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ABSTRACT

Recent advances in biostereometric techniques have led to the quick and easy

acquisition of 3D data for facial and other biological surfaces. This has led facial

surgeons to express dissatisfaction with landmark-based methods for analysing the

shape of the face which use only a small part of the data available, and to seek a method

for analysing the face which maximizes the use of this extensive data set. Scientists

working in the field of computer vision have developed a variety of methods for the

analysis and description of 2D and 3D shape. These methods are reviewed and an

approach, based on differential geometry, is selected for the description of facial shape.

For each data point, the Gaussian and mean curvatures of the surface are calculated.

The performance of three algorithms for computing these curvatures are evaluated for

mathematically generated standard 3D objects and for 3D data obtained from an optical

surface scanner. Using the signs of these curvatures, the face is classified into eight

'funda,nental surface types" - each of which has an intuitive perceptual meaning. The

robustness of the resulting surface type description to errors in the data is determined

together with its repeatability.

Three methods for comparing two surface type descriptions are presented and illustrated

for average male and average female faces. Thus a quantitative description of facial

change, or differences between individual's faces, is achieved. The possible application

of artificial intelligence techniques to automate this comparison is discussed. The

sensitivity of the description to global and local changes to the data, made by

mathematical functions, is investigated.

Examples are given of the application of this method for describing facial changes

made by facial reconstructive surgery and implications for defining a basis for facial

aesthetics using shape are discussed. It is also applied to investigate the role played by

the shape of the surface in facial recognition.
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QUOTATION

"Had Cleopatra's nose been shorter, the whole face of the world would have been

different."

Blaise PASCAL (1623-1662)
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INTRODUCTION

The face is a dynamic structure, unique to the individual and plays a very important role

in recognising individuals and in attracting us emotionally, socially and sexually to an

individual. It also plays an important role in portraying our emotions, signaling changes

in mood and communicating feelings (Gorlin et al, 1975).

Motivation for a description of facial shape

The study of the face is important to many different scientific and medical disciplines.

Changes in facial appearance due to normal growth, abnormal growth, injury and

surgery can and do have a profound effect on the person concerned. The psychosocial

consequences of having to spend a significant portion of one's childhood with a major

uncorrected facial malformation can be devastating (Cutting, 1989) whereas the

surgical correction of facial deformity often gives a person more self-confidence and a

less introverted personality. If facial surgery is to produce a consistent Outcome it is

necessary to have an objective means for describing facial change and to relate this to

an assessment of the outcome. This requirement has led to many attempts being made

over the years to measure and characterize changes in facial shape. The research

described in this thesis arose from this need.

During the last decade computer systems have been increasingly used in the planning of

facial surgery. A number of such systems have been developed including one at

University College London (Arridge et al, 1985; Moss et al, 1988; Tan et al, 1988;

Linney, 1992a; 1992b). These modern systems use computer graphics to provide the

necessary three dimensional (3D) representations of the facial surface. They enable the

face to be displayed as seen from any chosen viewpoint and allow the data to be

manipulated to simulate the effect of surgery. The availability of computed, stored 3D

data has opened up the possibility of a mathematical analysis and description of the

facial surface.

A mathematical description of the face is also very important in research into facial

recognition. In her book, "Recognising faces", Bruce reviews the research conducted by

cognitive psychologists into this subject (Bruce, 1988). Much of the work in this field to

date has been conducted on two dimensional images of the face. Bruce concluded that

further understanding of the way in which we recognise faces, is dependant on treating

the face as a 3D surface not a 2D pattern. This concept has provided a second

motivation for this work.

The value of a mathematical description of the face will depend on firstly, its ability to

be easily understood by surgeons and its relation to the way in which they perceive the

structure of the face and secondly, its value for describing the ideas of cognitive

psychologists about how we recognise faces. In this context, shape is a concept often
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Introduction

used, although not well defined. I have therefore sought to produce a mathematical

description of the face based on its shape.

Most of the mathematical methods which have previously been applied to facial

analysis have been based on landmark points. These must first be accurately identified.

Analyses have, for the most part, been limited to studies of the midline profile. Since

most of the face consists of surface in between landmarks these methods of analysis

represent a very high degree of abstraction. The application of landmark analyses to the

characterization of facial change fails completely for cases in which the landmark

points chosen have been moved only slightly or not at all but the perceived change in

the facial shape is extremely marked.

What is shape?

The question of How should we describe shape? is a question often dismissed as trivial

but in fact, it is hard to answer precisely. Kendall (1989) has suggested one plausible

definition of shape; that it is "what is left over" when the effects resulting from

translations, changes of scale and rotations are filtered out. It is immediately apparent is

that any objective description of shape (or form) must use only parameters for

comparison which are independent of orientation (rotation), translation and linear

scaling. Intuitively is seems that shape is to do with curvature.

The Oxford English Dictionary definition of shape is "the total effect produced by a

thing's outlines". This is difficult to translate into an exact mathematical definition. In

formulating a theory for shape, the properties associated with shape must be deduced.

This is not an easy task. In 1967, Blum observed that the properties of shape have

proved difficult to deduce primarily because "the number and variety of shapes are

enormous" (Blum, 1967). A great deal of research has been done on the description of

shape per se and associated computation methods (see chapters 1 and 2) but it is clear

from the literature that the characterisation of facial shape and mathematical description

of changes in facial shape have, apart from a few notable examples, been lacking. This

is the subject of investigation in this work.

A practical definition of shape will undoubtedly transcend landmarks in its ability to

produce a complete description of the face. Not only this, but shape also fits more

closely our perceptual concepts of a face than the geometrical relationship between

isolated surface points. Some recent work has indicated that a natural way of using

shape as a descriptor, is to impose a hierarchical structure (Gauch et al, 1987; Pizer et

al, 1987; Mokhtarian and Mackworth, 1986). In the case of the face, a hierarchical

description would allow changes to be classified at varying levels of detail providing

quantitative information.
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Introduction

Purpose

The purpose of this work has been to produce a surface-based description of the shape

of face and to explore methods of characterizing changes in the shape of the face.

Requirements are that the description is based on the entire 3D structure of the face, is

invariant to the viewpoint from which the face is observed, robust against noise and

repeatable for scans of the same face. It must also enable a quantitative comparison of

the 3D changes in the face to be made that is explicable in terms of the perceived

changes or differences. The description and the comparison of changes should be

amenable to automation, so that they can be implemented for practical applications.

The development of such a method would address the requirements of facial

reconstructive surgeons for a full quantitative description of the changes in facial

appearance brought about by facial surgery. It is would also aid physical

anthropologists in the classification of the face and to psychologists in theii

investigation of the mechanisms of facial recognition.
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CHAPTER 1

SHAPE DESCRIPTION - LITERATURE REVIEW

In this first chapter, a brief review of the literature dealing with the description of shape

and especially 3D shape is given. There has been an abundance of literature produced

over the last two decades relating to shape description, much of which is in a similar

vein. I have therefore been somewhat selective in referencing papers, seeking to point

to authoritative texts describing a particular approach or idea or quoting an example of

that approach, whilst endeavouring to still do justice to the ideas advanced by those

scientists interested in this subject.

Cognitive psychologists have proposed a number of theories for describing the manner

in which our visual system perceives shape and how our concepts of shape are formed

(Bruce and Green, 1985). These have been intrinsically bound up with how we

recognise objects (see chapter 9 for psychological literature pertaining to the

recognition of faces). Apparently independent of this, scientists working in the

computer vision field have produced various descriptions of shape which seem to be

based on somewhat similar concepts. However, until the last few years there has been

very little cross-referencing found in the literature. The computer vision approach to

shape description uses ideas of image segmentation, feature extraction, artificial

intelligence and differential geometry. The role of shape description in computer vision

is to enable the recognition of objects, or scenes of objects, primarily for robotic

applications. This role ties in well with one of the goals of cognitive psychologists,

trying to understand how we recognize objects. In this chapter I will attempt to relate

the approaches taken by these two fields. The material described here is of importance

for the development of a method for describing facial shape.

Separate from these approaches has been the long history of interest in biological shape

which stems, in modern times, from Darwin and his ideas about evolution. Early

attempts to formulate biological development and evolution in terms of shape were

made by D'Arcy Thompson in his classic work "On Growth and Form" of 1917 and

emulated by others (eg. Richards (1955)). More recently Bookstein (1978a; 1978b)

returned to Thompson's work and extended it. The aim of their work was the

classification of changes in shapes, rather than the development of a description or

concept of shape. Therefore this will be discussed in a separate chapter along with the

statistical analysis of shape (chapter 2).

LI. Human visual perception

In order to describe shape adequately one first has to have a concept of what we mean

by shape. The desire of cognitive psychologists to model the eye-brain system, ie. to
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discover how the cognitive system works, quickly led them to form concepts of how the

brain might describe shape. Considering a mathematical description of shape there is an

intrinsic advantage claimed for using a conceptual model of shape based on the

mechanisms of the brain's visual system, that is that the system is known to work! Let

us now consider how shape may be represented in the brain.

1.1.1 Observations about the brains perception of shaDe

It has been found that the perception of an object's shape enables us to identify that

object and that this is true whether or not the object is rigid, since living things are just

as easily recognisable as non-living ones (Attneave, 1967). So the perception of shape

facilitates recognition.

Psychologists have made a number of basic observations about how we perceive shape.

Psychophysical and neurophysiological experiments have found that different areas of

the brain respond to djfferent shapes and that shape outlines and the negation of a

simple shape excite different areas of the visual cortex (eg. Perrett et al, 1988). Shape in

the visual cortex seems to be mainly feature based and curvature along a curve or

contour may be a key descriptor (Dobbins et al, 1987; Leymarie and Levine, 1988;

1989). This would explain how objects can be recognized from their silhouettes or

outlines (Marr, 1977).

Regarding the perception of faces, clinical and experimental studies have shown that

there are cells in the inferotemporal cortex of monkeys which specifically respond to

faces (Tanaka et al, 1991). In man too there appear to be cells that respond specifically

to faces and the neural mechanisms for face processing are predominantly, but not

exclusively, located in the right cerebral hemisphere (Perrett et al, 1988).

Next, we can recognise objects when they are seen from different viewpoints or in

different states. For example, a face can be recognised when seen from in front (anterior

view), obliquely or in profile (lateral view) and with different facial expressions. It has

been shown that faces are most easily recognisable as belonging to a particular

individual when seen in three-quarter view and that profiles are less easy to recognise,

unless the individual face is a very distinctive one (Bruce et al, 1987). It has been found

that in the brain, different cells are excited by the same shape in different orientations

or, in the case of a face, when portraying different emotions (Perrett et al, 1988).

Thirdly, objects can be identified as belonging to a group of objects according to their

shape. Our ability to classify objects in this manner seems to be related to the functional

use of the object (eg. objects perceived as tables may differ substantially from one

another but are still recognised as tables). We can also name objects specifically,

recognising our chair, John's shoe or Martina's face. This implies a strong
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interconnection with language area of the brain. We can also assign features to an

object, or segment an object into parts. Facial features such as the nose can be

recognised although it is contained within a Continuous surface and varies enormously

from individual to individual and race to race. Just how we can make such a distinction

is still unknown.

The perceptual process is reversible. That is to say that we can somehow store the

salient information about an object to enable us to recall it, and draw it from memory, at

a later date. This recall ability appears to be influenced by our familiarity with the

object, the importance of the object to the individual and the passage of time since its

observation. It has been demonstrated that if one is asked to visualise an object, such as

a cat, one visualises a specifIc breed of cat, which may vary from individual to

individual (Attneave, 1967). These observations suggest perception is strongly

dependent on learning. It also implies that information is abstracted from the retinal

image and compressed for storage. Other observations suggest that incoherent

information is discarded and only features of high informational value is retained

(Attneave, 1954), as well as a preference for simple features over complex ones.

When we considering an image of an object, our interpretation of the image seems to be

influenced by environmental cues such as vertical and horizontal orientation (eg. the

distinction we make between a square and a rhombus), right angles, parallel lines

leading to vanishing points and viewpoint. Highlights appear to reinforce the

interpretation of surfaces (Blake and Bülthoff, 1991). Stevens (1981) showed that a

localised highlight suggests an elliptic surface is being viewed whereas a linear,

elongated highlight suggests a cylindrical one. The background surrounding an object

appears to have little effect on how the object is perceived. However, if one reverses

components of an object, great difficulty arises in identifying the object (eg. figure 1.1).

This suggests that our perceptual sense is finely tuned.

Figure 1.1: Reversal of components of a face. (from Thompson 1980)
Reproduced with permission of the author and Pion London.
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If a percept is often used or is important, such as recognizing familiar faces, a special-

purpose mechanism, entirely for that task is developed by the brain. Thus expert

descriptions are formed differently from those of naive observers. Computer

simulations of expert descriptions require the construction of more specialized models

than those for naive observers. All adults are experts at recognizing faces (Diamond and

Carey, 1986)

Figure 1.2: Boring's figure. An example of
"figure-ground reversal", seen as either a
young girl or an old woman.

As long ago as the 17th century, people noticed

that under certain circumstances, ambiguity

exists in the way that the human visual system

perceives shape. That is to say that some line

drawings, or shaded line drawings, can be

interpreted in two mutually exclusive ways. This

phenomenon is termed "figure-ground reversal".

Boring's figure (figure 1.2), which can be seen

either as a mother-in-law or a wife, is a famous

example of this and there are many others.

The psychological experiments that have been conducted in order to investigate the

perceptual organisation of the mind, often use the manner in which people "see" 2D

contours or figures to examine how shape is perceived. These have not only provided

some important observations about the perception of 2D outlines (which I shall call

"contours") but have led to the formation of a concept of what the "same shape" is and,

importantly, inferred that shape is amenable to mathematical description.

A definition of what we mean when we say that two objects have the same shape,

termed "shape constancy", has been given as two objects that differ only in position,

orientation, size and mirror-image reflection (Chen and Chen, 1987). This statement is

profound since it implies that an object's shape can, and is, defined in terms of certain

invariant parameters, such as the internal angular relationship between features, and

therefore that the description of shape can be undertaken mathematically. The set of

invariant transformations, which form the basis of shape constancy, is termed a

similarity group (Seifridge and Neisser, 1963; Gibson, 1969). Thus mathematics, in the

guise of group theory, was introduced into the investigation of human perception (Chen

and Chen, 1987). Chen and Chen discovered that if the size of a figure was changed but

its "sense" was unaltered, then the figure was recognised more quickly than vice versa.

The sense of a figure is best explained by considering the direction of vectors

connecting three points on the surface (figure 1.3). Since reversing the sense of the
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figure made the figure less recognizable than changing its size they concluded that

sense was more important as a recognition factor than size.
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Figure 13: The "sense" of a figure. clockwise and anti-clockwise.

1.1.2 Perceptual representation of shape

The observations described above tell us that the perception of an object's shape is

bound up with its recognition. They have also provided some important pointers about

how we perceive shape, helping us to develop concepts of what shape is. But how does

the brain abstract this shape information from its visual input?

This has also been a subject of considerable interest, a review of research describing the

perceptual representation of form with a view to defining mathematical metrics for

describing shape was given as early as 1965 (Michels and Zusne, 1965). Two main

theories have been advanced to explain how the shape information is encoded. In this

section, I shall firstly describe these two theories and in the next section briefly review

algorithms devised by computer vision scientists which have used these concepts.

a) Shape from edges

The first theory is rooted in the observation that artists will often make a preliminary

sketch of a scene before painting it. This sketch is essentially a line drawing from which

the scene can be recognised without any visual cues such as shading, colour or texture.

The line drawing has been defined as the minimal representation of intensity

discontinuities in a grey-level image that adequately conveys surface structure (Barrow

and Tenenbaum, 1981). The identification of such lines with high frequency changes in

intensity in the retinal image (see Bruce and Green, 1985) led to a theory which

suggested that the human visual system works as a high-pass filter, capable of detecting

edges and deducing shape information from them (Grimson and Pavlidis, 1985).

