
University of Central Florida University of Central Florida 

STARS STARS 

Retrospective Theses and Dissertations 

1989 

Edge Contours Edge Contours 

Donna J. Williams 
dwilliam@stetson.edu 

 Part of the Computer Sciences Commons 

Find similar works at: https://stars.library.ucf.edu/rtd 

University of Central Florida Libraries http://library.ucf.edu 

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted 

for inclusion in Retrospective Theses and Dissertations by an authorized administrator of STARS. For more 

information, please contact STARS@ucf.edu. 

STARS Citation STARS Citation 
Williams, Donna J., "Edge Contours" (1989). Retrospective Theses and Dissertations. 4246. 
https://stars.library.ucf.edu/rtd/4246 

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/rtd
http://network.bepress.com/hgg/discipline/142?utm_source=stars.library.ucf.edu%2Frtd%2F4246&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/rtd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/rtd/4246?utm_source=stars.library.ucf.edu%2Frtd%2F4246&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/




UNIVERSITY OF CENTRAL FLORIDA 

OFFICE OF GRADUATE STUDIES 

DISSERTATION APPROVAL 

DATE: July 10, 1989 

BASED ON THE CANDIDATE'S SUCCESSFUL ORAL DEFENSE, IT IS RECOMMENDED 

THAT THE DISSERTATION PREPARED BY Donna J. Williams 

ENTITLED Edge Contours 

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE 

DEGREE OF Doctor of Philosophy 

FROM THE DEPARTMENT OF Computer Science 

IN THE COLLEGE OF Arts and Sciences 

wd hc -r"\C b c- - 
Mubarak Shah, Major Professor 
Depar tqnt  of C o m p u t ~  Science 

Ronald D. Dutton, Graduate Coordinator 
Department of Computer Science 

~a$fJ. Rollins, Jr., Dean 
college of Arts and Sciences 

o z y t e  Studies 



EDGE CONTOURS 

by 

DONNA J. WILLIAMS 

A dissertation submitted in partial fulfillment of the requirements 
for the degree of Doctor of Philosophy in 
the Department of Computer Science at 

the University of Central Florida 
Orlando, Florida 

August 1989 

Major Professor: Mubarak A. Shah 



UNIVERSITY OF CENTRAL FLORIDA 

OFFICE OF GRADUATE STUDIES 

DEFENSE OF DISSERTATION 

THE UNDERSIGNED VERIFY THAT THE FINAL ORAL DEFENSE OF THE DOCTOR 

OF PHILOSOPHY DISSERTATION OF Donna J . Williams 

HAS BEEN SUCCESSFULLY COMPLETED ON July 10, 1989 

TITLE OF DISSERTATION: Edge Contours 

MAJOR FIELD OF STUDY: Computer Science 

COMMITTEE: .jhVLb+-v rL \.I 

Chairperson - Mubarak Shah 
\\ 
\&j$&&k4 A ,Ab+LK i \ - 

w b e r  - J. Michael Moshell 

Lk 6' 
Member - Robert C. ~ r i ~ h d &  

/' ~ e m b e r / " ~ a r l e ~  R. Myler 

APPROVED: 

Dean of Graduate Studies 



Copyright 1989 

by 

Donna J. Williams 



ABSTRACT 

The accuracy with which a computer vision system is able to identify objects 

in an image is heavily dependent upon the accuracy of the low level processes that 

identify which points lie on the edges of an object. In order to remove noise and fine 

texture from an image, it is usually smoothed before edge detection is performed. 

This smoothing causes edges to be displaced from their actual location in the im- 

age. Knowledge about the changes that occur with different degrees of smoothing 

(scales) and the physical conditions that cause these changes is essential to proper 

interpretation of the results obtained. In this work the amount of delocalization and 

the magnitude of the response to the Normalized Gradient of Gaussian operator are 

analyzed as a function of cr, the standard deviation of the Gaussian. As a result of 

this analysis it was determined that edge points could be characterized as to slope, 

contrast, and proximity to other edges. The analysis is also used to define the size 

that the neighborhood of an edge point must be in order to assure its containing the 

delocalized edge point at another scale when o is known. 

Given this theoretical background, an algorithm was developed to obtain sequen- 

tial lists of edge points. This used multiple scales in order to achieve the superior 

localization and detection of weak edges possible with smaller scales combined with 

the noise suppression of the larger scales. The edge contours obtained with this 

method are significantly better than those achieved with a single scale. A second 

algorithm was developed to allow sets of edge contour points to be represented as 

active contours so that interaction with a higher level process is possible. This higher 

level process could do such things as determine where corners or discontinuities could 

appear. The algorithm developed here allows hard constraints and represents a signif- 

icant improvement in speed over previous algorithms allowing hard constraints, being 

linear rather than cubic. 
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1. INTRODUCTION 

Computer vision is a new field currently undergoing tremendous growth along 

with the fields where its primary applications lie: space, medicine, and robotics. It is 

concerned with arrays of numbers called images. The values represent the magnitude 

of some value such as light, heat (infrared radiation), or distance from the camera 

at a point. In cases where stereo, motion, or color information is available, each 

image may actually be a set of images. The goal of computer vision is to interpret 

what objects are present in the image, and perhaps determine the shape, orientation, 

or motion of the objects. The detail to be obtained from an image depends on the 

application. For instance, a system looking for defects in parts on an assembly belt 

has a very narrow range of objects which it must be able to identify, but it must be 

able to interpret an image in great detail in order to determine if there is a defect. A 

system analyzing satellite images in order to determine, for example, the strength of 

air defenses, must be able to recognize the types of features visible from the air such 

as roads, rivers, buildings, and airfields. When an airfield has been identified, the 

types of airplanes on the airfield must be determined. Many more models in more 

orientations must be identified, but the type of detail needed is different from that 

needed for the assembly line. The task of a mail cart robot is much easier. It must be 

able to follow a predefined path, and recognize when there is an obstacle in its path. 

The requirements of all these systems are very different. 

All the above systems depend on being able to identify objects in an image. The 

accuracy with which they are able to do this is heavily dependent upon the accuracy 

of what are referred to as low level processes. These processes are the initial work 

done on an image and produce information which is suitable for the higher level, 



application dependent processing. Two early processes are called regmentation and 

edge detection. The first is concerned with identifying regions in the image which 

belong to the same object based on similarity of color, texture, etc. Its complement is 

edge detection, which has the goal of identifying points in an image where the intensity 

is changing rapidly and determining which of these correspond to the edges of objects. 

An outline thus obtained can be matched to a projection of a three-dimensional model 

of an object. 

Some of the difficulties involved in this task can be seen by considering the example 

in Figures 1 and 2. The top graph in Figure 1 is a slice across a two-dimensional image. 

The image is 128 pixels wide. The location of five major edges or near vertical portions 

of the curve are identified by the arrows at  the top. Several smaller edges can also 

be seen between the two large edges on the left. When an edge occurs, the transition 

from one intensity to another takes place over an interval of several pixels. Three 

approaches have been used to detect edges. First, a model edge can be matched to 

the image, and the points with the best matches identified as edge points. Another 

approach is to fit a surface to the image a t  each point, and compute the gradient of 

the surface fitted. The points with largest gradient magnitude are the edge points. 

A third approach is to apply some operator to estimate the gradient directly at each 

point. This is the approach advocated by Canny [B] and used in the work presented 

here. An example of this is given in Figure 2. The derivative a t  each point is estimated 

by taking the difference of a weighted average of points to the left and to the right 

of the point. Points farther from the point where the derivative is being estimated 

have a smaller weight. In Figure 2 the size of the neighborhood used to estimate the 

derivative increases from top to bottom. It is 3 pixels on either side for the top row 

and increases to 7, 10, and 14 for the other rows. The operation of taking a weighted 

average is called smoothing. The effect of smoothing the original image directly is 



pixels 

Figure 1: One row from an image (top graph) and the result of smoothing the image 
at different scales. Scale (degree of smoothing) increases from top to bottom. 



Figure 2: The derivative of the image of Figure 1. The width of the neighborhood 
for smoothing from top to bottom is 3, 7, 10, 14 pixels on either side of a point. The 
dotted lines mark the original location of the edges. 



shown in rows 2-4 of Figure 1. The positive peaks and negative valleys in the first 

derivative graph correspond to the positions in the image where the intensity change 

is highest . 
Using techniques of calculus, the locations of maxima and minima can be com- 

puted by taking the derivative and finding points where this is 0. Since the previous 

graph was of a first derivative, this is actually a second derivative of the original 

image. Points where the second derivative is 0 are referred to as zero-crossings in 

vision. This is because when a continuous curve is sampled at  discrete intervals, it 

is highly unlikely that the exact point where a curve crosses 0 will be one of the 

points sampled. Points sought will be those where the sign of the curve changes from 

positive to negative or vice versa. On the right in Figure 2 there is a minimum which 

is not negative. This corresponds to the flat area between the two rightmost steps in 

Figure 1 and indicates a point where the intensity change is smallest. Points such as 

this will also have a zero second derivative. 

As the degree of smoothing increases, some of the peaks disappear and some 

of them are displaced slightly. Thus one of the problems of edge detection is to 

determine how much smoothing should be done in order to smooth out the small 

variations in the image and at  the same time cause the smallest delocalization while 

not removing any significant edges. This is the problem of scale. Because determining 

the optimum scale for smoothing is difficult, and the goals of removing noise and 

minimizing delocalization are in conflict, more than one scale is often employed in 

order to obtain the sensitivity of the small scale combined with the noise resistance 

of the larger scales. 

The example presented above was a one-dimensional slice of a two-dimensional 

image. In two dimensions the problem of edge detection becomes more complicated. 

There is no direct equivalent of the first and second derivatives. 



If the image is considered to be the two-dimensional function f (z, y), then the 

partial derivatives of f with respect to x and y are the components of the gradient 

vector, (f., f,), and give the rate of change of intensity in the z and y directions 

respectively. The direction of maximum rate of change at  each point can be computed 

by 9 = tan-*(f,/ f,), 0 5 0 < 360'. The magnitude of the rate of change is M ( x ,  y) = 

d m .  M (r,  y ) is also equivalent to the directional derivative of f in the direction 

of greatest change. The second derivative can be estimated by a function such as 

the Laplacian, f,, + f,, or by f,, - 2 f., + fW. Rather than use a second derivative 

operator, a process called non-maxima suppression can be used to identify the points 

which have a gradient magnitude larger than that of neighbors in the direction of 

greatest change. This avoids the problem of having to eliminate points which are 

actually gradient minima as well as that of having to decide on a second derivative 

operator which does not accurately reflect the quantity of interest. In noisy images 

there is also the problem that the higher the derivative being estimated, the more it 

is affected by the noise. Thus whenever possible it is preferable to use lower order 

derivatives. 

Once points which are potentially edges have been identified, the ones which form 

coherent edge contours should be combined, and a method found to represent the 

higher level structure. The research reported in this dissertation is concerned with 

methods to combine points which have been identified as gradient maxima into lists 

of edge points, and how to determine meaningful information from the points thus 

obtained. Chapter 2 gives the background to the research. In Chapter 3 a method is 

presented of tracing gradient maxima contours and linking the points into coherent 

edge segments using the direction and magnitude information. Gradient maxima 

points which are not in a contour having length at  least 3 pixels are eliminated. 

This removes isolated noisy points. The original algorithm is then extended to one 



which uses multiple scales in order to improve the detection of edgea which are weak 

or near other edges, hence undetectable at scales large enough to remove the noise. 

The coame to fine algorithm ensures that fine scale noise will not be included. Since 

there are occasional jogs in the eontours obtained with this algorithm, due to the fact 

that edge points at the larger scales have been delocalized more than at  fine scales, 

another algorithm was developed. This one again uses multiple scales, but combines 

, them during the step which identifies gradient maxima. By matching points which I- are being identified at different scales, it is able to remove much of the delocalization 

I effects, resulting in more accurate contours, again without including fine scale noise. 

Thus it achieves the localization and edge detection properties of the small scale with 

I the noise reduction property of the large scale. 

Because both of the multiple scale algorithms must search the vicinity of an edge 

I 
point at one scale to find the same point at another scale, it is necessary to know how 

far an edge point may move as a function of the degree of smoothing. Qualitative 

studies have been performed, e.g., [39] indicating that edges having oppoaite polarity 

will move apart as the scale increases while those having the same polarity will move 

closer together, and become one edge, as the scale increases. This combining of two 

I 
edges can be observed in the rightmost two edges of Figure 1. Chapter 4 presents a 

quantitative analysis of how much movement will occur as a function of the polarity, 

relative strength, and distance between neighboring edges. It is shown that a limit 

esn be placed on the size neighborhood to be searched, or alternately, the distance 

between smoothing scales for a fixed size neighborhood, so that the same edge at two 
I 

different scales can be identified. 

, As the image is smoothed by different amounts, the response to the gradient oper- 
5 

' ator also changes. It has been shown [lo] that when the operator used is the gradient 

of Gaussian (which will be described in detail in the next chapter), the response will 



decreaae aa scale increases for gradient maxima, and will increase for gradient min- 

ima. However, if this operator is normalized by multiplying by the proper factor, 

I 
the response will be constant for an isolated step edge, one where image intensity 

changes from one constant value to another in one pixel. The response will increase 

and decrease under certain other circumstances. The behavior of this normalized op- 

I 
erator is examined in Chapter 5, and based on this analysis it is determined that the 

F 
characteristics of slope, contrast, and optimum scale can be computed for an edge. 

i Thisisdernonstratedforaseriesofimages. Itiaalsoshownthatasadjacentedges 

interact they satisfy the condition called conservation of contrast. 

Finally, when a set of points has been determined to lie on a single edge segment, 

it is possible to do further processing to make the information about the segment 

1 more meaningful. A common practice is to fit straight line segments to the points. 

11 However, straight lines do not give a unique representation of curved lines. These 

contours can be smoothed themselves using one-dimensional equivalents of the tech- 

niques for smoothing the original two-dimensional image. It has been suggested [17] 

that contours should be represented in such a manner that the degree of smoothing 

can be determined by the demands of the higher level processing. Two algorithms 

which had previously been developed to solve this problem are discussed in Chapter 

6. One uses techniques of variational calculus, while the other uses dynamic pro- 

gramming to introduce flexibility into the kind of constraints used, a t  the expense of 

being much slower. These algorithms are examined, and a new one presented which 

combines the flexibility of the dynamic programming solution with much faster run 

times. A discussion is also included on methods of approximating the curvature of 

contours which are represented by discrete samples. 



2. LITERATURE SURVEY 

2.1 Edge Detection 

Edge points are usually identified by some type of gradient operator, since edges 

of objects are points in an image where the intensity values are changing rapidly. 

Methods must then be developed to identify which points will be considered significant 

crude method of doing this is to simply threshold the gradient image, and 

identify points above some value as edge points. This results in wide lines and isolated 

At the present, one of the best edge detectors is recognized to be that of Canny 

[7, 8). In this method, the image is first convolved with a gradient of Gaussian 

operator. The two-dimensional Gaussian with standard deviation a is defined by the 

1 x2 
go($) = ~xP(-s) 

he derivative is g: (x) = -$go (2). Convolving the image f (x, y )  in the hori- 

ntal direction with gb(x), then in the vertical direction with g,(y) gives the partial 

e of f with respect to x, f,, while at  the same time smoothing the image in 

both directions with the Gaussian. The degree of smoothing depends on the value 

d, larger values giving more smoothing. Similarly convolving with g:(y) in 

cal direction followed by g,(x) in the horizontal direction gives the partial of 

This can be separated into the product of two one-dimensional functions 
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Figure 3: Non-maxima suppression. 

forming both of 

the previous cha 

ny edge detector 

these 

,pter. 

is to 

operations produces 

perform non-maxima 

the gradient 

suppression. 

This is done by computing the direction of the gradient vector, 0, at each point and 

interpolating between the values of the two eight-neighbors having direction nearest 

to 0 .  The same thing is done in the 0 + 180' direction. If the gradient magnitude 

at the point is not greater than both of the other values (call them Me(x, y) and 

(I, y)), then it is designated as a non-edge point. Otherwise it is designated 

as a possible edge point. See Figure 3. In this research it is assumed that the unit of 

measure is the (uniform) interpixel distance. 

The third step is to scan the image for possible edge points. When one is found, 

the magnitude is checked at that point. If it is above a user defined high threshold, 

it is marked as an edge point and a search is initiated to all eight neighbors. If the 

neighbor is a possible cdge point and has magnitude above a low threshold, then the 



point is marked as an edge point and the search continues among all neighbors. If a 

point is not a possible edge (marked non-edge in the non-maxima suppression step 

or has already been marked as an edge) or is below the low threshold, the search in 

that direction stops. This produces a set of edge points. The use of two thresholds 

introduces a hysteresis effect and helps avoid gaps in edge contours. 

2.2 Non-Maxima Suppression 

Most others (Canny (81, Schunck [38], Rosenfeld and Kak [36]) use a self directed 

method. In this method, if the center point is larger than the two neighbors, it is 

marked as an edge point; otherwise it is marked as non-edge. The other points are 
' 

only marked when they are the center point being examined. The methods have 

the same effect if all three points being compared have the same gradient direction. 

