduzieren. Im ersten Teil dieser Dissertation werden neue Verfahren vorgestellt, um wichtige semantische Inhalte der Videos zu erkennen. Insbesondere werden neu entwickelte Algorithmen zur Erkennung von Schnitten, der Analyse der Kamerabewegung, der Segmentierung und Klassifikation von Objekten, der Texterkennung und der Gesichtserkennung vorgestellt. Die automatisch ermittelten semantischen Informationen sind sehr wertvoll, da sie die Arbeit mit digitalen Videoarchiven erleichtern. Die Informationen unterstützen nicht nur die Suche in den Archiven, sondern führen auch zur Entwicklung neuer Anwendungen, die im zweiten Teil der Dissertation vorgestellt werden. Beispielsweise können computergenerierte Zusammenfassungen von Videos erzeugt oder Videos automatisch an die Eigenschaften eines Abspielgerätes angepasst werden. Ein weiterer Schwerpunkt dieser Dissertation liegt in der Analyse historischer Filme. Vier europäische Filmarchive haben eine große Anzahl historischer Videodokumentationen zur Verfügung gestellt, welche Anfang bis Mitte des letzten Jahrhunderts gedreht und in den letzten Jahren digitalisiert wurden. Durch die Lagerung und Abnutzung der Filmrollen über mehrere Jahrzehnte sind viele Videos stark verrauscht und enthalten deutlich sichtbare Bildfehler. Die Bildqualität der historischen Schwarz-Weiß-Filme unterscheidet sich signifikant von der Qualität aktueller Videos, so dass eine verlässliche Analyse mit bestehenden Verfahren häufig nicht möglich ist. Im Rahmen dieser Dissertation werden neue Algorithmen vorgestellt, um eine zuverlässige Erkennung von semantischen Inhalten auch in historischen Videos zu ermöglichen

    Shape classification: towards a mathematical description of the face

    Get PDF
    Recent advances in biostereometric techniques have led to the quick and easy acquisition of 3D data for facial and other biological surfaces. This has led facial surgeons to express dissatisfaction with landmark-based methods for analysing the shape of the face which use only a small part of the data available, and to seek a method for analysing the face which maximizes the use of this extensive data set. Scientists working in the field of computer vision have developed a variety of methods for the analysis and description of 2D and 3D shape. These methods are reviewed and an approach, based on differential geometry, is selected for the description of facial shape. For each data point, the Gaussian and mean curvatures of the surface are calculated. The performance of three algorithms for computing these curvatures are evaluated for mathematically generated standard 3D objects and for 3D data obtained from an optical surface scanner. Using the signs of these curvatures, the face is classified into eight 'fundamental surface types' - each of which has an intuitive perceptual meaning. The robustness of the resulting surface type description to errors in the data is determined together with its repeatability. Three methods for comparing two surface type descriptions are presented and illustrated for average male and average female faces. Thus a quantitative description of facial change, or differences between individual's faces, is achieved. The possible application of artificial intelligence techniques to automate this comparison is discussed. The sensitivity of the description to global and local changes to the data, made by mathematical functions, is investigated. Examples are given of the application of this method for describing facial changes made by facial reconstructive surgery and implications for defining a basis for facial aesthetics using shape are discussed. It is also applied to investigate the role played by the shape of the surface in facial recognition
    corecore