Edges in images can result from changes in intensity, extremal boundaries or

discontinuities in boundaries. An extremal boundary is one where the surface turns

smoothly away from the observer, where the line of sight is perpendicular to the surface

normal and the tangent to the surface at that point. At a discontinuity boundary two or

more surfaces intersect or terminate and the surface normal is orthogonal to the 3D

24



Shape Literature

tangent in the plane of the space curve (Barrow and Tenenbaum, 1981).

It was Marr who suggested that because intensity discontinuities would often coincide

with important boundaries in the visual scene, these edges are stored by the brain as a

symbolic two dimensional representation of the object, a primal sketch (Marr, 1976;

1982). This representation is also supposed to record the turning points in curved edges

(ie. changes of sign of the second order partial derivatives of curves) and the contrast,

blur and local orientation of edges (by filtering the image with different size gaussian

functions) (Marr and Hildreth, 1980; Marr and Poggio, 1979). A more complete viewer-

centred representation, which Marr called a 2'12 D sketch, was obtained by combining

depth, motion and shading information with the primal sketch. This describes the layout

of structures in the world from a particular viewpoint.

For natural scenes, the changes in light intensity associated with the edges of objects are

embedded within the changes caused by surface texture, shape, shadows and

arrangement of illuminating light sources (Watt, 1988). This makes any correspondence

of intensity changes to the edges of objects difficult to ascertain.

Some psychophysical evidence has been obtained to suggest that the human visual

system does uses a kind of primal sketch (Watt, 1987a; 1987b). However, compared to

Mar? s primal sketch it is of a more dynamic and structured nature (Watt, 1987c). Marr

and Hildreth's algorithm detects edges in an image scene by convolution with a range of

different sized Gaussian filters and uses zero-crossings (ie. points of inflection) in the

second directional derivative to locate edges. Pearson and Robinson (1985) found that

for faces using the peak response of the filter produced a better edge description than

using the zero-crossings. Watt and Morgan (1985) devised an algorithm called

MIRAGE to simulate more closely the working of the human vision system and to

allow any changes in image intensity to be described.

When assessing the usefulness of the concept of edge detection to us, we should

consider that line drawings of objects do contain a lot of psychologically salient

information (eg. figure 1.4) and a qualitative appreciation for the shape of a surface can

be obtained from a line drawing. Some idea of its orientation is also relatively easy to

judge, but its size is not (Stevens, 1981). Barrow and Tenenbaum (1981) have pointed

out that the outline of a structure appears to influence the brains perspective and motion

parallax cues (such as the Necker cube which is seen to reverse in depth, figure 1.5).

However, for a face, we would expect very few discontinuities and the boundary of the

face against a background to have little meaning in terms of recognition, since profiles

have been shown to be difficult to recognise (Bruce et al, 1987). Moreover, line

25



'	 k

Shape Literature

drawings of the faces of individuals, have been shown to be inadequate for facial

recognition (Bruce et al (in pressa), see also chapter 9.1.1).

Figure 1.4: A line drawing of a face. Surface and 	 Figure 1.5: Necker's cube, which undergoes
boundary structure are perceived,	 spontaneous reversals in depth.

Mathematically, this sort of edge-based description is inadequate because it is not

invariant under monotonic transformations and it assumes that the general structure of

an object is isotropic and smooth in order to obtain useful information. In the real-world

this is often wrong. The well-documented figure-ground reversal observation provides

evidence against the edge based theory. Consider Rubin's figure (first reported by

Turton in 1819 referenced by Hoffman and Richards, 1985) which can be seen either as

two faces or a wine goblet (figure 1.6). In 1915, Rubin found that if one sees the figure

in one way, then later in the other way, he is no more likely to recognise the figure than

if he had never seen it. Thus the relationship between the two drawings is in some sense

"competitive". This suggests that object recognition is not solely do to with the contour

properties, for if this were the case it should not matter which side of the contour the

object is perceived to be.

L11 L]
Figure 1.6: Rubin's figure, seen as left: a goblet, by defining part boundaries at curvature minima
corresponding of the base, stem, bowl and lip or right: pair of facing facial profiles, by the curvature
minima corresponding to nasion, nose base, lips and chin.

Although the description of 3D objects, and in particular the face, by edges and contour

outlines is clearly not the whole story, this concept of shape representation has none the

less led to some mathematical developments which are of importance. These will be

discussed in section 1.2 after I have described another idea about how the visual system

perceives shape which is also of importance for the description of shape.
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b) Shape as parts

The second theory of how shape is represented in the visual system is complementary to

the first. It is that the brain decomposes shape into parts in order to facilitate

recognition. This idea helps to explain how objects can be recognised even though they

may have some components missing or are seen from a number of viewpoints. It also

takes account of motion. The question then arises as to how the brain segments an

object into parts and whether the same strategy can be applied computationally. One

consideration is that the parts must be invariant with time and viewing geometry (Marr

and Nishihara, 1978).

In two dimensions, the points of curvature inflection of a contour have long provided a

natural and useful method of segmentation. They also appear to have some

psychological meaning. In 1954, Attneave (1954) estimated the points of highest

curvature on a photograph of a cat. He drew a line drawing connecting these points

from which he was still able to recognise the cat. He therefore surmised that these

points must have a high information content.

Suggestions of how the visual system defines part boundaries have included

segmentation at inflection points (Hollerbach, 1975; Marr, 1977), segmentation at

points of maximum and minimum curvature (Duda and Hart, 1972) and segmentation at

points with tangent and curvature discontinuities (Binford, 1981). Another hypothesis

was that the visual system divides surfaces into parts using the loci of zero Gaussian

curvature (ie. parabolic points) (Koenderink and van Doom, 1982). This latter

hypothesis was convincingly rebuked in theory by Hoffman and Richards (1985) and

intuitively by considering the parabolic lines marked on a bust of Apollo Belvedere by

the famous German mathematician Klein (1-lilbert and Cohn-Vossen, 1952) where these

lines seem to have no perceptual meaning.

Hoffman and Richards (1985) hypothesized that a rule from differential topology called

"transversality regularity" is used by the visual system to segment a surface into parts.

This rule is based on the observation that when two surfaces intersect they always meet

in a contour of concave discontinuity in their tangent planes. Accordingly, surfaces are

divided into parts along all contours of concave discontinuity of the tangent plane.

Using differential geometric concepts, they show that smooth surfaces are divided by

the loci of the negative minima of each principal curvature. The concepts of differential

geometry are discussed further in chapter 5.

In contrast to earlier suggestions, Hoffman and Richards' theory has been shown to

explain nicely some visual illusions, specifically that of figure-ground reversal. They

showed that under figure-ground reversal, the minima of principal curvatures become
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maxima and vice versa. Therefore the part boundaries change and the figure is seen in a

different way.

I tested this theory by conducting a small experiment. I asked 10 individuals to divide

the curve shown in figure 1.7 into parts. All segmented the curve at points B,D,F,H, and

J - the negative minima and not at points A,C,E,G and I - the positive maxima. When

the figure was inverted all subjects segmented the curve at points A,C,E,G, and I. Thus

this theory was verified.

For 2D curves, Hoffman and Richards (1985) derived

six shape primitives, or "codons", terminated at

points of negative minima and marking part

boundaries (figure 1.8). There are only six possible

ways in which a curve can vary between two

negative minima. The segmentation of an object in

this manner has been done intuitively by those

seeking mathematical descriptions of curves and

contours.

Figure 1.7: Segmentation of a profile at
the points of negative minima in curvature.

00	 r	 2

number of zeros of curvature

Figure 1.8: The "codons" of Hoffman and Richards. Zeros of curvature are indicated by dots, minima by
slashes.

The full implication of this theory for surfaces is described later in this chapter. But first

I shall discuss the methods which have been used to describe shape in two dimensions

mathematically, since some useful concepts have resulted from these descriptions,

which descriptions of 3D shape have built on.

L2 Mathematical descriDtions of 2D contours

In computer vision, the approaches adopted for describing contours or 2D shapes fall

broadly into two classes, somewhat analogous to the two perceptual approaches of

edges and parts described above. There are global methods, which describe the entire

image, or object, in one go and axe therefore not well suited to recognising partially

complete objects, and local methods which describe parts of the object and then derive

the connections between various parts. These are known as "top-down" and "bottom-
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up" methods respectively. Local features have been demonstrated to play an important

role in shape analysis (Rosenfeld and Johnson, 1970; Rosenfeld and Weszka, 1975), but

for recognition purposes the whole shape must also be considered. In practice, a mixture

of local and global methods often seem to give the best, fastest and most reliable

descriptions. Multiple-scale, or hierarchical, representations have recently become an

important part of any successful shape description because they allow the shape to be

described both locally and globally.

For any representation of shape to be useful, it must be a shorter description (ie. have a

smaller storage requirement) than the original shape and yet still contain the essential

characteristics of the object's shape for it to be recognisable. Multi-level representations

suppress surplus information to achieve this requirement (Hollerbach, 1975).

Throughout the literature pertaining to the mathematical description of 2D shape

(outlines) the terms "contour" and "boundary" are liberally, and confusingly,

interchanged. I shall use throughout the term "contour" to mean a closed (bounded)

form and "boundary" to refer to the actual boundary of the form. The methods used for

describing these 2D abstractions mathematically are now reviewed.

1.2.1 Description and classification of 2D contours

The attempts made by scientists working in the computer vision field to find suitable

descriptions of contours have been motivated by the desire to recognize such contours

quickly and easily for a variety of tasks which range from industrial quality assurance to

the recognition of aircraft outlines for defence purposes (Wallace et al, 1981). The first

techniques that were developed for examining the shape of 2D contours subscribed to

the part theory, describing the boundary in terms of segments. Syntactic methods could

then be used to describe the boundary string. However, the computational expense of

this approach prompted researchers to look for means of reducing the information

content of the description. Decomposing the contour into parts (Shapiro, 1980) or

deriving some sort of statistical measure was one way of doing this (see section a).

Another approach was to extract properties of the contour, such as the medial axis or its

representation in scale space (see section d), and use these to classify its shape.

a) Description of the bounding contour

The boundary of a contour can be extracted by standard edge detection algorithms (eg.

Torre and Poggio, 1986). Once the boundary has been obtained a number of techniques

may be used to segment it into appropriate parts. As discussed in the last section, points

of curvature inflection have provided natural points at which to make a segmentation

and these, together with other "critical points" such as end points, intersections or points

of tangency (Freeman, 1978) are readily computable.
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The segmented boundary has been approximated by various functions to enable it to be

quantified. Attneave (1954) used spline functions, but later iterative fitting methods

were used to obtain a more accurate description. One of the first of these used circle

segments (Shapiro and Lipkin, 1977) but this required many iterations to achieve a

good match and produced many small segments. (Incidentally, these authors suggested

that this technique could be extended to 3D using spherical segments but this would be

an extremely expensive operation computationally and the subsequent matching of

segments would be difficult.) A natural progression was to use polynomial functions to

approximate the contour, iteratively refining the function until the error of fitting was

lower than some threshold (Wallace et al, 1981).

A second description of the boundary used pattern recognition techniques to provide a

syntactic description (Fu, 1974; Pavlidis, 1978). These can be quite complex and

encounter the problem of closing incomplete boundaries, although this problem can be

overcome by developing the syntactic description only up to a certain level (ie. using

local properties) (Horowitz, 1975). Another difficulty was that noise in the data lead to

the production of such complex syntactic strings that for some contours it becomes

necessary to use a string containing the entire set of boundary points! Successful

syntactic descriptions have been those which stress local aspects of the contour.

However, these approaches enabled a language (or grammar) for describing shape to be

defined, in terms of arcs, lines, protrusions etc., which is governed by semantic rules.

The probabilistic or fuzzy character of the grammar often makes the governing rules

appear to be unrealistic, but they contribute a flexibility to the approach which allows

them to succeed. Hierarchical syntactic descriptors such as Pavlidis' (1979) have

overcome some of these problems but are again computationally expensive.

Our ability to recognise an object from its silhouette, and hence its boundary, inspired

Asada and Brady's (1986) curvature primal sketch. In this representation, the boundary

s symbolically described using a set of curvature change primitives. Significant

changes in curvature along the contour's boundary were represented in a similar manner

to the intensity change representation of Marr (1976; 1982). A multi-level approach was

adopted, in which the curvature changes are located at the finest level of detail at which

they can still be detected. The greater the number of scales at which the curvature

changes are detected, the more global a descriptor of shape the change is. This was

extended to 3D by Ponce and Brady (1985) to describe significant surface changes

(described later in this chapter on page 48).

The resulting representations of the boundary were often used to try to recognise

individual contours. Additional information such as vector distances and angles was

sometimes extracted from the contour and compared to a library of known contours

using either a step-wise approach (Wallace et al, 1981) or a relaxation technique Davis
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(1979). A statistical distance measure computed between the vectors facilitated

recognition. Such representations have also been used to recognise objects from their

partial boundaries (McKee and Aggarwal, 1977; Ansari and Deip, 1990). This requires

an estimation of the closeness of match between the representation of a particular

contour and the representations of a known contour stored in a "library". Leu (1989)

observed that the recognition of objects from their boundary, becomes ineffective if the

object is seen from a skewed angle, hence a normalization algorithm is needed to

standardize the contour in order to facilitate recognition.

b) Mathematical morphology

A very different approach for accurately extracting the boundary was devised by

Matheron (1975) at the Ecole des Mines de Paris, and became known as mathematical

morphology. The context in which it was developed was cellular automata and the

connection between cellular arrays, retinal devices and image processing architectures

have prompt considerable activity in this area (Skolnick, 1986).

In this method, the images being analysed are considered as sets of points and

operations defined by set theory are used to describe the boundary (Serra, 1986). The

method is different from other image processing techniques because it is based on the

logical relations between points rather than arithmetic ones. It provides a means of

decomposing global geometric measurements into sequences of local transformations.

Different algorithms are specified by the different neighbourhoods of points defining

these sequences of transformations. It begins with a "hit or miss" transform which

defines whether a point on the boundary belongs to the enclosed object (the contour) or

to the enclosing object outside of it (Serra, 1982; 1986) and proceeds with

erosion/dilation transforms to build up a useful set of image processing algorithms such

as skeletons and various filters (Skolnick, 1986). Mathematical morphology has been

successfully applied to grey-scale images for the extraction of features (eg. Archibald

and Sternberg, 1986). However, the algorithm is sensitive to lighting conditions for the

scene under analysis. This method has also provided a decomposition of a contour into

a union of simple components that is unique and invariant to translation, rotation and

scale (Pitas and Venetsanopoulos, 1990).

ci Viewpoint invariant descriptions

So far these methods have described the boundary of a contour. The computational

expense of these methods drove researchers to seek methods of representing the contour

in other ways. A number of statistical measures for describing contours were suggested

such as area, perimeter, moments, coefficients of Fourier series or the distance between

an enclosed pixel and its nearer boundary point (Hu, 1962, Zahn and Roskies, 1972;

Shapiro, 1980; Danielsson, 1978). Whilst all of these maybe useful, some (moment

invariants, introduced by Hu (1962), and Fourier descriptors (Zahn and Roskies, 1972;
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Persoon and Fu, 1977)) specifically address one requirement for the description of an

object's shape. That is that the description is independent of object location, orientation,

and viewpoint.

Moment invariants are so called because they are invariant with respect to rotation and

scale change. The accuracy of the representation they produce depends on the number

of moments used, but of course the greater the number of moments, the longer the

computational time. They have been used to match scenes of objects (Wong and Hall,

1978). Originally applied to 2-D scenes, Sadjadi and Hall (1980) extended them to three

dimensions, but these do not seem to have been used by others.

In the case of globally applied Fourier descriptors, no clear relationship between the

representation and human perception is seen for the representation is unable to make the

distinction between a square of side x and a circle of diameter x (Pavlidis, 1978).