However, differences arise when the center point and the two neighbors have different 

Non-maxima suppression was first introduced by Rosenfeld and Thurston [37]; 

they called it sharpening. The concept was further developed and was called non- 

maxima suppression by Rosenfeld and Kak [36]. This is a method of identifying 

the points in a gradient image where the intensity is a local maximum. A number 

of variations are possible, all causing anomalies under certain circumstances. Most 

methods divide the gradient angles into four directions: horizontal, vertical, and the 

two diagonal directions. Then neighbors in the 3 by 3 neighborhood of a point in the 

direction of the gradient are examined. Nevatia and Babu 1311, in their line detection 

algorithm, use what might be called a neighbor directed method. They examine the 

center point and the two neighbors in the gradient direction, and if the center point is 

larger than both neighbors, the center is marked as a possible edge and the neighbors 

are marked as not edge points. Also, to be an edge point the neighbors must have 

directions within f 30" of the center pixel. 



Figure 4: Self vs. neighbor directed non-maxima suppression. (a) Gradient magnitude 
and direction, (b) Neighbor directed, (c) Self directed. 

directions. This is especially likely to happen when an edge is traversing the area at 

an angle near the boundary of the direction segments (e.g., 20-25O, halfway between 

horizon t a1 and diagonal) or when an edge is curving. For an example of the differences, 

consider Figure 4. The lines through the points in Figure 4a indicate the direction of 

non-maxima suppression. The numbers near each point are magnitudes. 

Using the neighbor directed suppression, b causes e to be marked non-edge, c 

unmarks b and d, and d unmarks a, leaving c with no edge neighbors in horizontal 



and vertical directions and causing a gap between c and j (Figure 4b). Nevatia and 

Babu were specifically interested in line detection, so this might be satisfactory if the 

difference were caused by a curve in the edge, but not if the directions were caused 

by a line having slope near a direction segment boundary. Using the self directed 

suppression, on the other hand, would mark points e, b, c, and d as edges (Figure 4c). 

Thus, the one method leaves a gap in the edge segment, while the latter provides 

an edge that is more than one pixel wide. Schunck [38] states that non-maxima 

suppression produces a ridge which is only one pixel wide. It can be seen from the 

examples given that this will be true only when the ridge through the region is near 

the direction of non-maxima suppression (horizontal, vertical or diagonal), and when 

the ridge is not curving. 

As described in the previous section, Canny [8] does not reduce the gradient direc- 

tion to the one of the four primary directions nearest the gradient direction. Rather, 

he interpolates between the two neighbors in the directions nearest the gradient di- 

rection to get a value with which to compare the center point (see Figure 3). He 

states that this gives better results than comparing directly with the points nearest 

to the gradient direction, but does not explain what the improvement is. To see the 

type of difference this would make, consider Figure 5. Using interpolation, point a 

would be compared to the interpolated value X I  and b would would be compared to 

2 2 .  If interpolation were not used, a and b would be directly compared and one of 

them would be eliminated; however, if X I  < b and x2 < a it is possible that a and b 

would both be marked as edges. Since the interpolated value will always be smaller 

than the larger of the two values being interpolated, using this method will more 

often cause extra edge points to be included. In the example given, both a and b are 

eight-neighbors of c and d, so marking just one would not cause a gap in the edge 

segment; however, there could be cases where it would. 



edge 

Figure 5: Non-maxima suppression using interpolation. 

Another point relates to the method of comparison. If the magnitude is repre- 

sented as integer values to decrease computation time, there is a possibility that the 

top of the ridge in the gradient values could have two equal values. This might hap- 

pen if the edge were midway between the two edge points, or if the edge were more 

of a ramp than a step. Then, if the suppression marked only points strictly greater 

than their two neighbors in the gradient direction, both of two equal points would 

be marked as non-edge, leaving a gap in the edge, even though there is a maximum 

in the gradient. On the other hand, if a point were marked as an edge when equal 

to one neighbor and greater than the other, points on the shoulder of a ridge might 

be marked as edge points, introducing more noise. In Figure 6, showing a graph of 

the gradient magnitude along a one-dimensional slice across a ridge in the direction 

of greatest gradient magnitude, points a and b appear the same if only their nearest 

neighbors are compared. This indicates that in the case of a point being equal to its 

neighbor, the search should be extended in that direction until a non-equal neighbor 

is found. 



Figure 6: Gradient magnitude - points a and b appear the same. 

Schunck (381 recommends non-maxima suppression over larger neighborhoods for 

another reason. At each point he first multiplies the gradient values computed at  

different scales (degrees of smoothing). This increases the strength of strong edges and 

greatly reduces that of weak edges nearby. By performing non-maxima suppression 

over a larger neighborhood, weak edges near stronger edges are removed. Comparing 

over a larger neighborhood introduces the question of which points will be compared 

with the center point. This is because neighborhoods larger than 3 by 3 contain 

points which do not fall on lines in the four primary directions. One possibility would 

be to choose smaller intervals for the comparison directions. For example, in a 5 by 5 

neighborhood the comparison could be done in directions differing by approximately 

22.5" rather than 45" as is done in 3 by 3 neighborhoods. This would introduce some 

anomalies. For example, in Figure 7 angle A is not the same as angle B, so the size of 

the sectors for comparison direction would not be the same in all directions. Another 

is that in the vertical, horizontal and diagonal directions, there are two points in each 

direction to compare to the central point, while in the other directions there is only 



Figure 7: Non-maxima suppression over larger than 3 by 3 neighborhoods. 

one point. If the decision is made to compare in only the four original directions, then 

what about the magnitude of point P'? Its value will never be compared with the 

value of P. As the ncighborlioods for suppression become larger, there will be more of 

these points to consider. Schunck's approach is to compare only in the four primary 

directions, apparently assuming that if there is a ridge higher than the center point 

in the sector, it will be detected in one of the four directions examined. 

2.3 Edge Linking 

Montanari [29] prese~lted a technique for using dynamic programming to recognize 

a line embedded in a noisy picture. If the length of the line and its characteristics 

C such as curvature and location of corners are known, the entire image is searched 

to find the best instancc of that line appearing in the image. Because of very large 

time and storage requirements, this method could be used only for small images, for 

example a srnall rcgion where it was known that a character was written. 

Martelli [28] produccd a set of points linked into edge segments. His approach 

organized the points into a graph and found a best path tl~rough the graph. Arcs in 



the graph connected a node to its nearest neighbor in the direction of the edge and 

to the two nearest neighbors on either side of that point. The node was given its 

gradient magnitude as a weight. The decision could be made to not include a node 

in the graph if its weight was below a threshold. Similarly, an arc could be omitted 

if the directions of the two nodes it joined differed by more than 90". A positive cost 

was assigned to each arc based on magnitude of nodes and direction agreement of 

the two nodes joined by the arc. He then applied Nilsson's heuristic search algorithm 

(A*) [32, 331. This can be performed if some estimate of the cost of a path joining two 

points is available. If XA and xe  are the first and last points, let f (xi) = s(xi) + g(x;), 

where s(xi) is the cost of the path from XA to xi and g(xi) is the estimated cost from 

xi to x g  . The algorithm proceeds as follows: 

1. Put the successors of the start node in list S with pointers to x ~ .  

2. Remove the node xi with minimum f .  If xi = xg STOP. 

3. Put successors of xi in S with pointers to xi. 

4. Return to step 2. 

The information to estimate g(si) comes from some knowledge about the edges being 

sought. If there is no way to make an estimate, g(xi) = 0 and the algorithm is 

equivalent to Dijkstra's algorithm for a path through a graph. 

Ashkar and Modestino [2] implemented a variation of the heuristic search using 

edge strength, curvature, proximity to a known approximate curve, and distance from 

the goal to assign weights. They were working with medical images (e.g., lung x-rays) 

so they had information about approximate shape and length of curves sought. 

Fischler and Wolf [14] detected lines, although the method could easily be adapted 

to edges. They assigned a local and a global weight to intensity maxima and linked 



the points into a graph based on proximity. They then found a minimum spanning 

tree through the points. Short branches were pruned and longest paths through the 

tree marked. No details on how the arc weights were assigned was given. 

Nevatia and Babu [31] first applied directional 5 x5 gradient masks, then per- 

formed non-maxima suppression to identify edge points. The direction of a point 

was compared to those of its neighbors to determine its successors and predecessors 

in an edge. Then, beginning with points having no predecessors, the points were 

linked. When a point had two successors, the primary one, based on proximity and 

magnitude, was linked first. The secondary successor was considered the beginning 

of a separate edge segment. The choice of which points to link was a local decision, 

being based only on directions and edge characteristics of a point's neighbors. 

2.4 Use of Multiple Scales 

If points where there is rapid intensity change are to be detected, more than one 

point must be examined. An operator that examines a small neighborhood may not 

return the same value as one that examines a large neighborhood. The problem thus 

arises of what size neighborhood, or scale, to use. Small scales respond more to noise 

and fine texture, while larger scales may use neighborhoods that extend over more 

than one edge or average out weak edges. 

Rosenfeld and Thurston [37] were among the first to suggest the use of multi- 

ple scales in edge detection. Their method compares average intensities in pairs of 

nonoverlapping neighborhoods meeting at a point. The orientation of the pairs de- 

termines the direction of the edge being detected. They suggest using a number of 

different sized neighborhoods, ranging in powers of 2 from 2 to a 'size comparable 

to that of the entire picture." The edges would then be "sharpened" by suppressing 

the value at  any point which had a larger value appearing within half the diameter of 



the neighborhood in the direction being examined. The scale used at  a point would 

be the largest such that the largest value found in the sharpening would not be sig- 

nificantly larger at the next smaller scale. This corresponds to the size of the largest 

neighborhoods that lie inside a uniform region on both sides of the edge. In order to 

detect edges at  different angles, pairs of neighborhoods having different orientations 

would also be compared at each point. They recommended a parallel implementation 

and gave an O(1og n) algorithm for computing the set of neighborhood averages for 

square neighborhoods. 

Marr and Hildreth [26] were motivated by psychophysical findings in the late 

seventies that there were four channels, or scales, for detecting edges in the human 

eye. In determining the best operator to use, they wished to reduce the frequency 

range of intensity changes, while at the same time having an operator with the smallest 

localization possible in order to avoid interactions between nearby edges. Leipnik [21] 

had shown that the Gaussian is the only function to minimize both of these conflicting 

properties. They also desired to reduce the computation involved in applying multiple 

operators at different orientations. Thus they used the isotropic Laplacian of Gaussian 

(v2G = G:, + Gi,) operator and detected zero-crossings in its output to identify 

maxima in intensity changes. In order to combine the edge information detected at 

different scales, they developed the spatial coincidence assumption. This states that 

a zero-crossing segment that is present in a contiguous set of different scales is due 

to a single physical phenomenon. 

Eklundh, Elfving and Nyberg [12] extended the Marr-Hildreth method. They used 

three different scales and considered the points where there were zero-crossings at all 

three scales. They then compared magnitude and direction at  the three scales and 

suppressed the point if the differences exceeded a threshold. In the output from a 

single scale, they also compared nearby zero-crossing points and tested the differences 



in magnitude and direction against a threshold. These steps produced gaps in the 

contours, so they next detected the ends of contours and linked the most likely ones 

based on the distance between end points and the differences between the angles 

formed by the curves near their ends. The problem with this method was determining 

the several thresholds needed. 

Witkin [44] took a different approach. Instead of detecting zero-crossings of the 

v2G at  several discrete scales, he plotted the location of the zero-crossings against a 

as it varied continuously from zero to a value where all significant features had been 

smoothed out. He called this graph scale space. The graph contained a set of arches 

closed at the top and open at the bottom and a few lines that did not form arches 

(see Figure 8a). Some arches are nested inside others. It is theoretically possible for 

arches to intersect 118, 391, but because the situations where that would happen are 

unstable, in practice the phenomenon is not observed [9]. Witkin defined the scale 

of an event to be the apex of the arch corresponding to its contour. The location 

where the contour crossed the x-axis was considered to be its location in the image. 

From this graph he constructed what he called an interval tree. Vertical lines were 

drawn at the location of the events occurring at the largest scale. A horizontal line 

was drawn at that value of a. Decreasing u in each interval, whenever the apex of an 

arch was reached a horizontal line was drawn across the interval in which it occurred 

and vertical lines were drawn from the horizontal line to the intersections of the bases 

of the arches with the x-axis (Figure 8b). Then the vertical intervals which had the 

longest undivided extent were considered the most significant features. 

Bischof and Caelli [6] used an approach which is a hybrid of the Witkin and the 

Marr-Hildreth methods. Instead of considering the longest unsubdivided interval in 

the interval tree, they assigned a stability index to a point which indicates the longest 

vertical extent of a zero-crossing at the same location. This is like Marr-Hildreth in 



Figure 8: Witkin's (a) scale space and (b) interval tree. 

that spatial coincidence is considered significant, but like Witkin in that a discrete 

approximation to continuous scale space was used, rather than just two to four scales 

as in Marr-Hildreth. 

Schunck [38] combined multiple scales in yet a different manner. He used a gra- 

dient of Gaussian operator, rather than the v2G as the above have done. This was 

applied a t  two or more scales. Then the gradient magnitude at  all scales a t  a point 

was multiplied to give a single magnitude array. He showed that if a weak edge is near 

a stronger edge, then the weak edge becomes much weaker in the combined array, 

with little effect on the stronger edge. Also the location of the stronger edge appears 

nearer its location a t  the smaller scale than that of the larger. This method removes 

much of the unwanted fine texture and noise from the edge map. 

Canny [a] combined multiple scales using a technique he called feature synthesis. 

Beginning a t  the smallest scale, he marked edge points that were above a threshold 

based on the signal to noise ratio. Then he computed what the response of the 

edges detected would be at a higher scale. This synthesis step was performed by 



convolving with a Gaussian normal to the edge direction computed from the current 

filter response. The standard deviation of this Gaussian is the same as that of the 

next larger filter to be examined. Then actually applying the larger scale filter, he 

compared the result to the predicted response. Points returning a significantly higher 

value than the predicted were marked as edge points. These correspond to "fuzzy" 

edges superimposed on sharper edges, or edges that are appearing at a higher scale. 

Other points giving a response near or below the expected were considered to be the 

same points detected at  the smaller scale. The edges detected at  the larger scale were 

mostly due to shading, shadows, and edges between textured regions. 

Multiple scales were used by Bergholm [4] in a technique he called edge focusing. 

He applied a gradient of Gaussian edge operator at a coarse scale, and from this 

produced an edge map identifying the edge points at the finest scale that could be 

tracked from a coarse scale edge point. This removed the effects of delocalization 

and over smoothing that occurred at larger scales. However, for diffuse edges, e.g., 

shadows, the edge was replaced by noise and fine texture edges that were nearby. 

2.5 Analysis of Scale Space 

Shah, Sood and Jain [39] examined the scale space representation of idealized edge 

models, the staircase and the pulse. These are combinations of a unit step function 

defined by the equation 
0 i f x < O  
1 otherwise 

They showed that the convolution of this with the Gaussian is 

and the second derivative is 



The ramp edge having slope m and width w is defined by 

Convolving with the first and second derivatives of the Gaussian gives 

The staircase and pulse are the sum and difference of two step functions at  0 and w ,  

Convolving with the second derivative of Gaussian gives 

Plotting the zeros of the second derivatives gives the scale space images of the staircase 

and pulse. These are shown in Figure 9. 

They also developed equations for a staircase and pulse in two dimensions and 

investigated their behavior. Peich [35] showed that the scale space of the two- 

dimensional staircase and pulse have a cross-section identical to that of the one- 

dimensional edge models. 

Katz [18] also analyzed the pulse and staircase and showed that in the scale space 

image of the staircase with equal steps a t  a and -a the two side contours collapse 

into one when o = a. In addition he showed that the contours of a pulse with equal 

steps at a and -a converge to o = f x. He also discussed combinations of more than 

two steps. 
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Figure 9: Scale space of (a) staircase with b = 1, 2 ,4  and (b) pulse with b = 1, 2, 8. 

Most edge detectors assume that the edge being detected is straight and the end 

does not fall within the support of the edge detection operator. Berzins [5] examined 

the behavior when these conditions are not met, for example if the line curves or 

has a corner. He examined the output of the Laplacian of Gaussian operator and 

showed that the edge contour goes through an isolated corner, but is rounded near 

the corner. He concluded that displacement at a corner is 0, and near the corner 

is less than o when the angle is greater than 15' for the Laplacian operator. See 

Figure 10. The edges of a square show similar distortion at  the corners, but as the 

sides of the square become less than 40, the detected edges move outward from the 

corner and the contour approaches a circle of radius JZo. The detected edge of a 

large circle shows little displacement when the radius is above 40, but as the radius 

becomes smallcr, that is, the curvature is larger, the displacement approaches JZo 
as for the square. 

Bergholm [4] also examined the behavior of corners and small closed curves irl 



Figure 10: Displacement of edge near a corner. 

scale space. He analyzed the gradient of Gaussian rather than the Laplacian. Under 

this operator, a corner becomes rounded inside the original corner. He showed that 

displacement of a corner is less than 20  when the angle is greater than 22'. A 

small closed curve expands and assumes a circular shape, while the edges of a pulse 

composed of two equal step edges having opposite parity move apart. The rate of 

movement in all these cases is less than Aa, the difference in the value of 0. He used 

this information to determine the size of the smallest neighborhood of an edge point 

detected at  one scale of Gaussian that would be assured to contain that same edge 

at  a different scale. 

Clark [lo] analyzed scale space using the perspective of catastrophe theory. The 

gradient of Gaussian is an example of a contrast function. He showed that when an 

image is smoothed with a contrast function, the point at which a gradient maxima 

and gradient minima mect and disappear is an example of a bifurcation. He analyzed 

the behavior of the contrast function and showed that a t  gradient maxima points the 

gradient value will decrease in value as scale increases, while the value a t  gradient 



minima points will increase. This behavior can be used to classify the type of point 

detected. Korn [19] suggests using a two-dimensional gradient of Gaussian operator 

which has been normalized by multiplication with the factor o&. This no longer 

has the properties of a contrast function and can be used to detect edge interaction. 

2.6 Fitting Curves to Data Points 

Edge detectors return sets of points that are affected by noise and delocalization. 

The next step in image analysis usually involves determining a higher level represen- 

tation for these points. The simplest method for doing this is to use the least squares 

method to fit straight lines or curves to the points. Since only two points are required 

to fit a straight line, having a set of points containing more than two points produces 

an over-constrained system. The least squares procedure is designed to find a best 

solution to this system. 

The Hough transform [3] can also be used to fit a line or other curves to a set of 

data points. For a given point (2, g) in the set, any line that passes through it must be 

of the form g = m% + c. Thus a single point comprises an under-constrained system, 

and more information must be used to find a solution. The equation above defines a 

line in the m - c plane, c = - f m  + &. Both the m and the c axes are subdivided into 

intervals and a two-dimensional array set up, representing each rectangular interval 

thus defined in the m - c plane. The line is plotted by adding a one into the array 

location corresponding to each rectangle through which it passes. This is done for 

each point in the set. Then the rectangle having the highest count is considered to 

be the intersection of the most lines in the m - c plane, and thus gives the best value 

of m and c for that set of data. Since values of m between O and 1 represent a 45' 

range for the slope and 1 to w also represents 4s0, 0 to 1 must be divided into much 

smaller intervals than 1 to w in order to get meaningful results. For this reason the 



polar equation of a line is often used: I cos t9 + p sin B = r ,  and the r, B graph, which 

gives a sinusoidal curve, is plotted. This method can also be extended to other curves 

and even irregular shapes. 

Both of these methods have their shortcomings. For example, the Hough transform 

may indicate that a point far separated from a linear set belongs on a line because it 

accidentally lines up with the line. Both of these methods require that before fitting 

the curve a decision must be made as to what type of curve will best approximate 

the data points, e.g., a straight line, circle, cubic polynomial, etc. Unfortunately, in 

practice it is often not possible to decide on the type of curve beforehand. 

Fischler and Bolles [13] developed a method of fitting lines or curves which started 

with a system which was neither over- nor under-constrained. This was done by 

choosing randomly a set of points just large enough to solve the system, for example 

two points for a line and three for a circle. Then the curve was fitted to the points and 

the number of points compatible with the curve was counted. If the set of compatible 

points was big enough, this was considered the correct curve. If the set was not large 

enough, another initial set of points was chosen and the curve refitted. This method 

involved thresholds for deciding which points were compatible, how big a set would 

be considered large enough, and how many times to try before giving up. 

Duda and Hart [ll] developed the recursive linear segmentation algorithm for 

fitting straight line segments to a set of data points. They started with a line joining 

the first and last points in the list. The set was segmented at  the point which lay 

farthest from the line and the line was replaced by the two new line segments. The 

point farthest from the new lines was then chosen and its segment divided into two. 

This was repeated until all points were close enough to the curve. Lowe [23, 241 

extended this method. The length of a line segment divided by the largest distance 

of a point from the line was computed as a scale independent significance measure for 



line. 

Figure 11: Subdivision of a set of data points into significant line segments. 

the line. The set of points was then subdivided a t  the point lying the largest distance 

from the line as above, but the process was repeated until the line segments were 

no more than four pixels long. As he worked back up from shorter to longer lines, 

the significance of each of the shorter subsegments was compared to the complete 

segment. If either was higher than the significance of the complete segment, the 

shorter subsegments were returned, otherwise the single segment was returned. Both 

of these worked without having to know the values of tangents or curvature before 

the segmentation was done. See Figure 11. Lowe also suggested a method using the 

angular distance between the line connecting a point to the nearest end point and the 

line joining the endpoints as an error measure for a point, and computed a significance 

measure for each line segment based on the angular distance of all points from the 

A different approach is to determine some charactcristics which are desired in 

a curve, such as continuity and smoothness, then define a functional which will be 



minimized when these conditions are met. The set of points giving the minimum 

value is determined by techniques of variational calculus. 

Lee and Pavlidis [20] minimized the discrete functional 

where f; = f (xi). When the data points are equally spaced this reduces to 

where u = x;+l - xi. The first term is a measure of curvature while the second 

measures the distance of the computed set of points from the original data points. 

To determine the values of ai the solution was obtained with all ai = 1, then at each 

point e; = [f;+l - 2f; + fi-1]2 + (yi - fi)2 was computed. The value of this term 

will be high if the difference of the forward difference and backward difference (which 

approximates curvature) was large and/or if the point is far from the fitted curve. 

When this value was large, a; at this point was set to 0 and the curve refitted until 

the largest value of e; was not much larger than the next larger ei. If a single a is set 

to zero, a corner can develop at  that point. If two adjacent a's, a; and a;+l, are set 

to 0, this will produce a discontinuity in the curve. 

Kass, Witkin, and Terzopoulos [I 71 minimized 

where v(s) = (x(s), y(s)). The internal energy term, Eint, enforces continuity and 

smoothness in the curve and is written 

EeZt measures some image force, for example intensity or gradient magnitude. They 

solved the Euler equations of the system using an iterative procedure. Their approach 



differed from that of Lee and Pavlidis in that the uerror" term is not the distance of 

the curve from the original data points, but is a measure of the chosen image force. 

Thus the data points serve only to initialize the computation and the image forces 

determine the movement of the curve during the course of the iteration procedure 

which solves for the minimum. 

There is no way to introduce hard constraints, such as minimum distance between 

points, in the iterative method used to solve the system of Kass, Witkin, and Ter- 

zopoulous. In order to allow their introduction, Amini, Tehrani, and Weymouth (11 

propose solving the system using dynamic programming techniques. While this ap- 

proach is much slower, it allows much more flexibility in controlling the course of the 

convergence to the minimum value. 

Mackworth and Mokhtarian [25] have studied the properties of smoothing two- 

dimensional parametric curves with Gaussians. They determined the zeroes of curva- 

ture at different scales of smoothing and used these to obtain a scale space representa- 

tion of a curve which they used to match a model curve being sought. However, there 

is a problem when smoothing parametric curves with a Gaussian; they shrink as the 

degree of smoothing increases. Lowe [22] presented a correction factor which can be 

applied as the curve is smoothed to remove the shrinking effect. He then segmented 

the curves at  points where the rate of change of curvature was high. 



3. EDGE LINKING 

Edge point detectors identify potential edge points, those where the image inten- 

sity is changing rapidly. These typically return an edge map identifying the location 

of points where the intensity gradient is high, together with some gradient and di- 

rection information. In order to use this information in higher level processing, the 

next step is to identify those points which should be grouped together into edge 

segments. Several authors have developed algorithms for linking edge points into 

segments. None of the methods presented in Chapter 2 use more than one scale of 

smoothing. In addition, they are either not applicable to general images, or depend 

on local information only. Montanari 1291 found a globally maximum line through an 

image using dynamic programming, but this used the entire image as a search space 

and is impractical to use because of the excessive execution time. In this chapter 

we present a method which chooses a best path based on global information through 

a restricted search space. Two extensions to this algorithm will be given that use 

multiple scales. 

The single scale algorithm first uses a gradient of Gaussian operator to determine 

gradient magnitude and direction, followed by a non-maxima suppression step to 

identify ridges in the gradient map. This process gives an edge matp identifying 

points whch are gradient maxima. Canny [8] has shown that this is a near optimal 

edge detector. He then uses a method involving two thresholds to identify a subset 

of these points as edge points. There are several problems with this set of points. 

1. There is no structure. They are simply a set of unconnected edge points. 
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Figure 12: Edges having branches and double width. 

2. The points appear as a path with side branches, some branches only one or two 

pixels long (see Figure 12a and 12c). 

3. Even when there is a single, well defined edge, the edge may appear more than 

one pixel wide (see Figure 12b). 

Note in Figure 12c that when the edge points form a T-junction, the non-maxima 

suppression will usually create a gap, so that the two contours are separated. This 

eliminates many major branches in the contours. 

The points could easily be grouped into distinct segments by keeping a linked 

list of the edge points as they are marked. There would be a separate list for each 

connected set of edge points. However, this connected set would not be in sequential 

order along the edge, and additional processing would be needed to make it useful. 



The second problem is caused by the algorithm used to mark the edge points. It 

searches in all directions from each point marked as an edge to find other points to 

mark. Thus it is possible to have branches on the path that have no points above 

the high threshold, but because they are branches off a path having points above the 

threshold they are kept. However, there is information available that is not being 

used by this algorithm, specifically the direction of mazimum gradient at each point 

and the magnitude of that gradient. This information could be used, and a single 

best path through the set of points found. Any side branches that have points above 

the threshold would become separate edge point segments. Any branches having no 

points above the threshold would be considered as noise and eliminated. This would 

also solve the third problem, as a path only one pixel wide would be chosen through 

the points. 

Grouping the points which belong to a single edge into a contour only one pixel 

wide gives a more meaningful data structure. Thus the algorithm presented in Section 

3.1 thins the points to a contour one pixel wide and links them in sequential order. 

The algorithm assigns weights based on several factors, and then chooses the set of 

points giving the largest average weight. The weight at each point is computed using 

local direction and magnitude information and a global length weight. The set of 

points having the highest average weight is chosen, so global information is used here 

also. This is in contrast to Nevatia and Babu 1311, who used only information in the 

3 x 3 neighborhood of a point to determine to which point it should be linked. 

This single scale edge linking algorithm is then extended to one which uses multiple 

scales to obtain better edges with little increase in the response to noise. The choice 

of the size neighborhood, or scale, to use in smoothing an image and determining the 

gradient is a difficult problem. When using the Gaussian function to smooth images, 

u, the standard deviation of the Gaussian, is the scale parameter. Smaller scales 



result in too much noise and fine texture being retained while larger scales result in 

delocalization of edges and loss of significant edge points. Background on the use of 

multiple scales in edge detection to reduce the conflicting goals of noise suppression 

and accurate localization was discussed in Chapter 2. 

Pseudo-code for the algorithms is given in Section 3.5. 

3.1 Single Scale Edge Detection and  Linking 

In this section an algorithm is presented for linking gradient maxima points into 

an edge contour which is a single pixel wide and has no side branches. In this method, 

the image is first convolved with a gradient of Gaussian operator. Then non-maxima 

suppression is performed, producing a set of potential edge points. Since the algo- 

rithms presented here make no attempt to extend edge contours across a gap where 

there is no point marked as a potential edge, options are chosen in the non-maxima 

suppression that will provide the largest possible set of points. Specifically, when a 

point is marked as a potential edge, no neighbors are disqualified from being edge 

points. Also, points are retained that are greater than or equal to their neighbors. 

Interpolation is used in the first two algorithms, but was not possible in the third 

algorithm. Suppression is performed in a 3 by 3 neighborhood. 

All of the methods in Chapter 2 except that of Nevatia and Babu [31] had a large 

search space, examining all points with gradient or intensity above some threshold. 

The algorithm presented here finds a single good path through points which are 

gradient maxima. This reduces the number of points that will be examined since the 

gradient maxima ridges are only one pixel wide in many cases, and only two or three 

pixels wide at the greatest, with occasional short side branches. 

The set of potential edge points is placed in a priority queue with the edge point 

having largest magnitude on the top. Thus the strongest edge points will be extended 



into contours first. This step is performed because in some cases the order in which 

the points are processed could make a difference in the results obtained. For example, 

if three edge segments meet at a point, two of them will probably be linked into a 

single contour, while the third branch will become a separate contour if it has a point 

above the threshold on it. Thus if the search begins on a noisy spur there will be one 

contour consisting of the spur and one strong branch, and another contour consisting 

of the other strong branch. The desired contour would link the two strong branches. 

The use of a priority queue tends to avoid this problem. The situation of three edges 

meeting at a point rarely occurs except in the case where one of the three segments is 

a noisy spur, because the non-maxima suppression step usually causes a gap between 

the main contour and a side branch. 

The search for points to assign to a contour proceeds as follows. The first edge 

point that is not already on a contour is retrieved from the queue. Its gradient 

magnitude and direction, 8,  are determined. Then the direction is used to determine 

the direction, t9 + 90°, of the next edge point. This assumes that the edge will be at a 

right angle to the direction of greatest intensity change. The angle is converted into 

an integer 0 through 7, each representing a 45' range. Zero corresponds to an edge 

in the range -22.5' to 22.5O, with the subsequent integers going counterclockwise 

from 0. The point in the computed direction is examined first, then those in the 

adjacent directions on either side of it. Each branch is followed to the end and a 

weight assigned at  each point based on four factors. The four factors are 

1. Is the edge point being examined in the direction determined by the gradient, 

or in the direction next to it? 

2. How much does the direction of the next edge point differ from that of the 

current edge point? 



3. What is the magnitude of the gradient? 

4. How long is the contour extending from this point? 

The maximum weight assigned is forty, with each of the four factors contributing 

a maximum of 10 each. First, if the point being examined is in the direction pointed 

to by the previous point, the weight is 10. Otherwise it is 45' on one side or the other 

and the weight is 5. In Figure 13a the previous point, p, with its direction is on the 

left. The three points that are possible successors are on the right together with their 

weights for factor one. For the second factor, the direction of the current point, p', 

is compared to the direction of the previous point, p. Ten is assigned for a difference 

of 0, 8 for a difference of 1, 0 for a difference of 2, -8 and -10 for a difference of 3 

and 4 respectively. In Figure 13b the previous point with its direction is on the left. 

I The current point, with weights for possible directions, is on the right. There is little 

I penalty for a difference of 1 as this often occurs on curves and lines near the boundary 

of the direction regions (e.g., 20-25'). However, sharp corners are penalized. This 

factor is important especially at the end of a contour where the location of an edge 

is more inclined to drift. The third weight is based on gradient magnitude and is the 
w 

ratio of the point's magnitude to the maximum magnitude in the image, multiplied 

by 10. The fourth factor is designed to penalize short edges and is equal to the 

length of the edge constructed from this point to the end, if the length is less than 

10. Otherwise the weight is 10. 

The weights are designed to favor the longest, strongest, straightest path. The 

I 

search is organized as a post order tree traversal. That means that beginning with 

the root, each node's subtrees are examined, then the node. Thus when a node is 

being processed it can choose the subtree which represents the path having largest 

weight among its children, update the weights to include itself, and return that value 



Figure 13: (a) Weights for factor one. Previous point, p, is on the left and possible 
successors, pl, pz, PJ, with their weights on the right. (b) Weights for factor two. 
Previous point, p, with its direction on the left and current point p' on the right with 
the weights determined by comparing its direction with that of p. Ten points for a 
difference of 0; 8 for a difference of 1; 0, -8, -10 for differences of 2, 3, 4, respectively. 

to its parent node. There are a maximum of three children examined for each node of 

the tree, but due to the non-maxima suppression step, many nodes will have only one 

child which is a potential edge, while most others will have only two. An occasional 

node has three. This reduces the search space to reasonable levels. 

After searching from the initial point in one direction, a similar search is con- 

ducted in the opposite direction unless a closed contour has been formed. The two 

branches are combined to form one contour. Contours having three or fewer pixels are 

discarded. Then the next point is chosen from the queue, and the search continues 

for the next contour until there are no more edges in the queue having magnitude 

greater than a threshold expressed as a per cent of the maximum magnitude. Valiies 

in the range 5% to 10% gave good results on the images presented here. 

For purposes of analyzing the ccmplexity of the above algorithm, it can be con- 

sidered as a tree search. If the trce searched has height n, a depth first algoritllin 



Figure 14: (a) Full tree, (b) Typical tree developed by algorithm. 

is usually exponential. Let the height of the tree, which corresponds to the length 

of the contour being marked, be n. The tree has three branches at  each node so 

3"+1-1 the total number of nodes in the tree is 7. Thus the complexity of the search 

is O(3"). However, the use of non-maxima suppression produces a ridge no more 

than two pixels wide at  any point. Thus the total number of points is less than 2n. 

Since no point is allowed t-o be on more than one branch of the path, the algorithm 

is actually linear (see Figure 14). 