However, segments of boundaries have been described fairly successfully using Fourier

descriptors calculated from chain-coding (Gorman et a!, 1988). An advantage of this

description is that the Fourier descriptors are independent of size, orientation, starting

point and can be employed to recognise partial contours. They have also been used to

recognize aircraft outlines (Wallace and Wintz, 1980; Arbter et al, 1990) and

handwritten numerals (Persoon and Fu, 1977) via the extraction of skeletons, somewhat

similar to medial axis representations (see section di). Other functions that have been

used in a similar fashion include Walsh functions (Searle, 1970) and the rapid transform

(RT) (Reithoeck and Brady, 1969).

A novel attempt at describing 2D convex shapes was the superimposition of a

hexagonal 3 axes grid on the shape (Greene and Waksman, 1987). The hexagonal

structure is based on the structure of the eye's visual receptor cells. The number of

occluded grid points along each axes was used to measure the distance through the

shape and the frequency of these occurrences compared with the distance through the

grid gives a unique signature for the shape. The method reveals the difference between

regular shapes such as squares, triangles and circles but appears to be totally

unintelligible for irregular shapes. Another drawback is that it is not invariant to

rotational changes. Interestingly, the authors claim that this is consistent with human

perception as we perceive shapes differently when viewed from different angles, that is

the same shape maybe seen as square or rhombus.

d) Extraction of information from the boundary

ii Skeletal representations

Three separate but similar approaches have been proposed for the extraction of the

essential shape information of 2D contours. These make use of symmetric properties of

the bounding contour and produce a skeletal representation. The contour cannot,
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however, be regenerated from these skeletal representations. But if the skeleton is

unique, it may nonetheless be used for recognition purposes.

The three approaches are the smoothed local symmetries representation (SLS), the

symmetric axis transform (SAT) and process-inferring symmetry analysis (PISA). The

difference between them lies in their definitions which are closely related and illustrated

geometrically in figure 1.9. The SAT is the locus of the centre 0, SLS the locus of the

midpoint P of the chord joining A and B, where A and B are the points where the

maximal disk intersects the contour and PISA is the locus of the point Q, the midpoint

of the arc AB. For a detailed comparison of these algorithms see Rosenfeld (1986).

Figure 1.9: Geometric definitions of the SAT, SLS and NSA. Curves C 1 and C2 have tangents vectors at
A and B. The SAT-axis is the locus of circle centres 0, The SLS the locus of points P and PISA-axis the
locus of points Q.
Symmetric axis transform (SAD

The Symmetric Axis transform (SAT) is sometimes known as the medial axis

transform, the term its inventor Blum used (Blum, 1967; 1973). Blum defined the

medial axis of a contour by considering the brain's interpretation of wave fronts being

propagated outwards from the centre of the shape and either exciting or inhibiting

sensors placed in the field around it. These sensors could only be fired once and were

unaffected by a second wave front passing through them. "Corners" occurred in the

wave front contours at the minimum radius of curvatures and the locus of these corners

defined the medial axis. A medial axis function was defined as the number of times a

corner occurred on the medial axis.

Several alternative definitions of the medial axis exist: the medial axis can be generated

by considering a contour being collapsed inward at a constant velocity in a direction

perpendicular to the outline at all places, leaving a skeleton line drawing (figure 1.10).

The medial points are the points where the outline meets itself and the medial axis is the

locus of these points (which are equidistant from the outline). Yet another name for it is

the "burning prairie algorithm" as the medial axis is what would be left over if one were

to set fire to the entire boundary at the same instant in time. A medial axis function can

also be defined as the locus of points when the occurrence of the medial points, or

distance of the medial point from the perimeter, is included (de Souza and Houghton,

33



Shape Literature

1977). This function is an unique, and invertible, transform from the original form to

the medial axis. Another way to define this representation is as the union of the centres

of maximal disks that touch at least two points of the boundary of an object (figure

1.11). The symmetric axis is the locus of the maximal disks centres.

Blum and Nagel (1978) made a generalisation of the original form of the algorithm

which reduced the effect of noise on the algorithm and the medial axis transform was

more robustly defined for grey-level images by Moore and Seidl (1974).

Figure 1.10: Formation of the medial axis
by consideration of a contour being
collapsed inwards at constant velocity
(adapted from de Souza and Houghton,
1977).

Figure 1.11: Formation of the medial axis by consideration
of the locus of the maximal disks that touch the boundary at
two points. (adapted from Brady, 1983).

Some advantages of the medial axis representation are that it is continuous and

eliminates the need for the contour to be in a particular orientation when analysing its

shape. The representation contains a local symmetry definition, is information

preserving (Blum, 1973 p.216) and unique for a contour. The branching structure of the

axis enables components of the shape to be defined and there is some evidence that

human eye movements are related to the medial axis function of a line drawing

(Richards and Kaufman, 1969).

It does, however, have a number of drawbacks; it is quite complicated to program and is

computafionally expensive (Pavlidis, 1982). It works best on smooth, curved objects

such as biological shapes but does not provide the simplest representation for rectilinear

figures. The SAT is very sensitive to small flucwations in the boundary contour (Agin,

1974). Noise and fine detail in the bounding contour can produce extraneous axes that

make the shape description more complex, but the use of multi-resolution descriptions

can help overcome this (Gauch et al, 1987). One could also smooth the boundary before

finding the medial axis.

34



Shape Literature

Smoothed local symmetries (SLS

The smoothed local symmetries representation (SLS), proposed by Brady and Asada

(1984), represents a contour using the locus of the midpoint of the chord joining the

points A and B on the bounding contour. The SLS is a more comprehensive descriptor

than SAT. For instance, for an ellipse, the SAT finds only the major axis whereas SLS

finds both the major and minor axes (Leyton, 1987b) (figure 1.12). The description

produced is closely related to the generalised cylinders description for 3D objects,

discussed later (Nevatia and Binford, 1977; Brooks, 1981).

Figure 1.12: SAT and SLS representations of an ellipse and a rectangle.

Recently, Cho and Dunn (1991) have described a modification of the SLS called

Hierarchical local symmetries, HLS, which excludes non-intrinsic and redundant local

symmetries and enables a hierarchical decomposition of information based on local

symmetry. The axis information is organised by the tangent difference between two

boundary points forming a local symmetry. Rom and Medioni (1991) have proposed a

similar hierarchical description of shape based on the SLS which allows the

identification of parts of a contour.

Process-inferring symmetry analysis (PISA')

The third skeletal type representation was described by Leyton (1988). Termed process-

infering symmetry analysis (PISA) it consider shape to be the result of some historical

process. Curvature extrema are obtained by using the "symmetric axis-curvature duality

theory" (Leyton, 1987; Yuille and Leighton, 1987). This theorem states that "any

segment of a smooth planar curve, bounded by two consecutive curvature extrema of

same type has a unique differential symmetric axis which terminates at the curvature

extrema of opposite type" (see figure 1.13). This idea is used, but not explicitly stated,

in the SAT description.

Figure 1.13: Symmetric axis-curvature
duality (adapted from LeyLon 1987).

The PISA description bears a close relation to the

prototype description of 3D shape described by

Pentland (1986) which is dealt with later in this

chapter.
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Recently, a new method for obtaining the skeleton of a contour, based on active

contours (or "snakes" (Kass et al, 1987)) has been proposed by Leymarie and Levine

(1992). Leymarie and Levine argue that using the boundary information together with a

contour's skeleton produces a richer, more powerful and efficient shape representation.

Boundary information is included into the algorithm by the extraction of curvature

extrema and arcs of constant curvature.

Multiresolution SAT description

The characterization of changes between two contours requires an assessment of their

overall similarity in shape. This involves measurement of the importance of each

component of the contour. The multiresolution approach of Gauch, Pizer and their

colleagues addressed this question (Gauch et al, 1987; Pizer et al, 1987; 1988). Here,

2D contours are obtained from a grey-scale image at different levels of intensity and the

medial axis of each contour is extracted using the SAT. The importance of each branch

of the medial axis is determined by its annihilation by, or of, an adjacent branch as one

tracks the branch from low to high scales. Thus a hierarchical structure is imposed onto

the axis branches allowing branches to be considered as sub-objects of one principal

axis. In this hierarchy, termed an "axis pile", the width of the medial axis function and

the axis of symmetry are used to characterize the contour.

This technique has been applied to analysis of the shape of jaws by simplifying the

analysis of mandible outlines and was able to reveal differences between two types of

jaw. However, a large storage capacity is required and the process is computationally

expensive (Pizer has quoted times of half an hour to perform the necessary calculations

for one representation).

Pizer also described another method called "vertex curves" in which vertices of one

contour ("level curve") are followed to the next producing curves on the image surface.

These curves supply boundaries to segment the image into "codon districts" and

multiresolution analysis of these districts gives a representation which describes the

spatial curvature properties of the image as a function of scale. Both this and Nackman's

description give information about the shape of grey-scale images at various levels.

Pizer and colleagues applied these techniques to the analysis of medical images (Pizer

et al; 1988).

Information contained in a grey-scale image can be simultaneously represented at

different scales using the approach of Crowley and Parker (1984) or Koenderink (1988).

This approach implies using a hierarchy of scales to extract shape information from the

image.
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Multiresolution techniques such as these have been shown to improve the segmentation

of an image over established techniques based on local pixel properties or edge strength

(Lifshitz, 1987). The association of pixels to components of shape is crucial for this

segmentation. Gauch et al (1987) postulated that if the multiresolution SAT could be

used to impose pseudo-landmarks onto an image then a biorthogonal grid deformation

analysis (Bookstein described later) might be used to describe morphological changes in

soft-tissue surfaces where recognizable landmarks do not exist.

ii) Scale-space method
Another method for describing contours by extracting information from the boundary

was Scale-space filtering (Witkin, 1983). In this method, a signal or curve is

successively filtered with a Gaussian mask of varying widths. This introduces a scale

parameter. The curvature of the filtered signal is measured and the inflection points or

"zero-crossings", where the curvature changes sign, determined at each scale. The zero-

crossings are used to form a hierarchical description of the signal which is termed a

"Scale-space Image" which contains information about the location and extent of

features in the signal. An example for a facial profile is shown in figure 1.14. By

applying a stability criteria, events which persist throughout the scale-space can be

identified as major features of the curve.

The Scale-space image can be reduced to a simple tree structure by the relation of the

contours, formed by the zero-crossings, to one another as parents and children. For

these branches to be stable, a stability test is needed. Witkin developed a suitable

stability test based on the correspondence between intervals of the signal and their

perceptual salience (Witkin, 1983).

Figure 1.14: Left: A
profile smoothed with a
scale parameter. Right
above: A Scale-space
image for a facial profile.
The scale parameter (s) is
shown along the ordinate
with the coarsest scale at
the top and the path
length along the profile
(t) as abscissa. The zero
contours at plotted. The
solid horizontal line
shows the zero crossing
of the profile at one
particular scale. Right
below: the facial(midline)
profile.
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Witkin automatically determined a discrete set of scales which were useful symbolic

descriptors of the curve and these were later interpreted in terms of primitive events by

Asada and Brady (1986). Yuille and Poggio (1983a) found that the contours formed

from zero-crossings of the second derivatives might have enough information content to

enable their use in reconstructing the original signal to within a constant scale factor.

They also found that the Gaussian convolution filter has the unique property of not

introducing extraneous zero-crossings as one moves from fine to coarser scales (Yuille

and Poggio, 1983b) and is, as such, "well-behaved" mathematically.

The Scale-space representation is sensitive to the amount of change made to the curve,

except in the instance of a very small, very convex change being made. It is

computationally efficient and not influenced by arbitrary choices made (such as starting

point). Apart from for convex shapes, which have no zero crossings since the curvature

is always positive, it is a unique representation for a curve. Mokhtarian and Mackworth

used curvature, computed at various levels of detail by convolution of the path length

parameters with a Gaussian kernel. They refined this method by reparameterizing each

convolved curve by its normalized arc length parameter (Mackworth and Mokhtarian,

1988). This "renormalization" is equilivalent to a continuous, non-linear horizontal

shear of the scale-space image. It is more suitable for matching similar shaped curves in

the presence of noise.

Rotem and Zeevi (1986) succeeded in recovering the original 2D signals from their

zero-crossings thereby showing that no information is lost by working in scale-space.

Bischof and Caelli (1988) maintained that scale-space is only useful in terms of what it

can tell us about shape in conjunction with other methods, demonstrating how it can

improve the shape-from-texture method (see section 1.4.1 for shape-from-texture).

Witkin's stability test extended to three dimensions produces a surface which splits and

merges. Bischof and Caelli (1988) used a different stability test that assumes physical

events are conceived of as boundaries, based on the observation that zero-crossings of

region boundaries remain spatially stable over filter scale changes. If stable they will

exist at multiple scales and the position of zero-crossings of the boundary edge will be

unaffected by neighbour's boundaries. This edge detection technique is shown to have

good noise resilience.

This method has been used to describe and match planar curves such as shorelines

obtained from LANDSAT images by Mokhtarian and Mackworth (1986) or waveforms

(Zhuang, 1988) and to extract points of maximum or minimum curvature (Degucii,

1988). It has recently been applied to the analysis of facial profiles (Campos et al, 1992;

Campos et al, in press; Moss et al, in press), for the analysis of changes in the face

before and after surgery.
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The scale-space image is invariant to scaling, rotational and translational operations,

which is a prerequisite for reliable matching and the matching that has been achieved by

this method is very good.

liii	 Chord length distribution (CLD1

Recently, a method for describing a contour, or class of contours, has been devised. In

this method, called Chord length distribution, polygons are represented by the chord

lengths between each pair of vertices (Cootes et al, 1991; Cooper et al, 1991). The

correlation between pairs of chords is determined by calculating their covariance over a

training set of objects. This allows a particular "class of shapes" to be defined by the

principal eigenvalues of this covariance matrix. Thus the variability of the set of

contours may be quantified from these eigenvectors.

L	 Shape in 3D

Up to this point in this chapter, all the mathematical descriptions of shape described

have ignored the fact that in real life a surface exists between the boundary lines or

contours. To make further headway a new concept of shape, based on surface

properties, is needed. The shape of an object is intrinsically bound up with its surface

geometry, which can be visualised by the illumination of the surface. The mathematical

language of surfaces is differential geometry, this is described in chapter 5.

Quite recently, the role played by shading and illumination in the human visual system

has been investigated (Ramachandran, 1988). These studies have shown the following:

firstly that the perception of symmetry is based on three dimensional shape rather than a

distribution of dark and bright areas in the image, that the grouping of simple objects is

based on 3D shape rather than luminance polarity and that the brain must compute 3D

shape before it can perceive apparent motion. Thus the representation of 3D shape plays

an important role in the human visual system.

L4	 Mathematical description of 3D shape

The concept of 3D shape representation has been realised by computer vision scientists

seeking more accurate representations and interpretations of 3D scenes of objects for

robotic applications. This has enabled some standards for 3D shape description to be

laid down.

A good, useful, robust and rich description of a 3D object should exhibit at least some

of the following characteristics: It should be viewpoint independent, able to deal with

complex real objects, noise tolerant, computationally accurate and cost efficient and

able to cope with novel objects or artifacts.
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Marr and Nishihara (1978) proposed three criteria for judging shape representations.

These were that a representation should be computable relatively efficiently, have scope

and have sensitivity - that is the information should be able to be represented at

different scales. Brady (1983) added three other criteria: that the representation should

also be rich (ie. information preserving), iocaliy computed and be a local, extendible to

a global, representation using frames that would eliminate other frames which they

completely enclosed. These frames should be propagated between scales. He illustrated

these criteria using the generalised cones and smoothed local symmetries

representations described later in this section (Brady, 1983). These six criteria are also

important as a basis for assessing our representation of facial shape (see Nackman and

Pizer, 1985 for a further discussion of this).

Bearing these considerations in mind, two distinct approaches have been developed for

describing object shape in terms of surface geometry. The first is based on measurement

of the surface normal (section 1.4.1) and the second on measurement of depth (section

1.4.2).