3.2 Multiple Scale Linking 

This section deals with the extension of the algorithm presented in the previous 

section to an algorithm which uses multiple scales in order to produce improved 

detection of weak edges. I t  is known that a t  higher scales edges are delocalized. 111 

our algorithm for multiple scales we need to know how large the delocalization is 

in order to determine the size of neighborhood of an edge point at  one scale which 

must be searched to ensure finding the edge at  another scalc. A theoretical analysis 



of the movement of idealized edges undergoing Gaussian smoothing is presented in 

Chapter 4. 

The algorithm given in the previous section is extended to one using multiple 

scales, as follows. Initially the image is convolved with gradient masks at  three 

scales: a, fro, and 20, where o is input by the user. Any number of scales could 

be used, but three was found to provide a significant improvement in contours. The 

fewer scales needed, the more efficient the process. The scale should be chosen so 

that the largest scale removes most of the unwanted noise without losing significant 

edges. 

The search for a contour proceeds as for the single scale, using the largest scale, 

until a best partial contour at that scale has been found. Then the next finer scale 

is chosen and the neighborhood around the end point of the contour is examined to 

determine if there are potential edge points at the new scale having a direction similar 

to the end point of the contour. In this case a difference of two in the directions is 

considered close enough to continue the edge contour at the smaller scale. This is 

because the direction may change slightly at a different scale due to the fact that 

there is less interaction between edges at smaller scales. The neighborhood searched 

is only one pixel in each direction, based on the analysis given in Chapter 4. This 

analysis shows that the maximum delocalization of an edge point is o and is usually 

less than that. Thus an edge detected at one scale, ol, should appear no further away 

than lol - 021 when the scale is u2. When the largest value of o is 4, most edges will 

be found in a neighborhood with radius one pixel, and when the largest value is 2, all 

will be in this neighborhood. The original algorithm is then followed for each of the 

points satisfying the above condition, and the best is chosen as an extension to the 

original edge. While extending the edge, if any point is discovered to be a potential 

edge point at a coarser scale, the search scale is increased to that value. 



When the contour cannot be extended further, the scale is decreased to the next 

finer scale, and the process is repeated until the contour cannot be extended at the 

finest scale. The edge segment is then extended in the same manner at the other end. 

This algorithm resulted in a considerable improvement in the detection of some of 

the incomplete edge contours, with almost no degradation due to inclusion of noisy 

edge points. 

3.3 Multiple Scale Non-maxima Suppression 

When a contour at one scale ends and is continued at a finer scale, in the above 

algorithm, there is sometimes a jog in the contour due to the differences in delocal- 

ization at the two scales. This can be seen in the upper right corner of the object 

in Figure 15d. Thus an algorithm was sought which would remove the delocalization 

which occurs at larger scales, eliminating any jogs in the contour. 

This algorithm combines the gradient information computed at  several scales in 

the non-maxima suppression step rather than the linking step. Non-maxima suppres- 

sion was performed in the usual manner for the coarsest scale and the potential edge 

points were marked. Then non-maxima suppression was performed at successively 

smaller scales. If a point was being marked as a gradient maximum and an adjacent 

point normal to the edge was a maximum at a coarser scale, but not at the present 

scale, then the label for the coarser scale was moved to the present point. This had 

the effect of shifting a delocalized edge point to its location at the finer scale. When 

performing the edge linking step, an additional weight was used, based on the number 

of scales at which a point had been detected. Thus an edge detected at three scales 

would have a larger weight than a point marked at only one or two scales. This is 

similar to the Marr-Hildreth spatial coincidence assumption; however, the marks for 

delocalized edges have been moved to their location at a finer scale increasing the 

effect of spatial coincidence. 



3.4 Experimental Results 

The results of the algorithms applied to several real 128 x 128 images is presented 

here. The values of 0 used were 1, 4, and 2 and a threshold of .08 was applied. For 

comparison, the images were also processed using the Canny operator. The threshold 

used for the Canny algorithm was chosen to return approximately the same number of 

contours as the edge linking algorithms. The results for three images, Part, Tiwanaku, 

and Bananasplit, are shown in Figures 15, 16, and 17. The original image is a, the 

Canny operator is b, the single scale algorithm is c, the multiple scale algorithm is d 

and using the multiple scale non-maxima suppression is e. 

In the part image, there were several fairly well defined edges, but quite close to 

each other, so that at scales which were large enough to remove noise, the nearness 

of the edges had caused some of them to disappear. The main difference between the 

Canny operator and the single scale edge linking algorithm was that the double edges 

were replaced by single pixel edges, and some small spurs on the edges were eliminated. 

More improvement was achieved with the multiple scale algorithm. Looking at the 

fourth contour from the center, the multiple scale algorithm was able to join three 

partial contours and extend the right side into an almost complete contour. The third 

contour was also extended across the bottom of the image. Note also, in the shadow 

edges at the top and bottom of the image, that small fragmentary edge contours have 

1 been combined into longer, much more well defined contours. The contours using the 

I multi-scale non-maxima suppression give even better results. The corner where the 

shadow edge joins the object is much clearer and the edges appear at their location at 

the finest scale. In this area of the image, the outer contour of the part has an edge 

of opposite parity to its left, thus they repel each other, pushing the object edge to 

the right. The shadow edge outside the part has the same parity as the object edge, 

thus pulling the edge to the right. With one edge pushing the contour to the right 



while another pulls, the edge of the object has been moved outward in b through d. 

This delocalization has been removed in e. 

In the Tiwanaku image the single scale algorithm shows less noise than the Canny, 

probably due to the difference in the thresholds which were difficult to compare. 

Again, some spurs and double edges have been removed. The multiple scale algorithm 

produces slight extensions of the vertical lines on the large stone, and the bases of the 

smaller stones are more well defined. Some of the texture edges in the background 

and the clouds have been combined into longer contours as well. Again, the results 

in e are better. The corners are squarer, and the delocalization at  the tops of the two 

small stones on the right has been removed, defining the edges more clearly. Also, 

the edge between the small stones has been much improved. 

The Bananasplit image is different from the other two in that most edges fall into 

one of two categories. They are either very well defined, as in the sides of the post and 

the floor-wall joint that are well marked by all the algorithms, or they are very poorly 

defined, with few intermediate edges of the type most improved by the multiple scale 

algorithm. For example, the specularity on the left side of the stool interrupts the 

bottom edge and the gap cannot be detected at any scale. The horizontal lines on 

the stool are only one pixel wide, thus the edges are too close together to be detected 

by any of the methods. The multiple scale algorithm did complete one contour on 

the left. The base of the stool is much clearer in e, as well as the shape of the top. 

The conclusion is that the single scale edge linking algorithm cleans up the Canny 

edges and produces a set of linked lists corresponding to the contours found. In 

addition the multiple scale algorithm is able to improve detection of edges that are 

close together and interact at scales which are large enough to remove noise and fine 

texture. It also improves detection of weak, but well defined edges, such as those of 

the shadows in the Part image. Best results in all cases occurred with the multiple 



scale non-maxima suppression algorithm. Edges which had been delocalized were 
I 
t 

moved back to their location at a smaller scale, separating edges which had become 

too close together to differentiate. Because of this, some contours were extended 

farther than with the multiple scale linking algorithm. 

The weights were chosen heuristically. Experiments varying the weights indicated 

that the actual values did not seem to be extremely critical as long as higher weights 

were given to the points in the primary direction, having the same direction as the 

current point, high magnitude, and longer length contour. Experiments in which each 

one of the factors in turn was removed, however, indicated that no three gave as good 

results as using all four. This was interesting especially in relation to weights 1 and 

2 which were both determined using direction information. The weight for factor 1 is 

higher when the point is noise free and the curvature is small, but noise seems to be 

the most important factor. Factor 2 has a higher weight when the curve has no sharp 

turns. The ends of the contours particularly drifted when this weight was removed. 

Removing the length factor allowed one or two strong points, perhaps lying next to 

the main edge on a ridge two pixels wide to be chosen, rather than a longer contour 

which extended into a weaker portion of the edge. 



Figure 15: Part (a) Original Images, (b) Canny Operator, ( c )  Single Scale Edge 
Linking Algorithm, (d) Multiple Scale Algorithm, (e) Multiple Scale Non-maxima 

C Suppression. 



Figure 16: Tiwanaku (a) Original Ilna.gcs, (b)  (-:il t t  11): O ~ ) ~ ~ . a t o r ,  (c) Single Scale Edge 
Linking Algoritllm, (d) M~il t ip lc  Scalc Algo1.i 1.1 I I I I ,  ((-) hIultiple Scale Non-maxima 
Suppression. 



Figure 17: Bananasplit (a) Original Images, (b) Canny Operator, (c) Single Scale 
Edge Linking Algorithm, (d) Multiple Scale Algorithm, (e) Multiple Scale Non- 
maxima Suppression. 



3.5 Algorithms for Edne Linking 

SINGLE SCALE ALGORITHM: 

procedure FIND CONTOUR 
1. get next POSSIBLE EDGE point, p 
2. FOLLOWEDGE(p, C, wt, Zen) in forward direction 
3. FOLLOWEDGE(p, D, wt, Zen) in backward direction 
4. COMBINE(C, D) into a single contour 

procedure FOLLOWEDGE(p, C, wt, Zen) 
input: p, point to begin contour 
output: C, contour points 

wt, average weight of C 
Zen, number of pixels in C 

1. if not POSSIBLE EDGE(p) then wt = Zen = 0, return 
2. for i = 1, 2, 3 do FOLLOWEDGE(pi, C;, wt;, Zen;) 

/* see Figure 13a for numbering of points */ 
3. max = i where wtmaZ is the largest of wt; 
4. if wtmaZ = 0 then /* p has no continuation */ 

wt = factorl-wt+ fador2-wt+ factor3-wt+1 
Zen = 1 
C = PUSH(@,p) /* Create a new contour C containing p */ 
return 

5. /* continuation found */ 
~t = (Zenma, * (wtmaX - Zenma,) + factorl-wt + f act0~2-wt + f ~ct0r3-wt)/ 

(Zen,,, + 1) + f actor4-wt 
6. Zen = Zen,,, + 1 
7. C = PUSH(Cmax,p) I* add p to C,, to  give new contour C */ 
8. return 

MULTIPLE SCALE ALGORITHM: 

procedure FIND CONTOUR 
1. get next POSSIBLE EDGE point, p 
2. FOLLO WEDGE(p, C, wt , Zen) in forward direction 
3. FOLLOWEDGE(p, D,  wt, len) in backward direction 
4. if not CLOSED(C, D) then EXTEND(C) 
5. if not CLOSED(C, D) then EXTEND(D) 
6. COMBINE(C, D) into a single contour 



procedure FOLLOWEDGE(p, C ,  wt,  Zen) 
input: p, point to begin contour 
output: C ,  contour points 

wt, average weight of C 
Zen, number of pixels in C 

1. if not POSSIBLE EDGE(p, scale) 
/* true if p is possible edge at scale or coarser. */ 
scale = largest scale for which p is a POSSIBLE EDGE 
then wt = len = 0, return 

2. for i = 1 . . . 5  do FOLLOWEDGE(p;, C;, wt;, [eni) 
/* see Figure 13a for numbering of points */ 

3. rnaz = i where wt,., is the largest of wt; 
4. if wt,., = 0 then /* p has no continuation */ 

wt = f actorl-wt + factor2,wt + factor3,wt + 1 
Zen = 1 
C = PUSH(@,p) /* create new contour C containing p */ 
return 

5. /* continuation found */ 
wt = (lenmaz * (wt,., - len,.,) + factorl-wt + factor2-wt + f actot3-wt)/ 

(Zen,,, + 1)  + f actor4-wt 
6. Zen = Zen,,, + 1 
7. C = PUSH(CmaX,p)  
8. return 

/* add p to CmaZ to give new contour C */ 

procedure EXTEND(C) 
1. while (true) 
2. p = end point in contour C 
3. scale = largest scale at which p is a POSSIBLE EDGE 
4. if scale is smallest possible then break 
5. scale = scale - 1 /* continue end at next smaller scale */ 
6. for i = 1, 2, 3, 4 ,  5 /* see Figure 13a for labeling of points */ 

i f  POSSIBLE EDGE(pi, scale) and directions of p and pi differ by no more than 2 
then FOLLOWEDGE(p;, C;, wt;, Zeni) 

7. rnaz = i where wt,,, is largest of wt; /* find best extension */ 
8. if wt,,, > 0 then add contour Cmaz to contour C 

else break /* no extension*/ 
9. repeat 



4. EDGE MOVEMENT 

It is well known that smoothing an image with a Gaussian operator causes delo- 

calization of edges. The larger the standard deviation of the Gaussian, the greater 

the delocalization. If multiple scales (values of a) are used in the analysis of an image 

it is useful to know how far from its original position, or how far from its position in 

another scale, a zero-crossing appears. For example, when performing edge linking 

using multiple scales, as in the previous chapter, the edges may be at  different loca- 

tions for different scales. When extending an edge contour at  one scale with points at 

a different scale it is necessary to know how far the points may have been displaced to 

determine the search diameter and ensure proper linking. Also when matching a 2-D 

model to an image, if the maximum possible movement at different scales is known, 

this information can be used to compute error bounds for the location of the object 

edges in the image. 

In this chapter we analyze the movement of the zero-crossings of the second deriva- 

tive for ideal edge pairs as they are smoothed with Gaussian operators having different 

standard deviations, a. Adjacent edges in an image will have either the same par- 

ity, i.e., both of increasing or both of decreasing intensity; or opposite parity, one 

increasing and the other decreasing. The edge model chosen for this analysis was 

the step edge, and the two combinations examined are the staircase (adjacent steps 

having the same parity) and the pulse (opposite parity). The relative size of the steps 

of the two edges is allowed to be arbitrary. The distance between the edges in the 

pair also affects the characteristics of the movement. Thus the effect of changing this 

parameter will also be examined. 



Shah et al., [39] developed equations for these step pairs convolved with the Gaus- 

sian and its derivatives and showed the general shape of the scale space curves. That 

work is extended here to develop the equation of the scale space curves and analyze 

quantitatively the amount of the delocalization that occurs as images containing these 

steps are convolved with Gaussians having different values of o. In some cases an 

edge location approaches a certain limiting position as cr increases. The equations 

for these positions are also developed. Bergholm [4] examined a pulse having equal 

steps and showed that the speed with which two edges move apart is limited by Aa. 

This work considers general pulses as well as staircases, and focuses on the maximum 

possible movement as a function of a. 

The movement of each of the two edges in the staircase and pulse models are 

analyzed as a function of the relative strengths of the two edges, the distance apart, 

and the degree of smoothing. It is determined that for the staircase model, the 

maximum movement of an edge occurs when the two edges of the staircase are 20  

apart and the intensity change for the two edges is equal. Movement decreases rapidly 

from this maximum when the distance between the edges is either larger or smaller 

than 20 or the steps become unequal in size. For the pulse model the maximum 

movement occurs when the two edges have the same step size and are very close 

together. As with the staircase, the movement decreases rapidly for edges that are 

farther apart, and when edges are 4 0  apart the movement is negligible. 

4.1 Scale Space of Ideal Edges 

The ideal step edge was chosen as the edge model in this analysis both because 

of its simple form, and because of its use by previous authors. In addition, because 

the step edge is the most extreme edge, its movement gives an upper bound on the 

movement of edges which are more nearly ramp shaped. This is demonstrated in 
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Figure 18: Staircase and Pulse Edges. 

Table 2 of Chapter 5. Kern [19] showed that given a ramp smoothed with a Gaussian 

it is possible to find a Gaussian having a different standard deviation, o, that will 

produce the same result for another ramp having a different slope (assuming total 

contrast is the same). The ramp with the larger slope will have a larger value of a, 

hence greater movement. The roof edge, which is two adjacent ramp edges of opposite 

parity, was analyzed and the results compared to the pulse. The characteristics of 

the movement were very much like that of the pulse; however, the equations for the 

pulse yielded an equation for the scale space. This was not possible with the roof. 

The analysis will be performed for the onedimensional case although images are 

two dimensional. This makes the computation much more straightforward and can 

be justified by the work of Peich (351 who showed that with a suitable change of 

coordinate system, the perpendicular cross section of a pulse or staircase in two 

dimensions is identical to the one-dixnensional models. This result is valid when two 

edges in the same neighborhood are parallel. The unit step edge is represented by 

the equation 

0 i f x < O  
1 otherwise 



Then the staircase with edges located at -a, and a is represented by 

while the pulse with edges at  -a, and a is represented by 

See Figure 18. 

The one-dimensional Gaussian having standard deviation a is defined by the func- 

tion 

The first derivative is 
x 

gL(4 = -7gu(x) 

The convolution of the derivative of the Gaussian with the staircase is 

Since U(x - u + a) = 0 when u > x + a and U(x - u - a )  = 0 when u > x - a this is 

equal to 

thus 

The equation for the convolution with the second derivative is 

= bg; (2 + a )  + 9: ( 5  - a) 

Similarly, the equation of the pulse convolved with the derivative of the Gaussian 



and convolved with the second derivative is 

Edge points are those points where the magnitude of the convolution of the image 

function with t'he first derivative of the Gaussian has a maximum value. These are the 

points where there is a positive maximum or negative minimum. They can be found 

by determining where the convolution of the function with the second derivative has 

zero values. Since images are discrete functions, the zero value may not fall on a 

grid point. Thus, a point near the zero where the value changes sign will be called 

a zero-crossing. However, positive minima and negative maxima will also give zero- 

crossings. These points are where the intensity change is smallest. These are the 

points referred to as phantom edges. When they occur in the analysis, their presence 

will be pointed out. 

It will be assumed that b, which represents the relative heights of the two steps, 

satisfies 0 < b  5 1. Thus we are considering the weaker edge to be at x = -a. 

(Similar results could be developed for the weaker edge at x = a , )  The equation of 

the scale space, which plots a as a function of x at  the zero-crossings, for the staircase 

for -a < x < 0 and a ( 1 -  b ) / ( l  + b) < x < a. The equation of the scale space for the 

pulse is 

for - w < x < -a and a < x < a(1 + b) / ( l  - b). The derivation of these equations can 

be found in the appendix. The graphs for several values of b are given in Figures 19 

and 20. These will be referred to as the scale space images. For a more complete 

discussion on the scale space images of pulse and staircase edge pairs see [18, 39). 



Figure 19: Scale Space Image: Location of zero-crossing for the staircase when 
(a) b = 1, (b) b = .8, (c) b = .3. 



Figure 20: Scale Space Image: Location of zero-crossings for the pulse when (a) b = 1, 
(b) b = .8, (c) b = .3. 



Figure 21: 3-D plot of gradient magnitude of staircase, sb,Jx), when I = 1. 



4.2 Movement of Ideal Edges 

Having the scale space curves which give the location of the edges at  different 

scales, it is now possible to determine how far an edge has moved for a particular 

value of a. First we will consider the staircase. Notice that if b = 1 the two edges 

at a and -a move together as o increases until they meet when a = a.  For values 

of o larger than a,  only one edge exists at x = 0. There is also a zero-crossing at 

x = 0 for o < a  which corresponds to an inflection point in the smoothed staircase; 

Clark [9] calls this type of zero-crossing a phantom edge. Thus the scale space curve 

has a pitchfork shape. For o < a  there are two edges separated by a phantom edge. 

These three combine when a = a  and there is only the one edge for larger values of 

0. Clark has shown that when there is an arch in a scale space curve, an actual edge 

and a phantom edge meet at the top and the pair do not appear for larger values 

of a. In Figure 21 a 3-D plot of Equation 1, the gradient of the staircase, clearly 

1 shows the pitchfork form of Figure 19a. The two ridges corresponding to the edges 

and the valley corresponding to the phantom edge move closer together and combine 

at a = a; for larger values of a there is one ridge. Another aspect of the behavior 

described by Clark for phantom and actual edges can also be observed. For a c a,  

the gradient magnitude for the actual edges is decreasing as o increases while the 

magnitude of the phantom edge is increasing (the valley is getting higher). Thus the 

profile along x = 0 shows the magnitude increasing until o = a,  then decreasing. 

When b < 1 the stronger edge moves toward the middle and approaches the 

asymptote a ( l  - b ) / ( l +  b) as a approaches m. See the appendix for the derivation 

of the asymptote. For the case of b < 1, when a becomes sufficiently large the zero- 

crossing corresponding to the weak edge on the left combines with the zero-crossing of 

a phantom edge and the pair disappears. Thus when b = .8 the maximum movement 

of the weak edge occurs at the top of the arch and is (1 - .493)a = .507a. When 



b = .3 the maximum movement is (1 - .723)a = .277a. 

The units on both axes in the scale space image are marked in units of a. This 

can be done because if x and o are both multiplied by a, then 

But 

Thus 

The function has been multiplied by a constant, but the location of the zero-crossing 

will occur at the same locations, and one graph can be used to represent all values of 

a. 

In practice when an image is being examined, a is known, but a is not. Thus, 

instead of considering a constant and a as the variable in Figures 19 and 20, o can 

be fixed and a can be allowed to vary. For a fixed value of a, different points on the 

vertical axis will then correspond to different values of a. In this discussion, whenever 

a fixed value of o is being considered, a will be used instead of o to indicate this. 

Refer to Figure 19 for an example of how this works. If o has the fixed value 2, the 

point 2a on the vertical, o, axis will correspond to a = 1, (o = 2 = 2a, thus a = l), 

while the point a will correspond to a = 2, and .5a will correspond to a = 4. In 

general, if &a is a point on the a axis, then b = &a, a = (l/b)a. Thus for fixed o, 

points on the vertical axis having larger coefficients of a correspond to smaller values 

of a, while points having smaller coefficients correspond to larger a. If ( 5 , 6 )  are the 

coefficients of a for a point on the scale space curve, the distance that the edge point 



has moved from its original location at a will be (1 - 2)a = (1 - i.)(l/&)a for the 

strong edge and (1 + 2)a  = (1 + $)(l/B)a for the weaker edge. 

Since movement (m) depends on a, and both m and a can be expressed in terms 

of a, this suggests plotting m versus a. This is shown in Figure 22. On both axes the 

units are a. Notice that if b = 1, when two edges are 2a apart (a = a) each will move 

and combine to become one edge. If the edges are closer together (smaller value 

of a), they will move a pixels each to come together, but because they were closer 

to begin with, the distance moved will be smaller. Thus for a 2 a, rn = a. If the 

distance apart is greater than 2~ (a > 8) they will move closer together, but remain 

distinct. When a > 2a the amount of movement is negligible. This corresponds to 

the part of the scale space image where the curve is near vertical. In this situation the 

edges are far enough apart to have little interaction, so there is little movement. This 

is a result of the fact that 99% of the support of a Gaussian filter having standard 

deviation o falls within 30 of the mean, so there is effectively no interaction when 

edges are this far apart. The interaction begins slowly as the edges become closer 

together. When a = 2a, the movement is only about 0.0014b, or less than 0.1% of the 

distance between the edges. As a becomes smaller, the movement illcreases rapidly 

to the maximum at (a, a), then decreases until a reaches 0. 

For b < 1, the movement of the stronger edge will be largest for some value of a 

between 0 and 8. Figure 23 shows a graph of the maximum movement possible, in 

terms of a, for different values of b, for the stronger and weaker edges in the staircase. 

Always the largest movement of 6 will occur for equal edges which are 2b apart. For 

example, if an image is convolved with the gradient of Gaussian having o = 2, then 

maximum movement is 2 pixels and occurs when b = 1 and a = 2. However, if it 

were known that most neighboring edges had relative strength 0.5, then their greatest 

movement would be about 0.46 x2 = 0.92, or less than 1 pixel. Similarly, most edge 



Figure 22: Movement vs. Distance between edges, Staircase. 
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Figure 23: Maximum movement in terms of @ vs. b for weaker and stronger edges in 
a staircase. 

pairs will not be exactly four pixels apart, thus movement in these cases will also be 

less than the maximum two pixels. 

A similar analysis can be performed for a pulse. Figure 24 shows the movement 

versus the distance between edges for a pulse. The maximum movement, when b = 1, 

is 8 as it was for the staircase, but this value is now the limiting value as the edges 

become closer together. This can be seen by examining the scale space graphs for the 

pulse (Figure 20). When b = 1 the curve approaches the lines o = f x [la]. Movement 

is (If 1 - 1)a = (121 - l)a/&. Thus 

a: - 1 
lim m = lim -8 

Since the scale space curve approaclles 2 = B for large 2 this is equal to 

But for large 2,  a = a/& = and 8 is fixed so as i -, oo, a + 0 and 

lim rn = 8 
a+O 

When b < 1 the strong edge in the scale space image approaches the vertical 

asymptote a ( l  + 6) / (1-  b) and displays a well-defined maximum movement as in the 



- strong edge 
- - - - 9  weak ' edge 

Figure 24: Movement vs. Distance between edges, Pulse. 



staircase, when a is between 0 and 8. But the weak edge can move indefinitely as a 

becomes smaller. In the scale space image the weak edge approaches the horizontal 

I n b  2 parabola x = y o 2 .  But p&(=o ) = 0 for all values of o, thus the parabola gives 

the location where the gradient value crosses zero as it goes from the positive step of 

the pulse to the negative. The rate of change of position as o changes is near that of 

the parabola. Thus 5 = y o  will be large for small b or small a. See the appendix 

for the derivation of the asymptotes. 

There are two practical considerations limiting the amount of movement of the 

weak edge. The first is that as a becomes smaller and the weak edge is moved farther, 

its location becomes closer to the parabola above, thus its gradient value becomes 

smaller, and at some point falls below any threshold being used. The other limiting 

factor relates to the sampling theorem. In the case of the pulse defined above, the 

wavelength is 4a. The distance unit being used is the interpixel distance, which is 

assumed to be the same as the sampling distance in the original image. The sampling 

theorem states that the sampling interval 6 should be less than A/2 where X is the 

wavelength of the highest frequency. Since 6 is 1, 6 < X/2 means 2 < A = 4a. 

Therefore a > 112. Thus for 0 < a < 112 = ( 1 1 2 4 8  the conditions of the sampling 

theorem are not met. Figure 25 gives an example when b = .8 and 8 = 2. Then 

a = (1 /2~) i?  = (1/4)i? is the cutoff point and maximum movement is .5675i% for the 

strong edge and 1.0048 for the weak edge. 

Figure 26 gives a graph of maximum movement for the stronger edge of a pulse 

as b varies. 

The numerical calculations presented in this section were performed on a Macin- 

tosh SE computer using Borland's Eunka package to solve equations and find maxima 

and minima. The three-dimensional plots in Figure 21 were done using MacFunction 

by Think Technologies. 



- strong edge 
....- weak edge 

Figure 25: Maximum movement when b = .8 and a = 2. 

Figure 26: Maximum movement in terms of a vs. b for stronger cdge in a pulse. 



4.3 Conclusions 

The movement of edges modeled as adjacent step edges of the same or opposite 

parity has been examined. It was determined that the greatest movement was o and 

occurred for the staircase when the edges were 20 apart and of equal contrast, and for 

the pulse when the edges were very close toget her and of equal contrast . For edge pairs 

not satisfying these extreme conditions the movement was considerably smaller. The 

graphs given depict the movement under different combinations of distance between 

edges, relative strength, and degree of smoothing. The equations for the scale space of 

the pulse and staircase were written as functions of o, and the domain and asymptotes 

for the functions were determined. 



5. NORMALIZED EDGE OPERATOR 

When an image is smoothed with a Gaussian operator to remove noise and fine 

texture, the edge points are displaced. The amount of delocalization is a function 

of o, the scale of the operator, as discussed in the previous chapter. However, the 

magnitude of the gradient at an edge point also changes with scale. In this chapter 

an analysis is presented of how the magnitude changes for different ideal edge types. 

The gradient is shown to contain much more information than is typically used in 

gradient based edge operators. The knowledge obtained from this analysis is used 

to characterize edge points, each point being assigned values for slope, stepsize, and 

scale. It can also be determined what type of edge interaction is occurring. 

When considering an image smoothed at one scale, operations such as non-maxima 

suppression and zero-crossing detection are concerned only with the comparative mag- 

nitudes of the gradient at different points, or with points where the Laplacian of the 

Gaussian has zero values. Thus the normalizing factor of the n-dimensional Gaussian, 

(Jz;;o)-", is often omitted or replaced by a more convenient scaling factor. See, e.g., 

[16,38,39]. However, when examining more than one scale, the choice of factor is im- 

portant. Clark [9, 101 shows that the contrast of an authentic zero crossing decreases 

as o increases, while that of a phantom zero crossing increases. The magnitude of 

the gradient of the Gaussian is an acceptable contrast function, and thus exhibits 

this behavior. However, omitting the (&a)-" term gives a function for which this 

result does not hold. For this function the magnitude of the response increases and 

decreases as a result of edge profile and edge interaction. Korn [19] suggests using a 

two-dimensional gradient of Gaussian operator which has been normalized by mul- 

tiplying with the factor f i  a. He defines the scale of an edge to be the scale at 



which the magnitude of the gradient vector obtained with this operator first reaches 

its maximum value. 

In this discussion the two-dimensional operator is separated into the product of 

a one-dimensional normalized gradient of Gaussian operator and a one-dimensional 

Gaussian. The behavior of the magnitude of the response to the normalized gradi- 

ent operator is analyzed as scale changes. This operator is of interest because the 

response of an ideal step edge is constant for all values of a, as will be shown in the 

next section. This provides a basis for comparing edge responses at different scales, 

and makes certain types of information about the edges more accessible. While it is 

very important to know where edge points occur, it is also important to know other 

characteristics of the gray level function at the edge, such as its total contrast, steep- 

ness or slope, and spatial extent or width. This information is useful in classifying 

edges as to type (shadow, surface markings, occlusion, etc.), and in matching prob- 

I lems such as stereo and motion. Hildreth [16] used the slope of the zero-crossing, a 

third derivative, at two scales to determine the slope and width of a ramp, but did 

not consider interaction of nearby edges. 

In Section 5.1 the operator is defined, then in Section 5.2 a discussion is given 

of the behavior of idealized edges and combinations of edges under the normalized 

gradient of Gaussian operator and a definition of the circumstances under which the 

gradient magnitude will increase or decrease. It is also shown that with the informa- 

tion derived, a single small scale is sufficient to determine the slope of a ramp edge, 

and that for isolated edges, the stepsize and width of the edge can be determined by 

the behavior of the gradient. Further, the stepsize of an edge undergoing interaction 

with its neighbors can be estimated using the methods developed in this chapter. 

Simulations of the operator applied to ideal edges and a demonstration of how the 

theoretical results of Section 5.2 can be applied to obtain information about edges in 



I 
I real images are presented in Section 5.3. 

5.1 The Normalized Operator 

The two-dimensional Gaussian function is defined by the equation 

This can be separated into the product of two one-dimensional Gaussians: 

The multiplicative factor ensures that the area under the curve is 1. 

The derivative of the one-dimensional Gaussian is 

The area between the curve and the x-axis is in two parts, that for x < 0 is above 

the axis, while that for x > 0 is below. The areas of the two parts are the same and 

are equal to 

The a term in the denominator ensures that the area under each half of the curve 

will decrease as a increases. Normalizing consists of multiplying the one-dimensional 

gradient of Gaussian by the factor &a to make the area under the curve constant 

and equal to one. Then the product of the Gaussian with the normalized gradi- 

ent operator gives a two-dimensional gradient operator, &ogt(x, a)g(y, a ) ,  which 

has volume under the surface of 1 for the negative and positive parts and gives the 

gradient in the x direction. The gradient in the y direction is computed similarly. 

Since the gradient operator is separable, the normalized one-d imensional derivative 



operator can be examined to determine the behavior of cross sections of edges in two 

dimensions. The normalized gradient operator will be defined as 

and for consistency, 

5.2 Ideal Edge Models 

In this section the behavior of certain ideal edges is examined as the normalized 

edge operator is applied. 

5.2.1 Step Edge 

The unit step edge at x = 0 is represented by the equation 

0 i f x < O  
1 otherwise 

A step of arbitrary height, c, is given by c U(x). Convolving an arbitrary step with 

G gives 

since U i ( x )  is the impulse function and convolution with it gives the original function 

[15, page 821. The maximum value of G(z,o) is 1 and occurs at x = 0. Thus the 

maximum value of U f ( x )  is c and always occurs at the location of the step, x = 0- 

Further 

This expression is equal to 0 when x = 0 and u # 0. Therefore the response of a step 

to the normalized gradient operator is constant, and since Ut(0) = c, its value is the 

stepsize. 



5.2.2 Ramp 

A ramp edge is represented by the equation 

where m is the slope of the ramp and w is its width. Its derivative is given by 

m i f O < z < w  
r l (x)  = { 0 otherwise 

= m(U(x) - U(x - w ) )  

Convolving with the normalized Gaussian gives 

The integral has its largest value when the limits of integration are centered on u = 0, 

i.e., at x = w/2 .  Thus the isolated ramp will always be detected at  its midpoint: 

When a  is small enough that most of the support of the Gaussian falls inside the 

interval ( -w/2 ,  w / 2 )  (see Figure 27a), the value of this integral will be m&o. 

Thus as a  increases, the value of the gradient will increase linearly with a  until a  

becomes large enough for the ends of the ramp to be included in the support of the 

operator. Since 98% of the support of the Gaussian falls in a 50 interval around 0, 

the linear behavior will be apparent for edges separated by a distance larger than 

this. 

Since 
x2 

lim G(x,  a )  = lim exp(--) = 1 
u+oo 6--+ca 2a2 

it follows that 

lirn R'(w/2) = lirn m lwI2 G(u, a)du = mw 
4?+w u-*ca -w/2 



* 
: . Gaussian a'= 1 

Figure 27: (a) Support of Gaussian falls completely in ramp, (b) Gaussian includes 
ends of ramp. 

which is the stepsize. Taking the partial derivative of R' with respect to  o gives 

OR' m -= -  
80 ~ ~ / r - ~  u2G(u, u)du 

which always has the sign of m since u and the area under the integral are positive. 