1.4.1 Surface normal based methods

In intensity images, information about the surface geometry of an object is contained in

the image intensity. Many different approaches have been used to derive the surface

normals of an object from the image intensity, thus allowing the shape of the object to

be extracted or represented. These methods are collectively known as "shape-from-xxx"

methods and included shape from shading (Horn, 1975; 1977; Ikeuchi & Horn, 1981;

Pentland, 1982; 1984a Szeliski, 1991a), shape from stereo (Marr and Poggio, 1979;

Grimson, 1981; Baker & Binford, 1982), shape from photometric stereo (Woodham,

1980; 1981), shape from contours (Brady and Yuille, 1984), shape from rotation

(Szeliski, 1991b), shape from texture (Witkin, 1981) and shape from fractal geometry

(Pentland, 1984b; Yokoya and Yamamoto, 1989; Chen et al, 1990).

The main difficulty of these methods is discerning the lighting geometry and taking

account of physical properties of the surface, such as reflectively and specularity, as

well as characteristics of the light source (Wang et al, 1987; Wolf, 1983).

The representations derived from these methodologies, have been given many names

including: 2 1,2D sketch (Marr, 1976; 1982), needle maps and Gaussian image (Horn,

1984) but all are based on the calculation of the surface normal. Some issues have not

been resolved in the literature, these are how the local surface normal is parameterized,

whether the depth is explicit or computed by integration and whether second order

quantities (such as the principal curvature, second fundamental form of the surface) are

explicit or computed by differentiation (Brady and Yuille, 1984). These issues affect the

accuracy of the representation and its susceptibility to noise.
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Some of these representations (notably those derived from stereo and motion) describe

the depth and orientation of a discrete set of points on the surface using certain points

which show rapid change, such as those lying on the edges. A reason for this is that

some theories about the specialized processes that occur in early human vision, such as

stereopsis (Marr and Poggio, 1979), specify that explicit information about surfaces in a

scene can only be inferred at "scattered" locations and that these locations correspond to

significant changes in intensity in the retinal image (Terzopoulos, 1983). However,

human perception is of complete, smooth suifaces and people have been found to be

able to recognise objects from images where the illumination relationship is distorted,

such as pseudocolour (Best and Jam, 1985). This raises the question of whether the

brain represents a surface by reconstruction from salient image points or encodes the

surface in a more explicit fashion at an early stage of vision. Terzopoulos (1983)

investigated the former question via multi-level reconstruction of a thin-plate surface. In

this thesis, the latter possibility is investigated.

Of all the representations produced from intensity images, two are particularly

interesting for this work. These are the Topographic Primal Sketch (TPS) (Haralick et

al, 1983) and Extended Gaussian Images (EGI) (developed by Ikeuchi, Horn and Brou).

a) Topographic primal sketch

The Topographic Primal Sketch (TPS) groups together portions of a digitized image in

terms of intensity regions. These regions are then classified using the directional

derivatives functions of the surface (ie. the direction where the surface has the greatest

rate of change) which are defined from differential geometry (see chapter 5). The

surface is classified into seven topographical primitives namely; peak, pit, saddle, ridge,

ravine, flat and hillside.

The accuracy of this description is dependent largely on the removal of noise from the

image. This is achieved by modelling the surface with bivariate cubic splines across a

certain window size. The directional derivatives are obtained from the fitted splines. An

important consideration is, at which pixel in the window used should the classification

be applied? Since each pixel represents an area of the image, using a large window size

for the computation of the derivatives results in a less accurate classification because

the cubic fit to the surface becomes less accurate. The window size used is therefore a

function of noise and complexity of the image surface.

This representation is somewhat similar to the one I report in this thesis for the

description of the facial surface. However, there is one very important difference, that is

that the primitives used in the topographic primal sketch are derived from intensity

images whereas I have used range images. Consequently, the TPS is dependent on the

surface shading and is susceptible to the problem of shadowing. Moreover, the TPS
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representation does not interpret the surface in terms of its intrinsic geometry or take

account of illumination or reflectance changes upon it and it is not invariant to

viewpoint changes (Ponce and Brady, 1985) and its suitability for producing a multi-

resolution description has not been demonstrated. Haralick and colleagues pointed out

the importance of developing a technique that would group the topographically labelled

pixels together and assemble them into primitive structures in order to facilitate higher

level matching. Pong and colleagues (Pong et a!, 1985) showed how the TPS

representation could be used to estimate if a surface was either planar, developable,

cylindrical, effiptical or hyperbolic in shape.

bi Extended gaussian images

Another interesting technique is Extended Gaussian Images (EGFs). In this

representation, each point on an object's surface is mapped onto a corresponding point

on a Gaussian sphere at which the orientation of the surface normal is the same. This

mapping is reversible only if the object has positive Gaussian curvature everywhere,

thus only convex objects have a unique representation. EGI's were introduced by

Ikeuchi, Horn and Brou and are defined and discussed in depth by Horn (1984). They

can be easily computed from depth map or needle map representations (produced from

photometric stereo or from geometric object models). An advantage of this

representation is that if the object's surface can be divided up into small patches, the

equilivalent patches on the Gaussian sphere can be computed without directly

computing the Gaussian curvature of the entire surface. In a noisy image, information

on the Gaussian sphere is spread out but noise in the data can be removed by

convolution with a smoothing function. Some authors have argued for EGI's assuming

that second order differential properties could not be reliably computed, however Brady

and Yuiile (1984) demonstrated that this is not the case. The EGI works well for convex

objects without any occlusion but can't distinguish between some shapes (see Besl and

Jam, 1985 figure 47).

1.4.2 Depth based methods

Depth or range based methods appear to have arisen in the last decade or so, directly as

a result of the advances made in computers. Greater computing power has allowed more

mathematically reliable data to be collected, in greater quantity and in less time. These

systems have enabled synthetic and analytic methods to be developed to model and

describe 3D objects.

Range images directly provide depth information which, unlike intensity information, is

dependant only on the surface geometry. Therefore, shape information should therefore

be easier to obtain using range images than intensity ones. The shape of a region in a

range image bears a direct relationship to the 3D shape of visible object surface. Hence,
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descriptions ubtained from range images are more reliable than those obtained from

intensity images.

a) Synthetic models

One approach to investigating an object's shape is attempt to synthesize the object, or

scene of objects. This is a powerful technique because it provides the investigator with

control over the object. The accuracy of synthesized models can be determined by

comparison with object data.

The synthesization of object models was influenced by the computer vision requirement

for object recognition. Models of complete objects produced for CAD/CAM required

vast numbers of possible configurations of the object to be stored when viewed from

different orientations. This quickly led to insoluble problems for recognizing objects,

especially when the number of objects to be recognized was large or the object views

were partial. A second approach was recognizing parts of objects and determine the

spatial relationship between them. This had the advantage of incorporating the ability to

learn new objects.

Object modelling uses mathematical functions to generate solid primitives that can be

added or subtracted to produce an accurate description of the object surface. The first

models for representing solid objects used cylinders with a straight line axis Marr

(1976). This idea was extended by Binford (1981) to generalised cylinders and cones to

represent any 3D volume. Generalized cones were concisely defined by Brady (1983) as

the shape described by drawing a cross-section at a fixed angle along an arbitrary 3D

"spine" curve and expanding the cross-section along the spine according to a "sweeping

rule". The cross-section does not have to be circular (figure 1.15).

Figure 1J5: Generalised cylinders with left a straight axis and b) a curved axis.

The axial basis of generalised cones means that they are suitable for describing objects

which have a natural axis, including growing structures, such as animals, but unsuitable

for objects that are essentially surfaces, especially smooth, featureless surfaces (Fan et

a!, 1986). Early attempts to use generalised cylinders to describe 3D objects were made

by Agin and Binford (1973) and Nevatia and Binford (1977). Whilst they provided

reasonable descriptions of elongated objects they do not cope with jointed or complex
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objects well. Generalized cones can provide a hierarchical description of shape but this

is not a unique representation (Nackman, 1982 p.13) and constraints sufficient to bring

about uniqueness-are unknown. Hence ad hoc rules have been implemented in order to

obtain a single description.

The suggestion that geons (for "geometrical ions"), that is components of an object that

can be modelled by generalized cones, play an important role in human perception

(Marr and Nishihara, 1978; Biederman, 1987) has led to them being used by artists as a

basis for facial structure (Darer, 1582), see figure 1.16. However, they do not describe

smooth featureless surfaces such as the face accurately enough for individual

identification or assessment of the subtle changes that are brought about by

reconstructive surgery.

The production of a reliable model of an

object requires that the parts chosen as

primitives must be complex enough to be

reliably recognized but simple enough to

be used as building blocks (Koenderink

and van Doom, 1982). The solid modeller,

"WINSOM", developed by Woodwark at

the IBM (UK) scientific centre, uses

primitives that may be thought of as sets of

points that maybe operated on (eg. the

union or difference of them) to form more

complex primitives such as cylinders, cones, toni, helixes or ellipsoids. This is a very

adaptable system which has been used to model more omplex objects. Some very

complex shapes such as clouds and mountains have been represented by fractal-based

models (Pentland, 1984b), but other structures such as trees, fire, hair or rapids have not

yet been well described. Perhaps the recent theory of "chaos" (Gleick, 1989) will permit

the description of some of these.

A more comprehensive parts set are the "superquadratics". These are mathematical

solids defined by sweeping out cosine and sine functions in 3D space to produce a

spatial surface (Barr, 1981). Like WINSOM, they are more powerful than the

generalized cylinder representation, since they allow objects to be described in terms of

a calculus formula. They were used by Pentland (1986) to develop a representation for

3D shape, which he claimed to be based on the human perception of shape and the way

in which our perception organises the visual data received for the representation of

natural form.
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Specific objects, such as the face, can be generated from these components using the

Boolean operators "and", "or", "not" etc. For the example shown in figure 1.17, 13

primitives have been used.

Superquadratics can be used to estimate 3D shape parameters from the image data.

Their integral relationship to surface normals and surface shape means that they

overconstrain this estimate and therefore have the potential to be extremely reliable

modelling primitives. They produce two equations which are solved by linear

regression to give the shape, orientation and shape parameter. This is important as it

allows this representation to be robust and easily applied.

The idea of using superquadratic functions and deforming them to fit the 3D data

provided seems to have been first suggested by Barr (1984). Two different approaches

were employed by Pentland (1986) and by Terzopoulos and his colleagues

(Terzopoulos et al, 1987). Pentland proposed using parametric solid modeling

primitives as deformable models. Here fitting was using the model primitives "inside-

outside" fusion (Pentland, 1986; Solina and Bajcsy, 1990). Terzopoulos, on the other

hand, employed a mesh-like surface model and fitting was achieved using a physically-
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motivated energy function. This function could be applied locally. Pentland's approach
allows a unique, compact description to be produced that is suitable for recognition but

may not have enough degrees of freedom to model fine surface details. Terzopoulos'

approach allows accurate modelling of surface detail but the resulting descriptions are

not unique or compact making recognition extremely difficult. Both are iterative

methods and are therefore, computationally slow. These methods bear similarities to

Bookstein's thin-plate splines (described in chapter 2) and to Biederman's geons

(Biederman, 1987).

Recently, Pentland and Sciaroff (1991) have attempted to address these problems

using a finite element method (FEM), which is a standard engineering method for

simulating the dynamic behaviour of an object, and parametric solid modelling using

implicit functions. They were able to obtain a unique 3D shape description but point out

that a major weakness of their system is the need to segment the data into simple,

approximately convex "blobs" in a stable viewpoint-invariant manner and to estimate

the object orientation to within +/-15 degrees. Pentland and Sciaroff proposed that

"snakes" or energy-minimizing curves (Kass et al, 1987) could be used to iteratively fit

a required 2D curve and thus extract features of interest for an image. Similarly, in 3D,

a surface model could be deformed in a dynamic and elastic fashion by fitting simulated

rubbery sheets to obtain a good fit to the data (Terzopoulos et al, 1988). This approach

provides considerable geometric flexibility and uses the idea that various physical

forces (intrinsic and extrinsic) can be applied to produce the final object shape. By
applying the deforming force over a small area of the object surface, local changes in

the surface can be modelled as well as global ones. Naturally, this method requires

powerful computers because of the iterative nature of the fitting algorithm. These

methods have drawn wide interest from scientists working in the areas of machine

vision and image analysis as a method for locating features of interest (eg. Cohen,

1991) and modeling 3D data.

b) Analytic descriptions

The first analyses of range data used the range data to segment the object's surface into

approximately planar regions. These regions were then matched for recognition

purposes (Oshima and Shirai, 1983; Bhanu, 1984). Henderson (1983) added a region

growing algorithm to achieve a cleaner segmentation of the data. Later, range data was

used to find 3D boundaries (Hebert and Kanade, 1985; Parvin and Medioni, 1989).

These boundaries included low frequency events, such as ridges and ravines as well as

high frequency events, such as edges boundaries, allowing features to be extracted at a

hierarchy of scale (Parvin and Medioni, 1989).

The idea of describing the shape of an object's surface in terms of curves and patches

was expressed by Faugeras and Herbert (1986). The first to develop such a description
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were Asda and Brady (1986), this was the Curvature patches representation which is

analogous to smoothed local symmetries representation in two dimensions. This

representation is a symbolic description of a 3D surface based on the theory that curves

axe perceived as part of a 3D surface. This theory is illustrated perceptually by example

shown in figure 1.18. Most people interpret the lines as lines of curvature of the surface

(Stevens, 1981).

In the curvature patches representation, the CAD

definition of a parameterized surface patch is used and

grid lines (du = 0, dv = 0) are set to the lines of

curvature of the surface and the defining parameters u

and v quantitized. The surface is then interpolated from

the grid lines using a blending function such as Bezier

function or splines. By using the lines of curvature as

"webbings" of the surface, flattening near patch corners

is minimized and calculation of the principal curvatures

is made easier.
Figure 1.18: A series of lines which
are readily interpreted as representing
a surface.

A drawback of this method is that small changes in the obseryed surface produce large

changes in the approximating curvature patches. Also a large number of patches are

needed for this representation and the joins of these patches are not necessarily

physically significant. Its main application has been in recognizing objects in a CAD

database.

1.4.3 Characterization of changes in 3D shape

A few researchers in computer vision have been specifically concerned with

characterizing changes in 3D shape. These have either been for medical/anatomical

purposes or for the automatic detection of defects in objects for industrial applications.

a) Extension of SAT to 3D

Nackman and Pizer's extended the SAT to 3D in order to characterize shape changes for

medical applications (Nackman, 1984; Nackman and Pizer, 1985). In this method, the

symmetric axis becomes the locus of maximal spheres instead of the locus of maximal

circles in 2D. Nackman and Pizer decomposed the object using three kinds of

primitives; width primitives based on radius, axis primitives based on simplified region

curvatures and boundary primitives based on boundary surface curvatures. The sign of

the mean and Gaussian curvatures were used to define curvature districts within these

primitives.
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b) The surface primal sketch

Ponce and Brady (1985) extended the curvature primal sketch to 3D, with the aim of

detecting, localizing and symbolically describing surface changes from a depth map of

the surface. The motivation for this development came from problems which had arisen

with the algorithm used in the curvature primal sketch for computing lines of curvature

on a surface and finding significant changes in curvature along the lines. Ponce and

Brady devised a method for detecting changes in the height (depth) of a surface, this

allowed them to classify the surface into some primitive surfaces (namely roofs, steps,

smooth joins and shoulders). These surface classifications were obtained from the

continuity of the surface, the continuity of the surface normal and the surface curvature,

which can be distinguished between by their scale-space behaviour. The surface under

investigation was segmented into smooth patches using surface intersections that are

present at multiple scales. The surface patches were then matched to one of the

primitives to generate a symbolic description (Asada and Brady, 1986).