This means that R' is a monotonic function. In summary, if a ramp is isolated, the 

gradient magnitude will increase linearly with u until the ends of the ramp begin to 

influence the value, then the rate of increase will slow, but the value will continue to 

increase, approaching the limit imwl. 

5.2.3 Staircase 

The staircase having steps of the same parity a t  z = a and x = -a and relative 

heights b is given by the equation 

The smaller edge, having stepsize b, is a t  x = a. Convolving with the normalized 

gradient of Gaussian gi1.a 



When o = 0 ,  there is no interaction between the two edges and SL(x,O) = 0 when z 

is not equal to a or -a. At these points 

lim S:(a, a )  = lim G(2a, u)  + b = b 
0-0 u-0 

and 

lim SL(-a, a )  = 1 
0-0 

Thus the individual edges behave like isolated step edges. When a is greater than 0 

a valley or phantom edge will exist between the two step edges. As o becomes larger 

the two edges move together, and the weaker edge and the phantom edge disappear, 

while the stronger one remains [39]. For large values of o,  limo,, SL(x, u )  = 1 + b. 

Thus, for large o, the staircase appears like a single step having stepsize equal to the 

sum of the separate stepsizes, and from the results of Chapter 4, its location will be 

a b  1 x = w. This behavior is demonstrated for a sample edge in Figure 28. 

5.2.4 Pulse 

A pulse is defined as two neighboring steps of opposite parity. The equation of 

the pulse is 

pa(x) = U ( x  + a )  - W ( x  - a )  

The equation of the pulse convolved with the normalized gradient of Gaussian oper- 

ator is 

PL(x, o)  = G ( x  + a,  o )  - bG(x - a,  a )  

When u = 0, Pi(x,O) = 0,  for x # a,  -a. When u = 0 and x = a, 

lim Pi(a ,  o )  = lim G(2a, a) - b = -b  
u 4 0  a40 

When x = -a, 

lim P:(-a, o)  = lim(1 - bG(-2a, o ) )  = 1 
u+O 0 4 0  



Figure 28: Three-dimensional plot of gradient magnitude for staircase having b = 0.5. 



Figure 29: Three-dimensional plot of gradient magnitude for pulse having b = 0.5. 

Thus, as expected, for small values of u the two edges behave as step edges. As the 

edges begin to interact, they move apart. When a becomes large, P,'(x, oo) = 1 - I; 
the pulse appears as a single step edge having contrast equal to the difference of the 

two steps. This edge will appear at the location z = ,-, and is the  stronger edge. 

The weaker edge approaches the horizontal parabola x = -u2 In b/2u as a increases. 

[40]. But P,'(-w,o) = 0; thus this is the track of the zero gradient that appears 

between the positive gradient of the left edge and the negative gradient of the right 

edge. Since the weak edge approaches this parabola, the gradient value of the weak 

edge must also approach 0. This behavior is demonstrated for a sample edge in Figure 

29. 

5.2.5 Conservation of Contrast 

Notice that when adjacent edges of either parity interact the contrasts of the two 

combine. For the staircase the total contrast of the two edges when o = 0 is 1 + b, 



and the contrast for the single combined step approaches 1 + b as u approaches oo. 

Similarly for the pulse, the combined contrast of the two edges when a = 0 is 1 - b, 

and the limit as a approaches oo is 1 - b. In the limit none of the contrast has been 

lost. Thus the following theorem has been proved. 

Conservation of contrast: If two adjacent step edges have contrast b and c, then 

the sum of the gradient maxima will be b + c when the image is smoothed with the 

normalized gradient of Gaussian operator having o = 0. The gradient maximum for 

the stronger edge will also approach b + c when a + w. If b and c have the same 

sign, then the maximum for the weaker edge will disappear for some value of a, or 

the two maxima will combine to become one if b = c. If b and c have opposite signs, 

then the gradient maximum of the weaker edge will approach 0. When b = c the 

gradient maxima for both edges approach 0. 

It is interesting that although this principle holds for u = 0 and oo, experimental 

results indicate that it does not hold for intermediate values. As can be seen in 

Table 2b and c, after the weaker edge has disappeared (in the case of a staircase), 

or become very small (in the case of a pulse), the magnitude of the stronger edge 

continues to change, approaching the limiting value. Thus an edge near a stronger 

one continues to influence the response of the stronger one even at  scales at which it 

cannot itself be detected. 

5.2.6 Summary 

The behavior of the above edges leads to the following observations. A pure step 

edge has a constant gradient magnitude equal to the stepsize for all values of 0. 

The magnitude of ramp edges and any combination of adjacent ramp edges and step 

edges having the same parity will increase as o increases, approaching the sum of their 



Table 1: Summary of gradient behavior. In formulas, o is the scale, m is slope of 
ramp edges. Step and ramp edges are at  0, pairs of edges in staircases and pulses are 
at a, -a, with the step at -a having contrast 1, that at a having contrast b, 0 < b 5 1. 

contrasts. A pulse edge will begin as two step edges and the magnitude will decrease, 

change in 
grad. mag. as 

a  increases 

constant 

UP 
UP 

UP 

down 

down 

UP 

up then 
down 

d 

1 that of the stronger edge to the difference of the two edges, and that of the weaker 

location of edge 
as a  increases 

at  step 

middle of ramp 
at step, moving to 

moves toward 0, 
=w 

then disappears 
at step, moving to 

a(b+l) - 
at  step, moving to 

aZ In b 
2a 

sameasstaircase, 
a is ramp mid pt. 

same as pulse, 
a is ramp mid pt. 

edge type 

step 

ramp 
st aircase 
(strong) 
staircase 

(weak) 
pulse 

(strong) 
pulse 

(weak) 
ramp staircase 

ramp pulse 

edge to zero. A pulse formed of ramp edges will have the most complicated behavior, 

increasing linearly with a until the ends of the ramp are within the support of the 

operator, then at  a slower rate until the operator includes the step having opposite 

parity. Then the magnitude of both edges will decrease, the weaker one to 0, the 

stronger one to the difference of the contrast of the two edges. Table 1 summarizes 

these results. 

5.3 Simulations and Experimental Results 

Simulations were performed on a number of synthetic one-dimensional images 

of the ideal edges examined theoretically. The normalized gradient operator was 

also applied to real two-dimensional images. For these the slopes of the edges were 

magnitude of 
normalized gradient 

' when o = 0 I when a = CD 
contrast 

m f i o = 0  
contrast 

contrast 

contrast 

contrast 

m&o=0  

m&u=0 

contrast 

contrast 
sum of contrasts 

(1 + b) 

- 
difference of 

contrasts, (1 - b) 
0 

sumofcontrasts 

difference of 
contrasts 



Ramp, m=10, w=20 Ramp, m=10, w=10 Smooth Ramp, m=10, w=20 
0 loc gradient] m 0 loc gradient m a loc gradient rn 

1 [-7,7] 25 9.97 1 [-2,2] 25 9.97 1 [-4,4] 25 9.97 
2 [-3,3] 50 9.99 2 0 49.6 9.89 2 0 50.1 9.99 
4 0 98 9.82 4 0 78.9 7.87 3 0 74.2 9.87 
8 0 157 7.85 8 0 93.5 4.66 4 0 95.6 9.53 
20 0 189 3.77 20 0 97.4 1.94 20 0 185.7 3.70 

Ramp Pulse, loc -10, 10, m = 10 11 Ramp Staircase, loc -10, 10, m = 5 

Pulse, location -5, 5, stepsize = 100 

(b) 

stepsizes = 100, -60 

Staircase, location -5, 5, stepsize = 50 

gradient 

f 91.2 
f 97.85 
f97.66 
f 39.8 
f 32.2 

a 

1 
2 
4 
16 
20 

(c) 

stepsizes = 40, 60 

contrast = 100 
a I locations 1 grad. 1 m 

Table 2: Results of applying normalized gradient to ideal edges. 

a 

1 
2 
4 
16 
30 

o 

1 
2 
4 
8 
20 

gradient 

45.6 
48.9 
51.0 
78.5 
94.7 

o - 

1 
2 
4 
8 
20 

contrast each, 50 
o 1 locatic - 

gradient locations 
91.2 
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58.6 
47.5 

locations 
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- 
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1 

grad. 

' 1 

54.7 
58.7 
60.6 
79.9 
94.9 , 

- ~ g r . / A o  
12.5 - [-12,-81 1 [8,12] 25 9.97 1) 1 1 [-12,-81 ( [8,12] 



Figure 30: Graphs of edges in Table 2. 



Figure 31: Two ways of computing slope for an edge. 

estimated and the edges were characterized by the behavior of the gradient maxima 

at different scales. 

5.3.1 Simulations 

A number of simulations are reported in Table 2 to demonstrate the behavior 

of the ideal edges described above as the normalized Gaussian operator is applied. 

Figure 30 shows graphs of the edges used in the simulation. Values of the gradient for 

o = 1 appear lower than expected due to the fact that the discrete gradient mask does 

not accurately approximate the continuous one. When a location is given aa a closed 

interval, then the entire interval has the same gradient value. The first twa columns 

of Table 2a give ramps having the same slope and different widths, to demonstrate 

how the interaction with the ends of the ramp develop. Note that the estimate of the 

slope for the ramps in a, d, and e are very close to the actual values when o = 1,2 

then begin to decrease. In a when w = 10 the slope estimate decreases slightly from 

o = 1 to a = 2, in contrast to the case where w = 20. This indicates that a t  about 

o = w / 5  (in this case 2), with less than 2% of the Gaussian outside the ramp, the 

estimate is just beginning to be affected. The width of the ramp can be estimated 

by finding the value of a at which the slope first decreases, then using the formula 

w = 5 0 .  



For an edge with the profile given in Figure 31 there are two possible estimates of 

slope, ml, the slope at the middle of the ramp, and m2, the average slope over the 

entire edge. The estimate given in this chapter is of ml. The third column of Table 2a 

is for a ramp similar to that in Figure 31 having a linear segment of fourteen pixels 

with slope 10 in the middle. The ends of the ramp have smaller slope, decreasing to 

0. The overall width is 44, the contrast is 200, giving a slope over the entire smoothed 

ramp of about 4.5. The slope estimates for small a are the same as for the ramp, but 

begin to decrease sooner. 

Table 2b gives results for a pulse with equal and unequal stepsizes. The decrease 

in the gradient value can be seen as the two steps of opposite parity interact. The 

difference of the two gradient values in the case where stepsizes are unequal is near 

40 for small values of a where there is little interaction. However, for larger values 

of a, the difference of the two becomes greater than 40. When the smaller edge 

has almost disappeared, the gradient magnitude of the stronger edge continues to 

decrease. This phenomenon of an undetectable edge continuing to affect a nearby 

edge can be seen more strikingly in c, a staircase with equal and unequal steps. 

The weaker edge combines with the phantom edge between a = 4 and o = 8 and 

disappears as a gradient maximum, but is still present as an inflection point in the 

gradient magnitude graph. For larger values of o the magnitude of the stronger edge 

continues to increase. 

In d, a pulse composed of ramps rather than steps is given. The gradient value 

begins low, then when a = 8 a maximum estimate of contrast, 88.6, is reached. A 

more accurate value for contrast could be obtained by first estimating the width of 

the ramp by the method described above. The value of a at which the slope estimate 

begins to decrease is 2. Multiplying by 5 gives an estimated width of 10. This is 

multiplied by the largest slope estimate (9.97) to give a very good estimate of 99.7 



for contrast. 

Finally, e gives a staircase composed of ramps rather than steps. Of special interest 

here is the rate of change of gradient value. Between o = 8 and a = 12, the rate 

increases. For an isolated ramp edge the rate of increase should be a decreasing 

function. The increase indicates that there is interaction with an edge of the same 

parity. In this case the best estimate of contrast is given by the gradient value at 

a = 8 and is 50.3. Higher scales cause the two edges to be combined. 

5.3.2 Edge Characterization 

Because edges in real images often appear like ramp edges or smoothed ramp 

edges, applying the smallest practical Gaussian to the image will give an estimate of 

the slope of the edges. Many of the edges detected for a small Gaussian are noise or 

unwanted fine texture. Thus larger scales should be used to determine which edge 

points are significant. Since the width of a ramp can be determined by finding the 

scale at which the nonlinear behavior in a ceases, multiple scales can be applied at 

or near points of interest to detect this behavior. 

In order to determine the best scale at which to estimate the stepsize two tests were 

used. The first is based on the fact that the gradient value of a ramp is an increasing 

function with respect to o. Thus if the value of the gradient fails to increase with a, 

either the edge is isolated and the gradient has reached a value close to the actual 

stepsize and becomes constant, or there is interaction with an edge of opposite parity 

and the gradient decreases. Thus the scale chosen to estimate stepsize is the largest 

for which the gradient value increases. The second test involves the rate of increase. 

Since the gradient increases to a finite bound, the rate of increase must be negative. If 

the rate of increase becomes positive, that indicates interaction with an edge having 

the same parity. Thus the scale chosen is the largest for which the rate of increase 



is negative. An edge can be characterized according to which test determined the 

scale. The first test would indicate that its most influential neighbor had opposite 

parity, the second test that the neighbor had the same parity. Edges having small 

scale will be those having nearby edges, which includes much of the noise, and those 

having a small width. Diffuse edges, for example those due to illumination gradients 

or shadows, will have larger scale. 

5.3.3 Real Images 

The tests above have been applied to real images and the results of the charac- 

terization at gradient maxima points have been displayed as intensity images. In 

Figures 32 through 35, the original picture is a; the slope is given in b, with brighter 

points corresponding to steeper slope. The stepsize is in c with brighter points corre- 

sponding to larger stepsizes. Finally, the scale at which the stepsize was estimated is 

given in d with the brightest points corresponding to the smallest scale. The image in 

Figure 32 is 128 x 128 pixels, while the others are 256 x 256. In Figures 32 through 

34 the values of a used were 1,2,  3, and 4. In Figure 35 the values used were l , 2 , 4 ,  

and 8. Most of the edges had a scale of 4 or smaller, thus these scales were considered 

sufficiently large. 

Note in the upper right part of Figure 32 there is a shadow edge. Its slope is 

smaller than the object edge casting the shadow, but its stepsize is close to that of 

the object. Notice also that the slope of the rather isolated shadow edge in the middle 

bottom is small, while the scale chosen to estimate its size is large due to its isolation 

and width. 

The jet image, Figure 33, has a noisy background characterized by small scale 

and small slope. Some points have fairly large stepsize, indicating that this is not as 

accurate an indication of noise as the other characteristics. The bottom of the nose of 



the plane is largely in shadow and has small slope, moderate stepsize and has a large 

scale because it is diffuse. The top edge of the plane is also at a large scale, while the 

stripes, being sharper and closer together, have larger slope and smaller scale. The 

shadows cast by the right engine are of interest as well. The stepsize is fairly constant 

along the edge, but the slope is smaller toward the forward edge of the wing. 

Figure 34 is of a race car driver. The well defined, isolated edges, for example 

around the window, are characterized by large slope, stepsize, and scale. Where the 

knee of the driver comes closer to the instrument panel, the edge has a finer scale 

than does the more isolated part of the edge. The slopes of the edges across the face 

mask are smaller than the window edge although the stepsize is fairly large. The 

parallel lines on the console and gear lever have large contrast and slope, and small 

scale. 

In the bottle image the noise is characterized by fine scale, small slope and to a 

lesser extent small contrast. The well defined outside edges of the bottle have large 

slope and stepsize. The shadows have smaller slope and larger scale than the object 

edges. 



Figure 32: Part image. (a) original image, (b) slope. 



Figure 32: (continued) Part image. (c) stepsize, (d) scale for estimating s tepsize. 



Figure 33: Jet image. (a) original image, (b) slope. 



Figure 33: (continued) Jet image. (c) stepsize, (d) scale for estimating stepsize. 



Figure 34: Driver image. (a) original image, (b) slope. 



Figure 34: (continued) Driver image. ( c )  stepsize, (d) scale for estimating stepsize. 



Figure 35: Bottle image. (a) original image, (b) slope. 



Figure 35: (continued) Bottle image. ( c )  stepsize, (d) scale for estimating stepsize. 



6. EDGE REPRESENTATION 

The problem of how to represent a set of points which have been determined to 

lie on an edge is a challenging one. In this chapter a representation of this problem 

is given and two methods that have been proposed for solving it are discussed. A 

new algorithm is then presented which solves some of the problems present in the 

previous algorithms. The concept of curvature is basic to this discussion, so formulas 

for approximating curvature of discrete curves are presented and evaluated. 

One of the difficulties in the representation of curves is the problem of scale. This 

can refer to the degree of smoothing that is performed on an image before a process 

such as edge detection is applied. The term is also applied to a contour which has 

been identified in an image or to a surface which has been fitted to an image. The 

degree to which these have been smoothed is also referred to as scale. 