The depth map of the surface can be smoothed using a gaussian function to remove

noise if required, but this presents a problem with the boundary of the surface since the

global application of the filter blurs the surface into the background. This was overcome

by using a repeated averaging technique.

The surface primal sketch description has been applied to various objects including a

mask of a face (figure 1.19). It enables the nose, eyes and mouth to be detected but

lacks surface detail. Thus for relatively smooth featureless surfaces such as the face, the

description produced is poor.
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L5 Summary

In this chapter, I have brought together knowledge from two fields, that although

seemingly independent, I have found to be related to the subject of this thesis. These are

the theories formed by cognitive psychologists about how the brain perceives shape and

the mathematical descriptions of shape that have been developed by computer vision

scientists. I have tried to create a coherent whole from these diverse studies and to show

how one reinforces the other.

First, observations of how the brain perceives shape were described. These revealed that

the perception of an objects shape is strongly related to the recognition of that object.

This implies that in the case of the face, the shape of the face affects how well the face

is recognized. Thus, if a method can be developed for describing facial shape then this

may also help with understanding how faces are recognized. In this thesis, the method

for describing the shape of the face, developed in chapter 6, is used to examine the role

played by the shape of the face in face recognition (chapter 9).

Next in this chapter, the question of how the brain abstracts shape information from its

visual input was examined. Two complementary theories for this process were

described: that shape is obtained from edges or from parts, ie. components. Examination

of the mathematical descriptions produced for 2D shape (contours) showed two

different approaches, somewhat analogous to these theories. These were global

description methods, which describe the entire object in one go, and local methods

which describe parts of objects and derive connections between various parts.

It was found that 2D contours had either been described by their boundary or by

extracting information from the boundary. The latter case involved producing skeletal

representations, such as the SAT, SLS, or PISA or using the scale-space method. If

contours were to be compared, then producing these representations at a hierarchy of

scales allowed the importance of each component branch of the contour to be assessed,

and thus allow the similarity of shape to be assessed. A slightly different method of

extracting information from the boundary was the chord length distribution.

These methods, and in particular the principle of describing shape changes by

representing the shape at a hierarchy of scale provided useful tools for the shape

description method and analysis of changes in shape described in chapters 6 & 7.

Next, we considered the fact that in the real world, surfaces are perceived and found1

that the perception of 3D shape plays an important role in the human visual system

) (section 1.3). Mathematical descriptions of 3D shapes have not been as highly

developed as those for 2D, but nevertheless some characteristics of a good shape

descriptor have been realised (section 1.4). Again two different approaches have been
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developed for describing the an objects shape in terms of its surface geometry. The first

is based on measuring the surface normal, which is extracted from intensity images

(section 1.4.1). This encounters the problem of distinguishing between effects arising

from physical surface properties and those arising from lighting conditions. The second

approach, based on range data of the object which provides depth information, does not

meet this problem.

The representations of 3D shape that have been produced have used the idea of an

object as a collection of parts. Either the surface was segmented into primitive patches

(eg. the TPS, section 1.4.la or the curvature patch representation, section 1.4.2b), or

objects were modelled synthetically and compared with acquired range data for

identification (section 1.4.2a).

The characterization of changes in 3D shape has not been well addressed by the

computer vision community. Only the extension of SAT to 3D to from "axes piles" and

Ponce and Brady's surface primal sketch have attempted this. The description of small

scale changes in shape has been addressed by a third field of research, that of biological

shape description. Unlike most of the computer vision research, the emphasis is this

field has been on defining shape changes.
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CHAPTER 2

BIOLOGICAL AND STATISTICAL DESCRIPTIONS OF SHAPE
(LITERATURE REVIEW)

Although a number of useful descriptions have been proposed by computer vision

scientists for describing the shape of regular geometrical objects, finding an appropriate

description of biological shape has proved very difficult. In 1967, Blum wrote that

"despite more than 2 millenia of geometry, no formulation which appears natural for the

biological problem has emerged" (Blum, 1967). The reason for this, he postulated, was

that geometry had been born of surveying and grew in close collaboration with physical

science and its mensuration problems. Clearly, description of the shape of biological

forms requires a somewhat different framework.

In this chapter, a framework called morphometrics is discussed. Morphometrics seeks to

describe changes in shape and therefore may be an appropriate framework for

describing biological forms, which grow and evolve. Shape changes are described in

terms of a deformation of the original form and quantified via the overlaying of

cartesian grids (as per Thompson) or biortlonal grids (as per Bookstein). An

analogous method to the latter, called finite element analysis, is also briefly described.

The main problem of these methods is their reliance on accurate landmark positioning.

This is discussed in section 2.2.3. Other attempts at describing biological shapes in

terms of bounding contours or a distortion of 3D space are discussed in sections 2.3

through 2.5. Finally, the multivariate approach to morphometrics made by statisticians,

is described. The usefulness of these methods for describing the face is considered.

21. Morphometrics

A framework known as morphometrics began to emerge at the beginning of the century

as biologists such as Thompson and Huxley tried to understand the interaction of size

and shape in the evolution of species. Morphometrics was later defined as "the

biometric study of effects upon form" (ie. biological shape) (Rohif and Bookstein,

1990) and it evolved via two main strands of thinking. The first strand arose from

geometric considerations with the relationship between one form and another measured

as a "deformation". Interestingly, the artists DUrer and da Vinci were the first to

consider the relationship between faces of different types as deformations. The second

strand was provided by multivariate statistical analyses, whose first applications were in

morphometrics. These analyses are concerned with the correlation of size measures

with shape measures (termed allomerry). A brief discussion of morphometrics is given

in this chapter. For a more comprehensive treatment the reader is referred to Rohlf and

Bookstein (1990).
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One of the driving forces in morphometrics has been Bookstein who has attempted to

unify these two approaches, with some success (Bookstein, 1986; Rohlf and Bookstein,

1990). Bookstein has had a considerable influence on morphometrics and consequently

this chapter is full of references to his ideas. Bookstein has made serious attempts to

bring mathematics to bear on shape description and his biort4onal grids have provided

a conceptually useful description. His work has acted as a major source of simulation in

this area.

Whilst Bookstein's ideas are highly regarded, there are a number of statisticians

working in this area who have expressed mixed feelings about the robustness of his

work (see the statistician's comments on Bookstein's 1986 paper). In particular, they

have questioned some of the assumptions he has made in his analyses (eg. taking linear

approximations of a Taylor series, which encourages zero covariance between the size

and shape variables) (Campbell, 1986; Cressie, 1986), and the inability of his warp

description of shape change (see section 2.4) to make the transition from 2-D space to

3-D space in practice (Cressie, 1986). Another comment has been that it is not made

clear what is exact and what is approximate in the analysis (Campbell, 1986). However,

Bookstein himself maintains that his approach to the statistical analysis of shape is

analogous to the methods of other leading researchers in this area; the statisticians

Goodall, Kendall and Mardia, and continues to answer his critics.

L2 The deformation of form

The idea behind deformation methods of morphology is that form can be described in

terms of a size and shape variation of a configuration of landmarks. These methods

were made possible by the foundation for the mathematical description and comparison

of biological shape that was laid by the biologist D'Arcy Thompson in 1917. His

method of Cartesian transformation grids is detailed in his famous work "On Growth

and Form" which described the transformation of one contour shape into another via a

smooth transition in accordance with biological homology (Thompson, 1917).

The importance of three dimensional analyses has been recognised by most scientists

working with geometric methods. Specifically, the need for a description of the

deformation of the 3D space between landnarks has been recognized, although none

has yet been produced. The limitations of landmark based analyses are discussed later

in this chapter (section 2.2 iv). Bookstein and Cutting (1988) have suggested a

description based on differential geometry of the surface, and the ridge lines of the skull

in particular. This thesis follows up this suggested approach and uses concepts of

differential geometry to quantitatively describe the facial surface (see chapter 6).
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2.2.1 Thompson's cartesian grids

Thompson's idea, regarding change between two forms, was that homologous points

remained stationary while the Cartesian grids governing the change deformed, causing

landmarks to appear to move. In this method, all points were simultaneously registered

and therefore no arbitrarily chosen centre is needed. Thompson was concerned with

evolution between species and he talked about a "biological force", of a postulated

direction and magnitude, which acted on the original shape to bring about evolutionary

change between species (Thompson, 1917, p.272). Natural selection is now widely

believed to be responsible for these "forces" (Gould, 1971) This transformation between

two species (what he called "forms") was assumed to be homogeneous and isotropic

and to affect the entire form globally (Thompson, 1917, p.274). These two conditions

depend on parts of the form evolving together, or at least not independently.

Thompson's application of this methodology to the study of the shapes of fishes as

identical functions of different coordinate systems led him to the sweeping conclusion

that the variation between the species had occurred along precise, orderly lines of

growth. This idea was severely critized by Hutchinson as a "floating mathematics for

morphology, unanchored for the time being to physical science, but capable of valid

generalization on its own level" (Hutchinson, 1948).

Figure 2.1: Cartesian transformation from	 Figure 2.2: A realistic complex
Diodon to Orthgoriscus (from Thompson, 1917,	 Sokal and Sneath, 1963).

p301).

Thompson illustrated his theory with a vast number of examples, the most famous one

being a comparison of Diodon and Orthagoriscus (figure 2.1). Here the vertical

coordinates of the first grid are deformed into concentric circles and horizontal

coordinates become hyperbolas. Many researchers tried to repeat his method but none

53



Biological Shape

managed to obtain such nice, simple, mathematically describable functions as he did.

Instead they obtained very complex deformations (such as figure 2.2) and all attempts at

finding general laws failed. Sokal and Sneath (1963) defined this as a problem of

feature enumeration: if there was more than one curvilinearity present, it became

impossible to disintegrate multiple changes and produced constant shifting in relative

grid line spacing and thus became visually highly complex. All compromises were so

individually specialised that they failed to hold for more than a few examples.

A significant problem with the method was how to position the grid lines over a shape

without any notable landmarks. Avery (1933) positioned a square grid over a tobacco

leaf and photographed it during the leafs growth. He then attempted to understand his

results by mathematically analysing the grid. Later, Richards and Kavanagh (1943)

looked at Thompson's technique and Avery's measurements and found that the lines of

maximum and minimum linear growth of the tobacco leaf were orthogonal.

Thompson's work contained many weaknesses which were identified by Bookstein

(1978a). For instance, Thompson's attempts at relating the skulls of humans to chimps

and baboons in to order to demonstrate an evolutionary connection between them was

not very successful and Thompson himself admitted that neither of these apes lie

precisely in the same sequence as the other's connection to man. Another criticism was

that although Thompson's draughtsmanship was good, there was no explanation of the

way that individual grids were constructed. Bad fits were blamed on bad data leaving

the methodology unquestioned (Bookstein, 1978a p.77 p.87).

No further headway was made in this area of morphometrics until Bookstein's seminal

work of the late 1970's. It was his opinion that since Thompson until that time (1978)

there had been "no improvement in morphometrics or without, no methodological

advance ... that is comparable in stature with Thompson's original method." and that

"six decades after its publication the method still resists quantification except in special

cases. It remains ... much more difficult than it was supposed to be. ... Anyone trying to

make new headway must begin to build, as I do, exactly where Thompson left off."

(Bookstein, 1978a, p.89)

2.2.2 Bookstein's biorthogonal grids

Bookstein's re-analysis of Thompson's work and its mathematical elegance, together

with the observation of orthogonal growth in tobacco leaves (Richards and Kavanagh,

1943) led him to develop a technique known as "biorthogonal grids". The concept of

this method is based on the representation of an affine transform (one which maps

parallel lines onto parallel lines). This idea is summarized below.
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At this point it a word of caution regarding biorthogonal grid may be appropriate.

Sampson (1986) pointed out that no one other than Bookstein has ever had the software

to generate a biorthogonal grid so his claims for this method have not been fully tested

and these grids have not been widely applied. A possible reason for this was suggested

by Cheverud and colleagues (Cheverud et al, 1983). This was that although analytically

correct, the graphical representations produced by the biorthogonal grids are visually

confusing.

a) Representation of an affine transform

An affine transform can be described differently depending on the choice of starting

grid. For example, the transformation of a square into a rhombus can be described in

two ways: the angle between the diagonals can be altered and the length of the

diagonals kept constant (as per Thompson), or one diagonal can shrink and the other

expand keeping the angle constant (as per Bookstein) (see figure 2.3). The advantage of

Bookstein's conception of the change is that the axis grid remains orthogonal for the

transformation and allowing the changes to be described in terms of dilatarions, or

length multiplications, of the principal axes.

/ /	
Any three points mapped onto any other three

1	 / / I	 points can be expressed as an affine transform.

I_______	 / / /	 So several affine transformations maybe

N
performed and joined up to form a 'global' grid

which may be used to describe the shape

change.

Figure 2.3: Two ways of describing the same
affine transformation from square to rhombus.
Top: The axes lengths are constant and the
angle between them alters. Below: The axes
change in length, but the angle between them
remains constant.

Bookstein (1984a) attempted to quantify the importance of changes in shape calculated

via the biorthogonal grid technique. The mean size and shape changes occurring

between one triangle of landmarks and a second were tested for statistical significance

using a tensor description of shape change. Using an ancient theorem, a circle inscribed

by the first triangle of landmarks is deformed into an ellipse in the second triangle of

landmarks (see figure 2.4 and Hilbert and Cohn-Vossen, 1952 for a proof). The

principal axes of the circle and ellipse lie at 90 degrees to each other both before and

after the transformation but vary in length, or dilate. The product of these principal

dilatations gives a measure of the ratio of change in the inscribed area and the quotient
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menton triangle
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of dilations a measure of the "anisoiropy", or direction, of this size change (Bookstein,

1984a).

axes of ellipse
(principal dilation directions)

/\/K
Figure 2.4: An ancient theorem tells us that an inscribed circle is transformed into
an inscribed ellipse via the movement of the vertices of the triangle.

b) Application to facial changes

Bookstein applied his technique to several problems including analysing the changes in

hard tissue landmarks on the skull, which were obtained from cephalograms. The 2D

changes in landmark locations were determined by consideration of the change in

rotation and translation of a triangle of landmarks between two data sets (see figure

2.5).

The choice of landmarks

maybe such that none are

involved in the surgery,

therefore allowing an accurate

measure of the rotation and

translation of the triangle to be

obtained from case 1 to case 2.

If one or two landmarks are
Figure 2.5: Illustration of the change in landmark location
for a triangle of landmarks

located on a part of the face that is changed during surgery, the deformation of the

triangle between the two cases maybe obtained provided at least one landmark is kept

invariant. This method provides a valuable but incomplete analysis of facial changes for

small portions of the surface.

Bookstein (1984a) also used this method to analyse the

changes that occurred during growth in the nasion-

basion-menton triangle and sella-nasion-menton triangle.

He found that at a 0.95 confidence level, between 66%

and 88% of the changes were due to change in shape (his

null hypothesis was no shape change had occurred). In a

second paper, he applied this method to cases of Apert's

syndrome and Crouzon's syndrome, which are

deformities involving the cranium (Bookstein, 1984b).
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In the study of craniofacial growth, the morphological differences between the head at

different eras during a lifetime is important. These changes have traditionally been

investigated using cephalometry. The problems of traditional X-ray cephalometry have

been discussed at length by Moyers and Bookstein (1979) and Richtsmeier and

Cheverud (1986). Geometrically, it is based on choosing a specific point as the centre of

a registered system (often the sella) and an orientation line (often the sella-nasion line),

to specify the direction of growth. The amount of growth which occurs at this "fixed

point" and choice of different orientation lines have yielded incongruous results

between studies (Bookstein, 1983). The biorthogonal method, as applied in

cephalometrics, is intrinsically bound up with landmarks and fails to explain the curved

form between them and its changes.

Both Moyers and Bookstein (1979) and Richtsmeier and Cheverud (1986) highlighted

the need for a registration free method (in two and three dimensions) for investigating

human growth and the necessity for presenting data about form at different levels of

description. In traditional cephalometric studies, the changes in the angles formed

between landmarks triplets do not reveal the cause of these changes. This is because

the same magnitude of change maybe due to the movement of different landmarks (eg.

figure 2.7).

Figure 2.7: Three ways to produce the same magnitude
of angle change, by movement of different landmarks.

c) Finite element analysis

An analogous method to biorthogonal grids was the finite element scaling analysis

(FEM) method of Richtsmeier and Cheverud (1986) which was developed in the field

of continuum mechanics. Biological grids are essentially the simplest form of finite

element analysis (Richtsmeier and Cheverud, 1986).

In fmite element analysis, volumetric elements are constructed from landmarks and

located in the changed object. A mapping function is calculated from the changes in

landmark position, to enable comparison over the entire object. The smaller the

elements used, the more accurate the description. The mapping can be used to obtain
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(size and form) strain tensors and deformation gradients, local to a landmark, and hence

allow the difference in form to be quantified. Application of this method in two

dimensions revealed that change in shape occurred at all landmarks across the face,

with the least amount of change occurring over the neurocranium and the sella-nasion

line. However this line, which has often been used as an invariant reference line for

measuring the direction of growth, was shown to bend during growth! Finite element

methods do not allow any more of the object surface to be described than any other

analysis of landmark configuration.

2.2.3 Landmarks

At the heart of all these deformation methods is the role that landmark points play on a

surface and how they may be used to describe the shape of the surface and changes in

shape. But what are landmarks?

A landmark, in the three dimensional sense, may be thought of as a specific point which

is of necessity well-defined on the object and easily located. It is an anchor point that

can be used to measure distances on the object or between objects. Most importantly,

landmarks do not define the form but rather they serve as pointers to hold our

conceptual place upon it (Moyers and Bookstein, 1979; Bookstein, 1978 p.17).

The position of an extremal landmark cannot be located until the orientation to be used

for the analysis is fixed because they change with respect to orientation. That is, the

orientation can be defined in terms of the location of these landmarks (Bookstein, 1978

p.13). It is therefore inappropriate to choose as landmarks points which have extreme

values relative to the coordinate system. A sound landmark has an intrinsic definition in

terms of anatomy or boundary curvature in its vicinity (Bookstein, 1984a). In Euclidean

space, the most informative landmarks have been said to be vertices or points of very

high Gaussian curvature (Attneave & Amoult, 1956).

The importance of chosing good landmarks was acknowledged by Bookstein as

essential for his analyses. Further, he has suggested three types of landmark, each with a

different power for describing shape (Rohlf and Bookstein, 1990, p.216-222). In order

of their power for the description of shape, these are: i) the confluence of three bony

structures which is a recognisable point between regions of distinct histology ii)

extrema of curvature and iii) extremal points such as endpoints lying at the end of a

"medial axis" (Blum, 1973) or the most extreme point in some directions for the form.

The third category of landmarks are explicitly not locally determined points whereas the

other two kinds are.
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Figure 2.8: Illustration showing the different ways in which 3
landmarks maybe joined by a connecting surface.
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According to Bookstein, landmarks are essential for the division a form into segments,

although the segmentation must be meaningful in terms of the biological process acting

on the form. They are the points at which one's explanations of biological processes are

grounded (Rohlf and Bookstein, 1990), delimiting our explanations of effects upon

form. The statistics of the landmark locations are also the statistics of all models of

deformation driven by the landmarks (Bookstein 1986).

It is obvious that the use of landmarks for the analysis of 3D objects has severe

limitations. Landmarks are of importance, but they not sufficient for shape analysis

(Bookstein, 1978a p.14). For example, the three points a, b and c in figure 2.8 maybe

joined in any of three ways.

In essence, the analysis of

landmarks reduces to the

study of triangles

(Bookstein and Cutting,

1988). Today's technology

allows the collection of a

large amount of body data

(eg. C.T. and optical surface

scanners) and the use of

such a small quantity of the

available information for the description of differences between data sets means that

subtle anomalies in the data are not quantified and valuable information may be missed.

It has been pointed out on many occasions over the last decade that the study of three-

dimensional form must find a way of describing the curving form in between

landmarks, independent of any scheme of conventional anatomical landmarks (eg.

Bookstein and Cutting, 1988).

Contour descriptions

Early attempts to describe the shape 2D outline contours found in biological shapes,

were based on the number of lobes in the contour (Bowie, 1973) or parameterized the

contour as a function of the perimeter and area ("P2/A") (Bacus and Gose, 1972).

However, these proved not to be robust, frequently leading to shapes of similar

appearance being represented by wildly different "P2IA" values when evaluated using a

discrete grid (Rosenfeld, 1973).

In 1974, Young and colleagues introduced another concept which defined the

transformation between biological shapes in terms of bending energy (Young et al,

1974). Bending energy is defined as the amount of energy (or work) done in forming a
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biological shape from a linear, thin-shelled medium. Intuitively the shape in which a

free elastic medium would minimize its stored energy in two dimensions is a circle and

in three dimensions is a sphere. It follows that all other shapes, that can be formed from

a continuous bounding contour, require work to be done to form them because the

preferred shape will be the one which requires the least amount of energy. This work is

termed the "bending energy" of the shape. Equivalent classes of shape require the same

amount of bending energy to form. The bending energy can be calculated using a

weighted sum of Fourier series coefficients.

Bowie and Young (1977a) showed that the bending energy of a contour is a better

discriminator of complexity of the shape than the perimeter2larea technique and that it

relates well to human perception and assessment of complexity of shape. They also

showed that the normalized mean absolute curvature of a shape was also a good

discriminator of the complexity of a contour (Bowie and Young, 1977a). This was

calculated by applying a convolution mask of different sizes to the contour. In a second

paper, the segmentation of contours by applying a threshold to curvature at points of

constriction around the contour was explored (Bowie and Young, 1977b). This also

worked well.

L4	 Thin-plate splines. principal and relative warps

In 1989, a method principal warps, which are based the concept of bending energy,

were applied for the description of more complex shape deformations (Bookstein,

1989). In this method, a shape deformation is modelled in terms of splines, which each

have a certain amount of bending energy. The deformation is then modelled by an

affine transformation and a number of principal warps. These warps are geometrically

independent, affine-free deformations of progressively smaller geometrical scales.

Bending energies of spline functions, describing the object at different scales, are

inputted into a matrix and the principal warps are calculated from the eigenvectors of

this matrix. Relative warps, eigenvectors of the variance-covariance matrix of landmark

coordinates with respect to bending energy, are analogous to ordinary principal

components (Rohlf and Bookstein, 1990, p.238).

The representation produced by this method is quite complex, although it allows the

shape change to be decomposed into components. The addition of more landmarks

along the curve being described, produces a better description but sometimes the

construction of pseudo-landmarks is necessary to obtain a good fit! Bookstein maintains

that this method can be extended to 3D relatively easily, but the mathematics gets tricky

and this claim has not been demonstrated.
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2.	 Process history of shape change

Yuille and Leyton's (1987) symmetry-curvature duality theory formed the basis not

only for Leyton PISA description of shape but also for his process history concept of

shape change (Leyton, 1988). In this concept, the symmetric (medial) axes of a contour

are interpreted as the principal directions along which the imagined "shape forming

processes" are most likely to act or have acted.

Leyton found that four types of curvature extrema occur on a contour. These are

M+ local maximum,positive curvature protrusion

m+ local minima,positive curvature	 indentation

m local minima,negative curvature	 squashing

M local maxima,negative curvature	 internal resistance

which can be interpreted as a protrusion, indentation, squashing or internal resistance

respectively. Leyton viewed the shape of objects as a result of a historical process.

Changes in shape from one contour to another were seen as a further example of this

process. Thus, Leyton evaluated the shape of a bounding contour as its distortion from a

circle (or sphere in 3D) - the shape which requires the minimum amount of energy to

form. This distortion was described by a "process grammar" which consisted of six

rules. These were derived by consideration of what happens to the four curvature

extremum under firstly, continuation of the process which formed them and secondly, a

bifurcation process (Ic. the extremum splits into two copies of itself with an extremum

of the opposite type formed in between the two). These rules represent the processes of:

i) squashing until indentation, ii) internal resistance until protrusion, iii) a nodule

becoming a lobe, iv) an inlet becoming a bay, v) a protrusion is introduced and vi) an

identation is introduced. Using these rules together with the asymmetry rule, a path

between two bounding contours can be identified. The asymmetry rule says that the

least deformed shape is one with no negative curvature. This process history concept of

shape change allows a perceptually meaningful description of the change in shape to be

made.

Leyton's process history represents a more developmental and growth based extension

of Richards and Hoffman's (1985) "codons" description of 2D curves (described in

chapter 1). Recall that "codons" are extrema triplets with minima endpoints. They have

"duals" which are formed by exchanging extrema labels M+ <> m+ and M <-> m.

This is a locally applied technique which lacks multi-resolution ability but although

Leyton described his theory in two dimensions, the method nevertheless has the
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potential to be extended to 3D either by direct application to 3D lines or by

development of 3D versions of the rules used.

2	 Statistical anal ysis of shape change

A second approach to morphometrics has been made by statisticians. If shape can be

mathematically described then it will have a statistical theory associated with it. This

introduces a whole new field which enhances the mathematical basis of shape

description still further. A brief summary of recent ideas concerned with the statistics of

shape description is given here.

The "multivariate approach" to morphometrics, that is the idea of using size and shape

variables to describe biological forms, has been in the minds of biologists for a long

time. Galileo was the first to draw attention to the effects of increasing the size of an

animal without a corresponding change in shape, and the resulting inability to maintain

the creature's same biological functions. This observation has been one of the

foundation stones of evolution and zoology and is continually referred to by today's

biologists (eg. Sir David Attenborough) as the reason why animals and plants of a

specific species are limited in their size. The inter-relationship between size and shape

was formally stated in Mosimann's theorem (Mosimann, 1970). It was, therefore,

natural for investigators to try to analysis biological objects by their size and shape (eg.

Sprent, 1972).

In 1977, Kendall introduced a theory of shape which defined shape in terms of a set of k

points in m dimensions. In his 1989 review of the subject, he explains how "shape

spaces" may be identified and how corresponding probabilities of real objects

occupying them are assigned (Kendall, 1989). Points can then be mapped from real

space, Rm to the shape space (an analogous idea to Extended Gaussian images). The

shape spaces can be organised into 2D arrays, which are used to discover the

discriminating global characteristics of shape space. The statistics of obtaining a set of

points with various empirical characteristics can be determined. This approach enabled

Kendall to deal with problems in archeology, astronomy, geography and physical

chemistry such as the likelihood of a clusters of stones, such as Stonehenge in England,

being laid down according to a plan, or the analysis of the position's in which quasars

which appear to lie, along arcs of great circles on the celestial sphere, by mapping

spherical triangles onto the shape space.

The application of Kendall's technique to morphometrics is explained by Bookstein

(Comments on Kendall, 1989, p.99-105). The important questions here are not the

colinearity of points, but rather differences of mean shape, factors underlying shape

variation. One is specifically interested in small differences in shape. Bookstein
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proposed a metric for shape change equivalent to the bending energy of a configuration

of points, on an object (Bookstein 1989).

Kendall's technique is, essentially, the statistical analysis of the relative positions a set

of points and therefore applicable to facial landmarks. Corrections are made for the

effects of translation, rotation and scale and the resulting form is called the shape of the

structure. Small (Comments on Kendall, 1989, p.107) points Out that changes in the

shape of the object can occur from two ways, either through the perturbation of

individual points or through a global transform of the Rm space in which they lie. The

lack of obvious landmarks on some structures hinders this. In the case of biological

shapes, landmark identification very often proceeds on the basis of expert opinion in

pin-pointing homologous points (Mardia's comments on Kendall, 1989, p.109). Martha

used an algorithm to calculate the local absolute curvature maxima to obtain landmarks

on a contour. Additional information was provided by pseudolandmarks either side of a

landmark.

Kendall explains the idea of "size-and-shape" of a set of points in Riemannian space

and shape theoretic considerations of random Delaunay tessellations. Evaluation of the

tessellations by the angles at the vertices is proposed by Stoyan (Kendall, 1989, p.1 15).

Moss et al (1991) performed a similar sort of tessellation-based analysis using triangles

constructed from facial landmark points to assess the change in area of triangles before

and after facial surgery.

Li Summary

Biological shapes are not static objects but organisms that grow and evolve. The

methodology described here for describing their shape takes account of this fact. It

might be thought that these methods would be the most useful for describing the face,

which is after all part of a living organism. However, the deformation of form methods

rely heavily on the accurate and consistent positioning of landmark points. This means

that the analysis of shape changes produced by these methods is limited by the accuracy

to which landmarks can be identified and restricted to small portions of the surface,

failing to adequately describe the surface shape in between landmark points.

Other attempts at describing biological shapes have involved the calculation of a

quantity called bending energy. This has been used to describe the shape of the outline

of a contour (section 2.4) or to describe spatial warps containing the form (section 2.5).

The use of bending energy to describe a contour, appears to give a useful measure of 2D

shape and is used in chapter 7 of this thesis. The description of a shape in terms of

spatial warps produces a complex representation of the shape change, which is not easy

63



Biological Shape

to interpret and difficult to extend to 3D. Thus does not appear to be a suitable method

for quantifying the shape of the face.

Although not used in this work, Leyton's process history concept of shape change

appears very promising and visually easy to interpret. It allows small scale shape

changes to be described and may be extendible to 3D.

The mathematical basis of shape description has been enhanced by the introduction of

statistical theory. At present, statistics has only been concerned with the analysis of a

set of points (landmarks).
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CHAPTER 3

3D SURFACE DATA ACQUISITION SYSTEMS FOR THE FACE

The shape of the human body has been a topic of interest for centuries. Unlike regular

solids, the complexity of its shape is hard to quantify exactly. In order to attempt a

mathematical description of the body or the face, the three dimensional form must be

first measured accurately.

The importance of acquiring 3D data for the body was realised by the ancient

Egyptians, Greeks and Romans. Greek Sculptors would place boxes around people and

measure the depth of the body at many points using rods. Stone would then be chiselled

away to these depths at the corresponding points to form realistic figures. This was, of

course, highly labour intensive and although beautifully proportioned figures were

produced, they probably took many years to fashion. Even so this calliper approach was

still in use up until about 15 years ago for making measurements of the body in

radiotherapy because no other practical method existed.

The Renaissance era emphasised the idea that a work of art should faithfully represent

nature. Artists developed the ideas of perspective and proportion in their pursuit of

realistic representations. The principles of geometric representation were explained to

sculptors by Alberti in his book Della Statu (c.1440). There he described an instrument

called a "definer" which consisted of a disc fastened above a statue with a plumb-line

suspended from it. The disc was rotated until the plumb-line made contact with a point

of interest on the statue. This enabled the point to be defined in three dimensional space

using a cylindrical coordinate system. In 1582, Albrecht Dürer explained the use of

drawing frames and other devices for recording the size and shape of the human body in

his four books on human proportion (DUrer, 1582).

In this chapter, methods for acquiring 3D measurements of the human form, and in

particular the face, are reviewed. From these, one method was selected for collecting

3D data sets of the face for use in this work. The optical scanning system available at

University College London was a natural choice of system and the data collected was of

adequate resolution for my purpose. Optical scanners have certain advantages over

other non-contact systems which are currently employed for the collection of 3D

surface data, although some of these systems are also suitable. Other non-contact

systems which have been reported include stereophotogrammetry,

rasterstereogrammetry and moire fringes. A brief review of the capabilities of these

systems is given by Gallup et al (1990). The principal advantages and disadvantages of

each of these systems are briefly considered below.
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j Stereoohotogrammetry

The principle of stereophotogrammetry is analogous to that of depth perception in

human vision, that is, it is based on the principle of looking at an object simultaneously

from two slightly different viewpoints.