6.1 Minimum Energy Contours 

At present it is common to use more than one scale to detect edges or represent 

contours. Rather than combine the information derived at the different scales into a 

unified "best" representation of the information, another approach is to at tempt to 

keep the information at different scales available so that higher level processes can use 

the most meaningful representation. This was one of the goals of Kass, Witkin, and 

Terzopoulos [17] when they developed their Active Contour Models (called snakes). 

They developed a controlled continuity spline which can be operated upon by internal 

contour forces, image forces, and external forces which are supplied by an interactive 

user, or potentially by a higher level process. 



In their work, Kass et al., represented a contour by a vector, v(s) = ( x ( s ) ,  y ( s ) )  

having the arc length, s, as parameter.1 They defined an energy functional of the 

contour and described a method for finding contours which correspond to local minima 

of the functional. The energy functional is written as: 

Elnt represents the internal energy of the contour due to bending or discontinuities, 

Eimag, is the image forces, and Econ is the external constraints. The image forces can 

be due to various events. The ones presented by Kass el al., are lines, edges, and 

terminations. The internal spline energy is written: 

The above equation contains a first-order term which will have larger values where 

there is a gap in the curve, and a second-order continuity term which will be larger 

where the curve is bending rapidly. The values of a and B at a point determine 

the extent to which the contour is allowed to stretch or bend a t  that point. The 

relative sizes of a and ,8 can be chosen to control the influence of the corresponding 

constraints. For instance, a large value of /? would make the second-order continuity 

term larger than the other terms, thus the minimum value of E* would occur when 

the curve is smoother, approaching a circle for a closed contour, and a straight line 

for a contour which is not closed. If a is 0 at a point, a discontinuity can occur at 

that point, while if is 0, a corner can develop, because large values of these terms 

would not be included in the total. The minimum energy contour was determined 

using techniques of variational calculus. 

'Lower-case, bold letters like v will be used to denote vectors when they are interpreted as points, 
while lower-case, bold letters with an arrow above (ii) will be used when the quantity represented 
is a vector from one point to another. 



Arnini, Tehrani, and Weymouth [I] point out some of the problems involved in 

this method of solution and propose that the contour having minimum energy be 

determined using dynamic programming rather than variational calculus. This allows 

the introduction of constraints that cannot be violated, called hard constraints, as well 

as the first- and second-order continuity constraints which are inherent in the problem 

formulation. These latter are known as soft constraints because they are not satisfied 

absolutely, only to a certain degree. 

At this point it would be meaningful to examine the advantages and disadvantages 

of the problem formulation itself, and with the two proposed methods of solution. A 

"+" by an item on the list indicates that this is a positive feature, while a "-" indicates 

that this is a drawback. First we will consider advantages and disadvantages which 

apply to the statement of the problem and to both methods of solution. 

+ A closed contour which is placed around an object can span gaps in the edge 

map. Similarly, if an object with texture has edges which make it appear as 

several smaller objects, the contour can outline the object as a whole, giving a 

continuous edge contour for the entire object. See Figure 36 for an example of 

this. 

+ Information from a higher level process can be used to set the values of a and 

,8, allowing corners where they are expected, for example, and seeing how that 

affects the contour obtained. 

- No guidelines are given in either method for determining the values of a and p. 

Also both methods apparently use the same value for a and p at every point, 

and no discussion or examples are given explaining how changing these values 

affects the contours. It happens that the values are critical, and must be chosen 

carefully to obtain meaningful results. 



Figure 36: Contour outlines entire object, rather than following texture edges on the 
surface of the object. 

- Related to the previous item, if P is constant, corners will not be well defined. 

There is also a problem if points are far apart and a corner falls betwedn two 

points on a contour. 

- The first derivative term in Equation 2 is approximated by a finite difference, 

Iv, l2 r: (xi - x ; - ~ ) ~  + (y; - pi-1)2. This is equivalent to minimizing the distance 

between points, and has the effect of causing the contour to shrink. 

- Points can move along the contour as well as perpendicular to it, thereby allow- 

ing points to bunch up in segments of the contour where the image forces are 

higher. The hard constraints provided for in the method of Amini et al., can 

be used to minimize this problem. 

The following list applies to the Itass method only. 

+ Forces can travel large distances along the contour in one iteration, allowing 

faster convergence. 

- Image forces and constraints need to be differentiable in order to guarantee con- 

vergence. Thus it is not possible to include hard constraints, such as minimum 



distance between points. 

- Intermediate results are not meaningful. The contour does not smoothly ap- 

proach the minimum value. It was for this reason that the name snakes was 

given to the contours. 

The next list gives characteristics of the Amini method. 

+ Hard constraints can be introduced into the method. 

+ Points are moved on the discrete grid, as opposed to the Kass method which 

computes point coordinates as real numbers, allowing points to fall between the 

discrete coordinates. 

+ This method is numerically stable. 

- Memory requirements are large, being O(n * m2), where n is the number of 

points on the contour and rn is the number of possible locations to which a 

point may move in a single iteration. 

- The method is very slow, being O(n * m3). 

6.2 Curvature Estimation 

Both Kass et al., and Amini et al., approximate the derivatives in Equation 2 by 

finite differences. If v; = (xi, yi) is a point on the contour, the following approxima- 

tions are used: 

and 



Note that two assumptions have been made here. The first assumption is that 

the points on the contour are evenly spaced. If the points are evenly spaced, then 

the index i can be considered as an approximation of arc length. In that case the 

expression in Equation 3 should be divided by d 2 ,  where d is the distance between 

points, and that of Equation 4 by d4. The values of a and can be chosen to 

include these factors in order to reduce computation. Then d will have to be made 

available to any higher order process which is attempting to assign values to CY and 

,O automatically. 

If the points are not evenly spaced, the first derivative term will be incorrect by 

a factor of di ', where di is the distance between points i and i - 1. This will cause 

the first-order continuity term in the energy expression to be larger for points which 

are farther apart. The second derivative term will also have quite different values, 

depending on the distances of the two end points from the middle point. Whether 

this is a desirable or undesirable property will be discussed later. 

The second assumption is related to the interpretation of the iv8.1 term. The 

parameter s is arc length, so the quantity measured is curvature, and has a very 

intuitive application to curves: corners are points of high curvature and are to be 

discouraged. However, when the parameter is not arc length, the curvature is given 

for a parameter t  where x' = dx ld t ,  xN = d2x/dt2 ,  y' = dyjdt  and yt' = d2y/dt2.  The 

quantity lvtt 1 = Jm does not have a clear geometrical interpretation when 

the parameter t  is not arc length. 

It is not clear what measure of curvature is the best reflection of the geometric 

situation depicted by the contour. The mathematical definition of curvature is d8/ds 



where 0 is the angle between the positive x-axis and the tangent vector to the curve. 

This is a coordinate independent measure, as the same value will be obtained for 

dB when any line is substituted for the x-axis; thus the measure is invariant under 

rot at ion. That is a desirable feature for model matching. Another desirable feature 

which is not present in curvature is scale invariance. A circle with radius r has 

curvature l /r  at  each point. Thus when the radius is doubled, the curvature is 

halved. 

The remainder of this section presents five possible measures of curvature in dis- 

crete contours, and discusses the characteristics of each. In order to demonstrate 

the difference in the results obtained by these different approximations, they were 

all applied to the two situations displayed in Figure 37 and the results are displayed 

in Table 3. In each case v;-1 is point a, v, is point b, while v;+l, the third point 

necessary in the curvature estimate, can be any one of the points el . . . cs. The first 

section of the table is the situation in Figure 37a where a and b are on a horizontal 

or vertical line. The lower section is the case where a and b lie on a diagonal line. 

When the external angle is 0, ~ / 2 ,  or r, the distances from b to its two neighbors are 

equal, being 1  for the horizontal case and fi for the diagonal case. When the angle 

is r/4 or 3 r / 4  the two distances are not equal, being 1 and fi. 
It will be necessary to estimate the value of differentials in the following discussion. 

The usual convention will be to use the backward difference for this estimate. That 

is, dx at  the point v; is approximated by xi - xi-1 and is denoted Ax,. Occasionally 

when the backward difference might vary substantially from the forward difference, 

(xi+l - xi), the centered difference will be used instead. It is given by - ~ i - l ) /2 .  

Whenever this is done, it will be pointed out. Similar notation for finite difference 

estimation of differentials will be used for all variables. 

The first possibility for approximating curvature is to apply the definition of cur- 



Figure 37: Arrangement of points a, b, and c for Table 3. 

Table 3: Comparison of estimates of the square of the curvature using different meth- 
ods. The first section of the table is the horizontal situation of Figure 37, the lower 
section is the diagonal case. Column one gives (dO/d~)~, column two is s2 using 
Equation 5, and column three gives lva,I2. Column four is Iv;-* - 2vi + vi+l12 and 
column five gives [A~i /As i  -  AX^+^  AS^+^]^ + [Ayi/Asi - Ayi+l/Asi+l]2* 



Figure 38: (a) External angles for a closed polygon. Their sum is 27r. (b) The 
difference of two vectors. 

vature directly. If a discrete approximation of dU/ds is computed for evenly spaced 

points, it has the property that it depends linearly on the angle A0 between the two 

vectors, iii = ( x i  - xi-1, yi - yiml) and iii+l = - xi, Y i + l  - yi). The formula for 

A0 is given by 

Given a closed polygon and a direction, A0 dB is the external angle as the circum- 

ference is traversed. The sum of the external angles is 2s, as shown in Figure 38a. 

The centered difference,   AS^+^ + Asi)/2 = (lGi 1 + l)/2, averages the distance 

from point i to its two neighbors and thus gives the best estimate of ds. The smallest 

value for As is 1 and the largest value of AB is T ;  thus values of AOlAs all fall in the 

interval [O,?r]. This is not true for continuous curves, where rapidly bending curves 

can have very large curvature. I-Iowever, when a curve is digitized, a limit is placed 

on the curvature. Although giving intuitively satisfying results, this measure requires 

a lot of computation, including 5 multiplications, 2 divisions, 2 square roots, and an 



inverse cosine. Column one of Table 3 gives values of (delds)'. The values are all in 

the interval [0, n2] when As is one, and in a smaller interval when As is larger than 

one. 

Evaluating the expression for curvature in Equation 5 should give results identical 

to that of dO/ds for continuous curves. However, this is not the case for discrete curves. 

When the angle between Gi and becomes large, Ax; has a value near 

and Ay; is near - A Y ; + ~ .  Thus when the centered difference is used to estimate 

dx  and dy, these values become very small, giving a value for curvature which is 

unbounded, as it is for continuous curves. Column two of Table 3, the discrete 

approximation to Equation 5, is comparable to the other estimates for small angles, 

but as (Ax; +  AX^+^)/^ and ( A  y; + Ayi+, )/2 grow smaller, the estimate of n2 becomes 

very large. 

Converting the parameter to arc length and then computing the second derivative 

is theoretically equal to the two previous measures for continuous curves. The discrete 

approximation is given by 

where As is (As; + As;+*)/2. The third column of Table 3 gives the square of the 

discrete estimate of the second derivative vector. Notice in the diagonal case for 

column three that the curvature for c4 is larger than for CS, even though the path 

a - b - c5 actually doubles back on itself, and should intuitively have higher curvature. 

Another possible measure of curvature which has the advantage of being compu- 

tationally efficient is given by the expression in Equation 4. If and ii2 are the 

vectors shown in Figure 38b, this is equivalent to lii2 - iil12. It reflects not only the 

difference between the directions of the two vectors, but also the difference in length. 

This produces unintuitive results when the distances between points are not equal. 



Figure 39: Difference in direction of two vectors. 

The difference of two vecton is shown in Figure 3Sb. The fourth column in the table 

is the square of the curvature estimate using Equation 4. Notice that in column four, 

cd has the largest value for the horizontal case as it does for column three in the 

diagonal case. 

Normalizing the two vectors before taking the difference removes the length differ- 

ential, and the measure depends solely on relative direction. Thus it will be bounded, 

with valuea in the interval [0,2]. The length of - & is given by 2 sin(812) where 

0, 0 5 8 5 s, is the difference in direction of the two vectors as shown in Figure 39. 

Column five of the table gives the values obtained by this formula. 

I t  is interesting that the last three measures are closely related. Multiplying the 

discrete approximation of ivaa 1 by As gives the difference of the normalized vectors 

(column five). When the points are evenly spaced, multiplying by As again gives the 

expression in Equation 4 (column 4). 

There is a sixth method of approximating curvature a t  a point, that of fitting a 

circle through the point and its two neighbors (e.g., 1341). The radius of the circle 

will give a good estimate of the radius of curvature if a circle is a good approximation 

of the curve through the three points. However, this only gives a reasonable estimate 

when the angle between the two vectors is large and when the points are evenly spaced 



Figure 40: Estimation of curvature by fitting a circle to three points. (a) Angle 
between vectors is large, hence fit is good. (b) Small angle means a circle is not 
a good approximation to the curve through the three points. (c) When distance 
between points is not equal, circles having the same radius will go through {a ,  b, c } ,  

{ a ,  b, 4 7  and {a, a, e l *  

(Figure 40a). When the angle between the two vectors is small, the circle does not 

give a good approximation to the curve through the three points, and the curvature 

estimate will be too small (Figure 40b). If the points are not evenly spaced, very 

different situations, which do not seem to have the same curvature, will give a circle 

having the same radius. For example, the sets of points {a, b, c}, {a ,  6, d } ,  and {a ,  b, e) 

would have a circle of the same radius fitted through them (Figure 40c) even though 

the curvature of the curve through the different sets does not appear the same. Thus, 

this method does not seem to have general enough application to consider here. 

6.3 Greedy Algorithm 

In this section a greedy algorithm will be presented which allows a contour with 

controlled first ant1 second order continuity to converge on an area of high image 

energy, in this case edges. This algorithm allows the inclusion of hard constraints as 



described by Amini et al., [I] but is much faster than their O(nm3) dgorithm, being 

O(nm), for a contour having n points which are allowed to move to any point in a 

neighborhood of size m at each iteration. The algorithm is not guaranteed to give a 

global minimum, but produced good results on the images for which it was tested. 

The quantity being minimized by this algorithm is 

The form of this equation is similar to Equation 1. The first and second terms are 

first- and second-order continuity constraints and will be described in detail later. 

They correspond to Eint in Equation 1. The last term measures some image quantity 

such as edge strength or intensity and is the same as the middle term of Equation 1. 

No term for external constraints was included, although it would be possible to do 

SO. 

The proposed algorithm is iterative, as are those of Kass and Amini. During each 

iteration, a neighborhood of each point is examined and the point in the neighborhood 

giving the smallest value for the energy term is chosen as the new location of the point. 

Only closed contours are being considered, so all index arithmetic is modulo n. The 

first-order continuity term uses the value of v;-~, for which a new value has already 

been computed during the current iteration when i > 0. The curvature term uses 

vi-1 and vi+l. The latter has the value of the previous iteration; thus one old and 

one new point is used in the evaluation of the curvature term. For i = 0, only old 

values are used. For this reason vo is processed twice, once as the first point in the 

list, and once as the last point. This helps make its behavior more like that of the 

other points. 

The parameters a, p, and y are used to balance the relative influence of the three 

terms. In the examples given below, a = 1, @ is either 0 or 1, and 7 = 1.2, so that 



the image gradient will have more importance than either of the continuity terms in 

determining where points on the contour move. 

Evaluation of the first term in Equation 7, the continuity term, presents some 

difficulties. Using 1vi - v;-1 l 2  causes the curve to shrink, as this is actually minimizing 

the distance between points. It also contributes to the problem of points bunching 

up on strong portions of the contour. These effects are even worse with a greedy 

algorithm where each point is moved based on local considerations. The tendency is 

for points to always be moved nearer the previous point, which also moves a point 

farther from the following point. This causes a chain reaction, moving all points 

toward the previous one. In observing the behavior of the given algorithms, it became 

apparent that a term which encouraged even spacing of the points would reflect 

the desired behavior of the contours more than one which caused shrinking. The 

original goal of encouraging first-order continuity is still satisfied. Thus the algorithm 

presented here uses the difference between the average distance between points, (5, 

and the distance between the two points under consideration: 6- Iv; - v;-11 Thus 

points having distance near the average will have the minimum value. The value is 

normalized by dividing by the largest value in the neighborhood. At the end of each 

iteration a new value of d is computed. 

The second term in Equation 7 is curvature. Since the formulation of the con- 

tinuity term causes the points to be relatively evenly spaced, ivi-l - 2v; + v;+l 12, 
the formula in column four of Table 3, gives a reasonable estimate of curvature mul- 

tiplied by a constant. The constant term is not significant since this term, like the 

continuity term, is normalized by dividing by the largest value in the neighborhood, 

giving a number from 0 to 1. This formilla has the advantage that, it is the most 

computationally efficient of the ones discussed in the previous section. 