The mathematics of stereoscopy was first published in 1832 by Sir Charles Wheatstone

and the first stereoscopic cameras were invented in the mid-1850's. One of the first

practical uses for this new technique was the compilation of a photographic map of

Grenoble by Aime Laussedat in the 1850's and it is in aerial surveys and latterly remote

sensing where this method now has its primary application. Its potential for

biostereometric measurement has also been explored. An excellent review of the history

of body measurement using stereophotogrammetry is given in Herron (1972).

The potential of this method for recording the facial surface was first realised by

Mansbach (1922) but it was Zeller (1939) who first demonstrated use of

stereophotogrammetry to record the facial surface and he encouraged Thalmaan-Degan

(1944) to apply the method clinically. She reported changes in facial morphology due to

orthodontic treatment and illustrated and quantified them by means of contour plots.

This method has since been used to study the face in many countries and by many

authors. The most active of these were in Sweden, where researchers were particularly

active in the 1940's, 50's and 60's, (eg. Bjorn et al, 1954), in Japan (eg. Haga et al,

1964), in England (eg. Burke and Beard, 1967; Dixon and Newton, 1972) , and in the

United States (eg. Berkawitz and Cuzzi, 1977).

In stereophotogrammetry, an object is photographed simultaneously by two or more

cameras, from different positions, and stereo analysis is used to obtain the 3D surface

(eg. Burke and Beard, 1967; Herron, 1972; Berkawitz and Cuzzi, 1977; Frobin and

Hierhoizer, 1978; Savara et al, 1985). Three dimensional coordinates are obtained by

identifying the same points on both images using either a pattern projected onto the

objects surface or by placing physical markers on the surface. The main advantage of

these systems are that the collection time is fast (a fraction of a second) and they

therefore have the potential to be used for dynamic studies. They are also accurate in

their measurement of the surface to sub-millimetre level. The disadvantages are that

complex optical systems are involved and a skilled operator and complex computations

are required to yield accurate, and consistently good, results. Although data can be

acquired rapidly, considerable time is needed to process the film and digitize the image.

This makes it unsuitable for clinical use. Recently attempts have been made to automate

the analysis of stereophotographs and video frames and identify corresponding points

on each photograph (Banda and Muller, 1991).
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The accuracy to which this method records the facial surface was claimed by Savara to

be 0.2mm (Savara, 1965a). However, further investigations suggested that the standard

deviation error was 0.69mm (Burke, 1971; 1972) with errors of up to 0.8mm (Burke

and Beard, 1967). The long processing time involved and its lack of automation

together with recent advances in other data acquisition techniques have led to a

reduction in the use of stereophotogrammetry. The expense and complexity of

analysing images produced by stereophotogrammetric systems has led researchers to

look for cheaper and simpler methods of making surface measurements amenable to

direct computer acquisition and analysis.

Moire topography
In 1970, Takasaki (1970) described a process called moire Topography. In this

technique, a light source is projected through a grid, casting a shadow onto the surface

of the object to be measured. This shadow is then viewed through another grid and a set

of fringe patterns are seen. These are called moire fringes and they correspond to

contours on the surface under investigation. Topographic information can be extracted

from these fringe patterns but in practice this is a tricky and time consuming business.

A permanent record of the toiré fringe pattern can be provided by photography.

Since then oiré fringes have been used by many researchers

to try to measure parts of the human body, especially the back

(eg. Takasaki, 1974; Groves et al, 1990) and ate now being

used to screen school children for signs of scoliosis (Burwell

et al, 1990; Neugebauer and Windischbauer, 1990). Moir6

fringes have also been used by a number of authors to

measure the static face (Takasaki, 1970; 1974; Xenofos and

Jones, 1979). Figure 3.1 shows an example of the moire

fringe pattern produced on a face. The fringe patterns have

been digitized by Tsuchiya et al (1985) and used to measure the movement of the facial

surface forward, due to surgery, and regression.

Considerable debate has taken place in the last decade or so about the potential of this

method with many techniques being devised to evaluate the fringe patterns. The fringe

patterns are strongly dependent on the position and orientation of the patient

(Hierhoizer and Frobin, 1982; Turner-Smith, 1988) and considerable skill is needed to

interpret them (Turner-Smith, 1988). The surface can only be measured from one

viewpoint using this method. For 360 degree measurement, separate photographs taken

from different viewpoints would be necessary as well a means of connecting them

together, possibly by using surface markers. The characteristics of the fringe patterns
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that make them difficult to analyze and quantify have been pointed out by Halioua and

Liu (1986) and Elad and Einav (1990) and include ambiguity in the fringe order and

sign, noise patterns which are generated by the grating, non-uniformity in sampling, the

specific system geometry and the need for a large digital image processing capability to

achieve some degree of automation. Recently, some advances have been made towards

automatic analysis (Reid et a!, 1986; Reid and Rixon, 1986; Boehnlein and Harding,

1986; Kawai et al, 1990).

On body surfaces, especially the facial surface, the complex patterns which are formed

by moir6 fringes are not well suited to automatic conversion into 3D coordinates

(Arridge et al, 1985). The poor reflectivity of the facial surface produces blurring in the

shadow of the projected grid, although this problem maybi surmountable by coating the

face with a reflective powder. A more difficult problem is the need for precise

positioning of the head since small changes in head position produce large changes in

the fringe patterns (Kanazawa and Kamiishi, 1978).

Fourier transform method

The Fourier Transform method was proposed by Takeda and Mutoh (1983) in order to

overcome some of the difficulties associated with rwMr fringe patterns. The Fourier

transform was ised to analyse the bands of light produced when a grating pattern was

projected onto an object. This process avoids the need for determining the order of

fringes, locating the centre of the fringe or interpolating between fringes since it

provides the distribution of the object's height across the entire image. It is also

sensitive to variation in height within fringes and can automatically distinguish between

depressions and elevations in the shape of the object. However, despite these

considerable advantages over traditional moire fringe methods, a large computation

capability is still required as well as very high resolution devices and problems remain

when the slope of the surface is steep or contains step discontinuities (Halioua and Liu,

1986).

4 Projected-grid photography

In the last two decades a number of enhancements to standard photogrammetry have

been explored by researchers. Joel (1974) projected a plane of light onto the surface and

photographed it obliquely. This method is sometimes known as

"Lichtschnittsverfahren". He noted that distortions due to perspective arose and showed

how they could be corrected for. Another method, termed "projected-grid

photogrammetry" was devised by Lovesey (1973; 1974a; 1974b) specifically for

recording the facial shape accurately. Lovesey required accurate facial data in order to

improve the design of aircrew oxygen masks. A pattern of equally spaced parallel lines

were projected on to one side of the face and the resulting distortion of these lines, lines

of points of equal depth, producing a contour map of the surface were photographed
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from the front of the face. The grid projected was composed of different coloured lines

to make it easier to trace the path of an individual contour on the face. The major

drawbacks of this arrangement were that the set-up allowed only one half of the face to

be recorded at a time and that shadowing was not eliminated, thus parts of the face

around the eye socket were not recorded. The system was reported to measure the

surface to an accuracy of less than 0.7 mm and was cheap and relatively simple.

1	 Rasterstereogrammetry

In 1980, the term "Rasterstereogrammetry" was introduced by Hierhoizer and Frobin to

describe their system which was designed specifically for the measurement of body

surfaces (Hierhoizer and Frobin, 1980). Rasterstereogrammetry is a hybrid of traditional

stereophotogrammetry and moire topography and its development reflects the concern

of these authors about the difficulties of analysing cioiré fringe patterns

mathematically. In rasterstereogrammetry, one of the cameras used in traditional

stereophotogrammetry set up is replaced by a projector which casts a structured light

pattern (typically a grid) obliquely onto the object. A single camera placed at a different

viewpoint, records the distortion of the grid on the surface yielding 3D information (see

Frobin and Hierholzer, 1982b for the system and calibration details). Similar methods

were described by Corny et al (1990a) and Lerch and Barish (1978).

Rasterstereogrammetry has been successfully employed to measure human back

surfaces (Hierholzer and Frobin, 1980; Frobin and Hierholzer, 1981; 1982a; Hierhoizer

and Drerup, 1990; Elad and Einav, 1990) to a reported resolution in depth of 0.4mm

(Frobin and Hierholzer, 1990). It has also been used to measure the facial surface to a

precision of better than 2mm Corny et al (1990b).

This method had the drawback that a long time is spent in processing the information

collected but recently the speed of data analysis has been improved by using a video

camera to collect the data in place of the conventional camera, thereby automatically

digitizing the data as it is collected ready for subsequent computer analysis (Frobin and

Hierholzer, 1990). This advance has reduced the data collection and processing time to

about seven minutes in total.

A similar system was produced by the Altschuler brothers and their colleagues in 1979

(Altschuler et al, 1979). In their system, dot patterns were projected by laser onto a

surface which was then viewed from one or more suitable aspects. One application of

this system has been to measure teeth. A resolution of 20 microns has now been

achieved for a 1 cm3 tooth (Altschuler, 1990). The field of view can be altered from 1

cm to several metres by changing lenses, making it suitable for a wide range of

applications. This system has been used by NASA to design gloves for astronauts. The

advantages of this particular system, apart from its accuracy, are that the data

69



3D Data Acquisition

acquisition time is fast (a fraction of a second) and the signal detected is clearly defined

(as the peaks of laser light reflectance). The smaller versions are also portable!

Sonic digitizers

Sound and ultrasound measurements have been long used to measure the internal body

structure but the almost total reflection of an incident ultrasound wave at the body

surface, due to the very large change in acoustic impedance at the air/tissue interface,

led researchers to investigate the possibility of using ultrasound to record the surface of

the human body.

The feasibility of this technique was reported in 1974 by Short and colleagues (Short et

al, 1974) and Lindstrom and his colleagues found that a resolution of between 1.0 - 0.1

mm in the axial direction was achievable depending upon the application (Lindstrom et

al, 1982). A number of people have built these sort of systems one of the most recent to

be reported was developed by Science Accessories Corporation, Connecticut (Gallup et

a!, 1990). In this particular system, a sonic emitter is located at a point on the object's

surface and a sound pulse emitted which is detected by four microphones placed at

different locations in the vicinity. The distance of the emitter from each sensor can be

calculated from time elapsed between the transmission and detection. Thus "time-of-

flight" measurements are made allowing the calculation of distance to the object's

surface.

The precision in measurement of this method has been reported to be poor, 3mm error

on a point (Gallup et al, 1990). The major errors in the measurements result from

turbulence in the air traversed. The imaging procedure takes several minutes (6 minutes

and 10 minutes have been quoted in the literature) which is nowadays regarded as being

too long for clinical use. Its main advantages appears to be its portability and that it can

be used to measure objects as large as the entire body surface on one go. It appears to be

a very promising technique but clearly further development is needed to enable it to be

used for clinical applications.

i Optical scanners

Over the last decade or so a number of optical scanning devices have been developed by

several groups of researchers in order to measure the surface of the human body

(Arridge et al, 1985; Brunet, 1990; Cutting et al, 1986a; 1986b; Duffy and Yau, 1988;

Halioua and Liu, 1986; 1989; Halioua et a! 1990a; 1990b; 1990c; Livingstone and

Rioux, 1986; Maldague et al, 1986; Moss et al, 1989; Turner-Smith, 1988; Turner-

Smith et a! 1988). A forerunner of these was the laser spot scanner, developed by Ishida

and colleagues, used to measure cross-sections of the trunk for the detection of scoliosis

(Ishida et al, 1982). Quicker and more efficient methods soon followed.
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In optical surface scanners a single line of light is generally projected onto the object's

surface and its distortion recorded by a camera viewing it obliquely. The surface

geometry along the line is computed from its distortion. A combination of camera, line

source and subject movement are used in order to cover the desired surface. This is

termed "scanning".

Optical scanners have been made with between two and five degrees of freedom. Those

with three or more degrees of freedom (Koch, 1990; Laser Design mc, of Minneapolis'

system) allow data to be collected from very complex and occluded objects. However,

these are too slow at data collection for clinical use (Sadler et al, 1990). For most

human applications those with two degrees of freedom have proved to be adequate, one

exception might be the foot.

These systems have the great advantage that they are driven by computers and so the

data collected is immediately available for analysis. For example, the data maybe be

electronically archived and transmitted with measurements or 3D images produced for

validation and these may all be done extremely rapidly. In clinical applications, where

rapid collection and processing times are demanded, this is a considerable advantage

over the other data collection systems described above. Additionally, operators require

little training. The main disadvantage is that the collection time is not instantaneous,

typically of the order of 5 to 30 seconds. However, this has not proved to be a handicap

for the majority of clinical applications. The only exception, in our experience, are

children under 4 years of age who have difficulty in keeping still.

There are several commercially available systems based on this principle. These are

most notably, the ISIS system produced by Oxford Metrics which measures the back

surface (Turner-Smith, 1988). CYBERWARE Laboratories Inc. of Monterey,

California, Dimensional Measurement Systems Inc. of New York (Halioua and Liu,

1986; Halioua et al, 1990a; 1990b) and Vision 3D system of France (Brunet, 1990) all

manufacture a range of laser scanners for collection of 3D data from various parts of the

body. Loughborough University of Technology have produced a non-commerical

system for scanning the whole body (called "LASS") which is being used by clothing

manufactures and the Armed Services (Jones et al, 1989). 3D Scanners Ltd now market

the system for scanning the face and head designed at U.C.L. (Moss et al, 1989).

Holography and phase-measuring techniques

The use of a high-powered laser to construct a hologram of the face was described by

Ansley (1970). The accuracy of this technique was assessed by Cobb (1971) using a

dummy head. He found that an accuracy of 2mm could be achieved. The technique

requires a burst of energy of 1-3 Joules for a duration of 30 nanoseconds. Holographic

techniques have not been used for facial measurement partly because of concern at the
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dangers of tissue damage from these high energies but also because the accuracy is not

considered good enough.

In the late 1980's, some very ingenious and versatile systems were developed by

Halioua and Liu for industrial and body measurement applications (Halioua and Liu,

1986; 1989; Halioua et al 1990a; 1990b; 1990c). Three separate measurement

techniques using the same computer hardware but with different optical arrangements

were devised. In "Phase-measuring profilometry" a sinusoidal grating pattern is

projected onto an object, seated on a turn-table. The distorted pattern is viewed

obliquely by a CCD camera which collects the data (Halioua and Liu, 1989). This

represents a cross between optical scanning and rasterstereogrammetry. A second

technique "Phase-measuring polarization interferometry" was designed to measure 3D

mirror surfaces. Here a laser beam is projected through a crystal onto the surface. The

incident and reflected waves are caused to interfere with each other and CCD camera

captures the resulting interference patterns. The third technique is "Phase-measuring

holographic interferometry". Here two states of a surface, one at rest and one under

stress, are caused to interfere with each other using a double-exposure technique.

AU these techniques have a fast data acquisition time (under 1 second) and processing

time (30 seconds). They have very good precision, achieving a RMS error of 0.65mm

on a back surface. They can scan over 360 degrees and are low cost. Specific systems

have been devised for applications as small as teeth (measured to 5 .tm) and as large as

whole bodies. Profiles and other measurements can be readily extracted and the data

visualized either as a contour map or as a (shaded) wire mesh model.

Halioua and Liu have applied these techniques to a wide range of industrial and body

measurement applications (eg. to the back, the breasts and the face) producing very

good quality images.

The UCL optical surface scanner

In this work, the facial surface data used was obtained from the optical scanning system

at University College London (UCL). This system has been fully described elsewhere

(Arridge et al, 1985; Moss et a!, 1987, 1989) so only a short resume of the scanner and

its precision is given here.

The UCL optical surface scanner was originally designed for the purpose of following

changes in the facial surface brought about by facial surgery and to provide a database

for the planning and simulation of surgery (Arridge et a!, 1985).