The third term in Equation 7, E;,,., is the image force which is gradient magni- 



tude. Gradient magnitude at each point in the image is input as an eight bit integer, 

with values 0-255. There is a significant difference between a point with gradient 

magnitude 240, and one having magnitude 255. This is not reflected when the values 

are normalized by division by 255. Thus the maximum and minimum gradient in 

each neighborhood is determined, and (min - rnag)/(max - min) is used for the 

normalized edge strength term. This gradient magnitude term is negative so that 

points with large gradient will have small values. If max - min < 5 then min is given 

the value mar - 5. This prevents large differences in the value of this term from 

occurring in areas where the gradient magnitude is nearly uniform. For example, 

when all points in the neighborhood being examined had values 47, 48, and 49, the 

gradient magnitude term would be 0, -0.5, or -1.0 for points with essentially the same 

gradient magnitude. Thus a point would have a strong tendency to stay at  a point 

with gradient magnitude 49, even though it is not a strong edge point. Having a 

minimum of 5 in the denominator would give -0.6, -0.8, or -1.0 for the gradient term, 

more accurately reflecting the similarity of the points. Near an edge this situation 

does not normally arise, but if the contour has points that begin fairly far from the 

final edge or span regions where there are gaps in the edge, points on the contour 

may resist moving without this constraint. 

At the end of each iteration, a step is included which determines the curvature at 

each point on the new contour, and if the value is a curvature maximum, sets /?; = 

0 for the next iteration. This step functions as a primitive high level process giving 

feedback to the energy minimization step. Curvature is computed at each of the n 

points by [Ax;/As; -  AS^+^]^ + [A y,/As; - Ayi+1   AS;+^]^. This is the measure 

given in column five of Table 3, which is related to the angle between the vectors. 

This formula requires more computation than the one used in the main computation 

of the algorithm, but is computed fewer (n) times and is used because determining a 



Figure 41: The energy function is computed at  vi and each of its eight neighbors. 
The point before and after it on the contour are used in computing the continuity 
constraints. The location having the smallest value is chosen as the new position of 
v; . 

meaningful threshold is easy. Non-maxima suppression is then performed on curvature 

values along the contour, and curvature maxima points having curvature above a 

threshold are considered corner points for the next iteration. A further condition for 

designating a point as a corner is that the gradient magnitude must be above some 

minimum value. The reason for this final condition is that as the contour begins to 

converge toward the final location, a point which is not near an edge, in a region 

where the gradient is relatively uniform, may move more slowly, causing a corner to 

form. These will not be considered corners, because the corner disappears as the 

contour forces from the movement of neighboring points increase and pull the point 

toward its final position. Thus /? is set equal to zero a t  the points satisfying the above 

three conditions, allowing a corner to form there, and reducing the curvature in the 

segments between these points. 

Figure 41 demonstrates how the algorithm works. The energy function is com- 

puted for the current location of vi and each of its neighbors. The location having the 

smallest value is chosen as the new position of vie v;-1 has already been moved to its 



new position during the current iteration. Its location is used with that of each of the 

proposed locations for vi to compute the first-order continuity term. The location of 

vi+l has not yet been moved. Its location, along with that of vi-1, is used to compute 

the second-order constraint for each point in the neighborhood of vi. 



6.4 Pseudo-Code for Greedy Algorithm 

Index arithmetic is modulo n. 

Initialize a;, pi, and 7; to 1 for all i. 

do 

/* loop to move points to new locations */ 

for i = 0 to n /* point 0 is first and last one processed */ 

Em;, = BIG 

f o r j = O t o m - 1  /* m is size of neighborhood */ 

Ej = aiEcont, j  + PiEcurvlj + 7iEimtaoelj 

if Ej < Emin then 

Emin = Ej 

jmin = j 

Move point v; to location jmin 

if jmin not current location, ptsmoved + = 1 /* count points moved */ 

/* process determines where to allow corners in the next iteration */ 

if (ci > q - 1  and q > q + l  /* if curvature is larger than neighbors */ 

and ci > threshold 1 /* and curvature is larger than threshold */ 

and mag(vi)  > threshold 2 )  /* and edge strength is above threshold */ 

then pi = 0 /* relax curvature at point i */ 

until ptsrnoved < threshold 3 



6.5 Experimental Results 

In order to demonstrate the performance of the algorithm described in the previous 

section, results are given for the greedy algorithm developed above, for the original 

variational calculus solution and for the dynamic programming algorithm. These 

programs were run on one synthetic image, a Square (Figure 42), and three real 

images, Box (Figure 43), Bottle (Figure 44), and Cup (Figure 45). The Cup image 

tested the behavior of the algorithm when the contour spanned a region where the 

edge was weak or missing. The initial contour for the Square was produced by the 

edge linking algorithm developed in Chapter 3, thus was quite good to start with. 

In all the image figures, the points on the contour that satisfied the conditions of 

high curvature are marked with larger squares. At these points the second-order 

continuity restraint was relaxed. The neighborhood examined at each point consisted 

of the point itself and its eight neighbors. Thus the neighborhood size, m, was 9. In 

the image figures, (a) shows the beginning contours, all of which had 40-60 points 

spaced a distance of approximately 4-6 pixels apart. The threshold for setting = 0 

was 0.25, corresponding to approximately 29'. 

Part (b) shows the result of allowing the original contour to converge to the edge 

around the object using the variational calculus method proposed by Kass et al. 

Part (c) shows the result of the dynamic programming algorithm for the four 

pictures. In order to reduce the tendency to bunch up at strong points on the contour, 

one of the hard constraints prohibited movement perpendicular to the direction of 

maximum gradient. This did not prevent the points not currently on the edge from 

moving toward a strong edge point which was not the nearest point to the current 

location, but did prevent edges moving along the contour to higher points once they 

had reached the edge. Movement along the contour also extended the convergence 

time when this constraint was not included. The threshold given was the number of 



points which moved during the iteration. Usually the number of points being moved 

in each iteration dropped sharply when the contour approached the edge location. 

Notice that the edge points are more closely spaced on the strong portions of the 

contour while in locations like the bottom of the cup handle there are no points. 

Part (d) in each figure shows the results of the greedy algorithm. The results 

achieved by all three of the methods presented are comparable, one giving slightly 

better results in one image, while a diferent method gives better results in another 

image. The greedy algorithm has removed some of the small jogs from the inside of 

the square to the outside, but the dynamic programming algorithm has removed more 

of them. The original contour was very good, so there was very little change using 

any of the algorithms. Corners are not set with the Kass method, so it gives contours 

that are more rounded at the corners. The results on the Box are almost identical for 

the three algorithms, with the upper left edge being better with the greedy algorithm, 

while the upper right edge is slightly better with the dynamic programming. In the 

Bottle image, two points become very close together at the top and at  the right- 

hand side with the dynamic programming, but remain evenly spaced in the greedy 

algorithm because of the different form of the first-order continuity constraint. The 

edge points do not follow the neck of the bottle as well in the greedy algorithm. As 

expected, the contour does not follow the right side of the cup well with any of the 

methods. Where the cup edges are not strong, points belonging to the background 

appear to be the points converged to with the greedy algorithm. All three converged 

to the shadow edge at the right-hand bottom corner of the cup rather than to the cup 

itself, since that was the first edge encountered as the contour approached the cup. 

Table 4 gives the number of points in each contour, the threshold used for con- 

vergence, the user times in seconds, the number of iterations required to converge, 

and the number of points of high curvature at which the second-order continuity con- 



Table 4: Comparison of runtime in seconds, number of iterations, and number of 
second-order discontinuities (corners) marked for the greedy, dynamic programming, 
and variational calculus methods. 

straint was relaxed by setting /? to 0. The algorithms were implemented in C on a 

Harris HCX9 minicomputer. Using the greedy algorithm, the speedup over dynamic 

programming was significant in all cases, varying from a factor of 13 for the Box, to 

48 for the Cup and Square. Neither method was significantly better in the number of 

iterations required, with the Square and Cup having fewer iterations with the greedy 

algorithm, while the Box and Bottle required fewer iterations with the dynamic pro- 

gramming algorithm. The results of the contours obtained with the greedy algorithm 

are at least as good as those of the dynamic programming algorithm, and the run 

times are much better. The variational calculus approach required time comparable 

to the greedy method for each iteration, but usually converged in fewer iterations. If 

values of p were allowed to change between iterations, the inverse of a pentadiagonal 

matrix would need to be computed, slowing its speed. 

Figure 46 shows a sequence of images produced as the contour converges to the 

edge of the bottle, using the greedy algorithm. The edges all move smoothly toward 

the bottle except for one point at the right-hand bottom corner which is initially 

stationary, then as the curvature and continuity energy becomes large in that area it 

begins to move as well. In the final image the contour has settled nicely around the 

edges of the bottle. 
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Figure 42: Square. (a) Original contour, (b) Kass method. 



Figure 42: (continued) Square. ( c )  Dynamic programming algorithm, (d) Greedy 
algorithm. 



Figure 43: Box. (a) Original contour, (b) I<ass method. 



Figure 43: (continued) Box. (c) Dynamic programming algorithm, (d) Greedy algo- 
rithm. 



Figure 44: Bottle. (a) Original contour, (b) Kass method. 



Figure 44: (continued) Bottle. (c) Dynamic programming algorithm, (d) Greedy 
algorithm. 



Figure 45: Cup. (a) Original contour, (b) I<ass method. 



Figure 45: (continued) Cup. ( c )  Dynamic programming algorithm, (d) Greedy a l p -  
ri thm. 



Figure 46: Sequence showing convergence of a contour to edges of bottle using the 
greedy algorithm. 



7. SUMMARY AND FUTURE WORK 

The work presented in this dissertation has investigated the use of multiple scales, 

or degrees of smoothing, in the early processing of visual information. A number 

of techniques that are useful in low level image processing have been developed, as 

well as the theoretical background justifying the methods used. This theory is also 

of use to others interested in using multiple scales in the interpretation of images. 

Throughout the work, emphasis has been placed on using all the information that 

is available rather than extracting some small portion, perhaps in the form of an 

edge map, and discarding the remainder, as is commonly done. David Marr, one of 

the early pioneers in the field of computer vision, insisted that human vision was a 

one-way process, with information from lower level processes progressively passed to 

higher level processes [27]. More recently this idea has been challenged, and there 

are those [17] who believe that feedback, or transfer of information from higher level 

processes back to lower levels, occurs. Thus, the lower level information such as 

edge direction and gradient magnitude a t  several scales could be present in the same 

process as higher level information about potential edges. These thoughts motivated 

the use, in the work presented here, of all information available whenever it would be 

helpful. 

First an edge linking algorithm is presented that uses the data computed from 

application of a gradient of Gaussian mask at  a single scale. This algorithm uses gra- 

dient magnitude and direction of greatest intensity change together with smoothness 

constraints to define sequential lists of points which comprise edge contours in the 

image. This is a more useful form for the data than the edge map commonly returned 

by edge detectors. While this gave good edges, the primary reason for its development 



was to extend it to use multiple scales. By switching to a finer scale whenever an 

edge faded out, it was possible to fill in gaps in edge contours and produce longer, 

more coherent edge contours. However, the effects of delocalization of edge points, 

caused by the smoothing at different scales, created occasional jogs in the contours. 

This observation led to an improved algorithm which combined the information from 

the multiple scales at an earlier level and consequently was able to remove most of 

the delocalization effects. 

The introduction of the problem of delocalization, together with decisions which 

had to be made about the size of neighborhood to be considered when making cor- 

respondence between edge points detected at different scales, led to a theoretical 

analysis of the behavior of edge points detected by the gradient of Gaussian operator. 

The amount of movement which occurs in the smoothing step was examined as a 

function of o, the smoothing parameter. The edge models examined were combina- 

tions of step edges, which are the ones displaying the most extreme movement. Thus 

these edges set an upper limit on the distance that an edge point can move. It was 

determined that for most cases the movement is limited to a distance equal to u, and 

that this maximum movement occurs under narrowly limited conditions, the move- 

ment being considerably smaller under other conditions. The one case where this 

limit does not apply is when two adjacent edges have opposite parity and unequal 

contrast. In that case the weaker edge can exhibit extreme movement. However, 

the gradient magnitude of such an edge declines rapidly; thus the edge will not be 

detected when it has moved far from its original location. 

As the degree of smoothing increases, and the detected edge moves, the magnitude 

of the response to the gradient operator at all gradient maxima decreases. However, 

the rate of decrease is not the same in all conditions (e-g., the weak edge of a pulse has 

a more rapid rate of decrease than some others). Multiplying the gradient operator 



by a factor of 60 gives an operator called the normalized gradient of Gaussian, 

which has more interesting behavior than the original gradient of Gaussian. While 

examining this new operator, it was determined that information about the slope 

and width of isolated edges can be estimated. In addition, it is possible to obtain 

information about edge interaction by examining the behavior of the response to the 

gradient operator as o increases. These data can be used to characterize an edge as to 

steepness, width, the distance to nearby edges, and the relative parity of the nearby 

edges. 

Once having obtained a good list of edge points the next level of processing in- 

cluded extracting information about the contour as a whole. The points obtained by 

the edge linking process can be used as initial data for a process which treats the 

contour as a unit, and applies constraints such as smoothness and continuity. By 

varying the parameters, the contour can be made to conform closely to the actual 

edge points, or to exhibit some other properties such as small curvature. The latter 

requirement could be used to replace a jagged edge by one having a much straighter 

profile, which would be more useful in model matching. An efficient algorithm for 

solving this problem was presented. The method developed here allows the inclusion 

of constraints on the solution, leading to a more robust process. The introduction 

of the concept of curvature highlighted the problem of how to approximate curva- 

ture when a curve is represented by a set of discrete points. The advantages and 

disadvantages of a number of different methods of approximation were pointed out. 

In summary, the contributions of this research are: 

1. Development of an edge linking algorithm using multiple scales. 

2. Analysis of movement of edges under Gaussian smoothing and derivation of the 

scale space equations for staircase and pulse edges. 



3. Analysis of the magnitude of the response of edges to the normalized gradient 

of Gaussian operator and characterization of edges using the results. 

4. Development of a greedy algorithm for active contours which combines speed 

with flexibility. Analysis of discrete curvature approximat ions. 

There are several areas in which the above work could be extended. Most of them 

are as higher level processes using or interacting with the information provided by the 

low level processes described here. For example, stereo matching is not reliable when 

performed on primitive structures, such as image intensities or edge points. Matching 

of edge contours is much more reliable. The edge linking algorithms developed here 

give a good contour structure. The characteristics of the edge points determined by 

using the normalized gradient of Gaussian operator can be used to characterize a 

contour. A confidence measure can then be attached to matching pairs of contours, 

based on the similarity in the characteristics of the contours. This could be combined 

with the other measures such as proximity and shape which are commonly used. 

The techniques for handling active contours were primarily developed to facilitate 

interaction with higher level processes. In that chapter, a simple corner detector was 

applied in order to determine values of P ,  but more sophisticated processes could be 

developed. These might not only supply information such as values of a and /3 to the 

contour process, but could analyze the results that changing these values had on the 

contour. 

It would also be interesting to experiment with a process which examines the 

contours returned by the edge linking algorithm, and attempt to determine which 

edge contours belong to a composite object. A complete contour could then be 

placed around all the contoan in the group, and an outline of the composite object 

obtained. 



On the theoretical side, it would be interesting to extend the type of analysis 

performed in Chapters 4 and 5 to other edge models. These models might include 

the hyperbolic tangent proposed by Nalwa and Binford [30], or the roof, which is two 

adjacent ramp edges having opposite parity. 



APPENDIX 



The derivation of the asymptote for the stronger edge in a staircase is developed 

as follows. The equation of the staircase convolved with the second derivative of the 

Gaussian is 

s:*,(x) = bgL(x + a)  + gL(x - a )  

Since we seek an equation for the zero-crossings, expand and set this equal to 0. 

b(z + a )  x - a  

Multiplying both sides by u3\/2;; and combining x terms 

When u -, oo, the exponential terms all approach 1 so in the limit 

The equation for the asymptote for the stronger edge of a pulse is similar to that 

for the staircase. The equation for the second derivative of the pulse convolved with 

the Gaussian becomes 

which expands to 



When o -, m, the exponential terms go to 1, so the limit is 

When b = 1, x is undefined. This is expected because the curve approaches x  = a 

as has already been mentioned; thus there is no vertical asymptote. When b < 1 ,  x  

approaches a finite limit, a(l  + b ) / ( l  - b) as a -+ oo. 

To determine the asymptotic behavior of the weaker edge, go back to equation 1 

for the second derivative. Rearranging terms 

Expanding the exponents on the left side and canceling terms gives 

2ax b(x + a )  
~XP(T) = x - a  

Taking the logarithm of both sides 

2ax -=In a(+ + a )  
u2 x - a  

x  1 b(x + a )  - = I n  
a2 2a x - a  

Then as x  -, -00, x / a 2  -, (1/2a) ln b. Thus the curve approaches the parabola 

l n b  2 x = z o .  

Solving equation 2 for a gives the equation of the scale space image for the pulse. 



This equation is defined when -00 < x < -a and a < x < a(l + b ) / ( l -  b).  

Similarly, the equation giving the scale space image graph for the staircase is 

when -a < x < 0 and a(l - b ) / ( l  + b) < x < a. The right portion of the arch in 

the graph obtained when this is plotted corresponds to  the phantom edge produced 

by the point of inflection in the original smoothed image rather than to a gradient 

maximum. 
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