A laser beam is fanned out into a vertical line using a cylindrical lens. This line is then

projected onto the subject's face, or surface to be scanned, and two mirrors reflect the
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light along disparate paths into separate halves of the field of view of a video camera

(figures 3.2 and 3.3). This is equivalent to two cameras viewing the laser line from

either side. The reason for this unusual optical arrangement is the need to avoid

occlusion of parts of the face adjacent to the prominence of the nose. The video signal

is digitized and superfluous signals suppressed using a digital comparator to leave only

the signal due to the images of the line. To record data over the entire face, the subject

is rotated under computer control and the distortion of the laser line as it illuminates the

face is used to compute the facial geometry. To avoid loss of data, caused by the high

angle of incidence under the chin, the head is tilted back slightly.

Figure 3.2: Schematic diagram of the optical
	

Figure 3.3: Geometry of the viewing system. Only
surface scanner. (from Moss et al, 1990)

	
one laser beam is shown (from Moss et al, 1990).

The vertical extent of the profiles is limited by the slope of the forehead since the

intensity of light reaching the camera from this region falls rapidly due to the angle of

incidence. The scanning interval is programmable. In this work, the laser line is

recorded every 2.8 degrees of rotation, except over the central portion of the face,

between the two inner canthii, where it is recorded at every 1.4 degrees. The smaller

interval across the central portion of the face is used because of the greater facial detail

in this region. Individual profiles are recorded with a radial spatial resolution that is

better than 0.5mm. The vertical resolution, within a profile, is better than 1mm.

Assuming a radial distance of 100mm, the sampling interval used gives resolutions

around the head of 2.4mm over the central regions and 4.8mm elsewhere.

Hair does not reflect laser light very well and can produce artifacts. These can be

avoided by covering the hair with a stocking. This was done for the "normal" subjects

used in this work. These subjects were scanned over 360 degrees, enabled the shape of

the whole of the head to be recorded. This also had the effect of removing the hairstyle

of the person, which was important for our collaborative work, in investigating facial

recognition, carried out with psychologists at Nottingham University. The facial surgery
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patients were scanned from just behind one ear to just behind the other (a 220 degree

scan) with the hair held back from the face by clips to avoid spurious data points from

hair overhanging the face.

The acquired data are stored in computer memory. Approximately 20 000 3D

coordinates are derived for the facial surface and approximately 40 000 for a whole

head. These are filed to disk for storage.

The stability of the optical surface scanner has been investigated by Hammond (1987),

who measured a calibration line positioned at 70mm from the axis of rotation at

different times of the day, over several weeks. He found that the mean value of this line

was 69.96mm with a standard deviation of 0.1 1mm. Hammond also scanned a Roman

bust on different days and at different times during the day and determined the accuracy

of a profile through 3 points marked on the surface. He found differences of less than

1mm, with a mean difference of less than 0.3mm. The calibration and validation of the

system have been described by Moss et al (1990).

J.Q Visualization of the data

An important requirement for this work is a means of visualizing this enormous data

set. A graphics systems based on Transputers has been designed for this purpose (Moss

et al, 1987; 1989; Tan et al, 1988; Linney et al, 1989; 1991 and Linney, 1992b).

Figure 3.4: A rendered surface image of a bust of a Roman
general.

The technique used for visualizing the data creates a patchwork of triangles (termed

"facets") from the acquired data, taking advantage of its structured format. These facets
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are then shaded using the Gouraud surface-rendering technique (Gouraud, 1971),

simulating their illumination by a notional light source. This light source may be

positioned at any angle. The 3D graphic image of the data is then displayed on a

monitor (eg. figure 3.4). The data may be transformed to produce an image displayed

from any chosen viewpoint and scaled to any size.

J.1 Summary

A number of different non-contact systems for acquiring 3D data on the facial surface

have been described along with their principal advantages and disadvantages. From

these one method, optical surface scanning, was selected for acquiring 3D data sets of a

number of faces, in order to facilitate this work. A short description of the scanner used,

its operation and precision was given in section 3.9 and the visualization of the acquired

data was described in section 3.10.

The method developed in chapter 6 for describing the shape of the face, operates on the

data sets acquired from optically scanning the face.
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CHAPTER 4

FACIAL MEASUREMENT AND ANALYSIS:
(LiTERATURE REVIEW)

In the previous chapter, modern methods of acquiring 3D data for the face and other

body surfaces were reviewed. The availability of this data allows measurements, in 3

dimensions, to be made with relative ease between points on the facial surface (Moss et

a!, 1989). However, there has been a long history of measurement of the face which

extends as far back as the ancient Greeks and beyond - to the development of classical
geometry.

The face has been measured for various reasons and with different aims in mind.

Orthodontists, anthropologists and police researchers have all been motivated to

produce a description of the face simply because they needed one, however poor, in

order to accomplish what they were trying to do (ie. to plan and assess facial surgery,

describe differences between peoples or to identify a criminal). These descriptions have

been fairly ad hoc and pragmatic. Others have sought to produce more theoretical

descriptions using a more disciplined mathematical approach, treating the face as a

special case of a surface. A few, such as Bookstein, have had both of these motivations.

In this chapter, the various measurements and observations about the face and

differences between faces that have been made by researchers from these different areas

are described. This is to set the context for the work described in later chapters.

Frequently the progress of research on facial description, measurement and analysis has

been limited by the scarcity of suitable data. The rapid measurement optical scanning

systems now available overcome this hindrance and the use of such a system has

allowed us to proceed with some of these.

4J. Facial measurement and analyses of facial changes

Facial anomalies can be very noticeable and their presence was observed as long ago as

2000 B.C. by the Chaldeans (Ballantyne, 1984). Many attempts have been made to

describe these anomalies, the differences between two faces, and the change in a face

observed at two different times. In this section, I will briefly describe the methods used

by orthodontists and craniofacial biologists to study changes in the face that have been

induced either by surgical correction, normal or abnormal facial growth.

These scientists have long been interested in three dimensional measurement, aware

that facial anomalies occur in 3D space and change in shape with time, yet they have

generally lacked the necessary equipment to make sufficient 3D measurements or the

computational facilities to make adequate 3D analyses. One of the first to realise that

the face should be measured in three dimensions was da Vinci. His diagram, shown in
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figure 4.1 (Clark, 1968), suggests that the midline profile should be measured by

projection.
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Figure 4.1: da Vinci's diagram.

3D measurement in these fields was begun by the anatomists and anthropologists of the

19th century who measured distances between points on dried skulls. This allowed

anatomical landmark points and reference planes, (such as the Frankfort plane) to be

defined and used as a basis for comparisons. These points and planes were believed to

be subject to the smallest amount of individual variation. Likewise, certain landmarks

were defined on the soft tissue surface and distances between them measured using

callipers. The definitions of these landmarks have served as a basis for nearly all

subsequent analyses.

Röntgen's discovery of X-rays in 1895 enabled machines to be built to record bone and

soft tissue profiles together of a living head. These techniques were first published in

1931 by two researchers working independently; Hofrath of Düsseldorf (Germany) and

Broadbent of Cleveland (USA). Initially two X-rays were taken orthogonally and

concurrently allowing three-dimensional information obtained using geometry, but

difficulties and imprecision in this method (see section 4.1.1) limited its use and

restricted analyses to two dimensional studies of the midline profile.

The two dimensional analyses that have been made using this technique have

concentrated on performing isolated measurements between points that were easy to

measure. Whilst this has allowed progress to be made in comparing two faces, one

effect of this framework has been to divert attention away from the surface in between
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the landmarks points. I believe this surface to play an important role in describing the

shape of the face. These measurements have, however, led to various standards for

midline profile being laid down, such as the Ricketts (1981) and Downs (1948) indices,

and has allowed some sort of definition of "normality". This is a practical requirement

in orthodontics since it allows the establishment of degree of abnormality.

Later, analysis of the entire facial surface was attempted by producing contour plots

from stereophotogrammetry (section 4.1.3). Whilst these have proved helpful there have

been difficulties in using them to assess the shape of the face at more than just a few

points and in particular in using them to predict how a face would change due to

surgery. In 1986, a leading American orthodontist, Court Cutting, expressed the opinion

that the major requirement for the advancement of computer-aided planning and

evaluation of facial surgery was the development of a surface-based, facial shape

analysis methodology. To my knowledge, no such full 3D analysis of facial shape and

shape changes has ever been made.

4.1.1 Cephalometric analysis

The traditional method used by orthodontists for measuring changes in the face was to

take lateral skull X-rays (cephalograms) of the patient to reveal the position of the facial

bones and soft tissue outline (Broadbent, 1931). This naturally focussed attention, and

analyses of the outcome of facial surgery or growth, on changes in the midline profile

(eg. Subtelny, 1959; Brodie, 1949). Although this is of value, it does not give a

complete picture of the change in shape nor change in movement of the soft tissues and,

by itself, it is of little value for evaluating changes in a patient with conditions such as

unilateral craniofacial microsomia because of the degree of asymmetry involved

(Grayson et al, 1983a).

The characterization of shape by cephalometry was made entirely in terms of distances

between landmarks and angles between pairs of lines drawn through landmarks. It was

assumed that landmarks could be located accurately and repeatedly so it must have been

a bit of a surprise when Miller and colleagues investigated error in marked points on the

maxilla and found that although the error due to measuring 3D distances was 0.1mm 17

0.05mm, the error caused by variability in the operator landmark location was 5 times

that amount (Miller et al, 1965)! In fact, the location of landmarks on the facial surface

is highly subjective in nature and may not be consistent for independent observers. The

accuracy to which soft tissue points can be measured in a mobile area like the lips has

been estimated to be /j to 1.5 mm. (Wisth and Boe, 1975; Hillesund et al, 1978).

In 1979, a strong attack on the lack of theory involved in the cephalometric method was

delivered by Moyers and Bookstein (1979). They pointed out that because of the need

to provide a standardized representation, cephalometry was based on the properties of
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dry skulls not on cranio facial growth. Further, they said that these analyses provide no

information about the shape of the surface (the curved form) between the measured

landmark points, despite its high clinical value. Better methods, they suggested, would

involve measuring tangents and curvatures, extracting medial axes (Blum, 1967) or

using biorthogonal grids (Bookstein, 1978a; 1978b). These were described earlier in

this thesis.

4.1.2 The Drediction of soft tissue changes

The production of this measurement technique, led to attempts at predicting the

outcome of facial surgery. The first attempts involved cutting life-size photographs

along the plane where a surgical incision would be made and repositioning the pieces

according to the amount of bone movement undertaken. In the 1970's, this practice was

superseded when a foundation stone for morphanalysis was laid by Rabey (1971; 1977).

Rabey superimposed two dimensional radiographs (cephalograms) enabling the study of

the magnitude and direction of growth in the midline profile. This led to many studies

of the midline profile, using lateral cephalograms (eg. Freihofer, 1977; Holdaway,

1983; 1984; Bishara et al, 1985). These allowed the movement of the soft tissue

landmarks to be related to the movement of the underlying hard tissue landmarks. For

instance, Hershey and Smith (1974) found that in prognathic mandibular surgery, a

movement of 1mm at the Pogonion produced a movement of about 0.6mm at a the

lower lip, about 0.2mm over the upper lip and 0.9mm at the overlying soft tissue point.

A summary of how profiles, and their relationship to various skeletal planes, have been

used in the planning of facial surgery can be found in Powell and Rayson (1974).

The use of cephalometric studies to try and predict how the soft tissues of the midline

profile would move with surgery has been relatively unsuccessful. The main reason for

this is that the ratio of movement between the soft tissues and the underlying hard

tissues is not well known. Some authors have found a 1:1 correlation (Suckiel and

Kohn, 1978; Robinson et al, 1972) while others have found better correlations in some

areas than others (eg. a 90% correlation over the chin and lower lip but less over the

upper lip area, Hershey and Smith, 1974). Willmot (1981) found that the soft tissues

tend to lag behind the hard tissues by a small extent. In yet another study, more

variability in soft tissue movement was found in the vertical direction than the

horizontal (Kajikawa, 1979). In cases of growth, the changes in soft tissues of the

midline have not been found to be analogous to changes in the skeletal structure

(Subtelny, 1959). The accuracy to which soft tissue changes at selected, corresponding,

hard-tissue landmarks can be predicted has been found to be around 1mm (Denis and

Speidel, 1987). This is also the accuracy to which commercially available cephalostats

can reposition a head (Newton, 1974).
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Figure 4.2 Contour plot of a face.
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A three dimensional understanding of the head was sought by some orthodontists, such

as Broadbent (1931) and Sassouni (1958), who studied lateral and posteroanterior

views. However, these two views were not incorporated into a coherent 3D analysis

until Savara (1965a) reminded the community how three dimensional measurements

could be extracted from a concurrently taken pair of cephalograms (see also Baunirind

et al, 1983a; 1983b and Grayson, et al, 1983b). But even then, the two cephalogranis

were often not taken concurrently and problems existed in registering them and

extracting the correct 3D coordinates for landmarks (Marsh and Vannier, 1983; Vannier

et al, 1984; Moss et al 1987; 1988; Cutting et al, 1989) as well producing reliable 3D

measurements (Baumrind et al, 1983a). The last decade has seen the advent of 3D

methods for planning surgery, firstly from cephalograms (Bhatia and Sowray, 1984)

and then using C.T. and M.R.1. scans to reconstruct the skeletal structure and simulating

surgical procedures using computer graphics (eg. Cutting et al, 1986a; 1986b; 1987;

Moss et al, 1988). This has focussed attention on the lack of methodology for predicting

corresponding soft-tissue changes and describing the facial surface in general.

4.13 Analysis of facial contours and Moire fringes

Another technique that has been widely used for facial measurement is the use of

contour plots or photographs (eg. figure 4.2). These are obtainable from

stereophotogrammetry (Burke, 1972) or by projecting a calibrated radial grid onto the

face and photographing the face together with the distorted grid pattern that is

produced. This method was invented in 1953 by Sassouni. Amongst other studies,

contour plots have been used to measure facial change with respect to time (ie. growth)

(Burke, 1974; 1983; Burke et a!, 1978) and the effect on the face of a congenital disease

(eg. pulmonary stenosis commonly called "moon face", Ainsworth et al, 1978).

Only a relatively small number of measurements,

between landmarks and of profiles, can be made by

this method and the analysis of these measurements

is labour intensive. They do not lend themselves

easily to automatically extracting facial surface

coordinates (Arridge et al, 1985). The accuracy of

these measurements is better than 1 mm but their

reproducibility on a second contour photograph of

the same person has been found to vary by as much

as 2.0-2.3 mm (Leivesley, 1983). Leivesley assigned this difference to involuntary

changes in facial expression. The reliability of photogrammetry of the face was reported

by Farkes and colleagues (Farkas et al, 1980).
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Moire fringe patterns have been used in a similar manner to make similar measurements

(Takasaki, 1970; Xenofos and Jones, 1979) but because of the difficulties discussed in

chapter 3, small facial changes due perhaps to growth or retention of a surgical case are

not recorded with sufficient accuracy.

Surgeons and biometricians generally feel that these forms of analysis are not sufficient

for a realistic assessment of the shape of the face to be made. This belief combined with

the fact that the elastic soft-tissues do not move in the same way as the supporting

skeletal form makes prediction of the outcome of surgery to the face extremely difficult,

especially away from landmark points. Currently prediction of change in shape of the

face from these measurements is thought to be impossible.

As late as 1986, it was realised that in order to analyse a surface in three dimensions a

large number of points on the facial surface would have to be measured (Segner, 1986).

Segner calculated that using 1 point per mm 2 of surface over 10 000 points on the facial

surface would need to be measured and asserted that this was "impractical in clinical

use" (Segner, 1986). Thankfully, the introduction of optical scanning technology and

high powered computers means this number of measurements can be made rapidly.

4.1.4 New profile anal ysis methods

The need for a better analysis of the soft tissue changes has been articulated by many

facial surgeons (eg. Cutting et a!, 1986a). Attempts to use the movements of hard tissue

(bony) surfaces, obtained from standard cephalograms, to predict movements of the soft

tissues due to surgery have failed (Park and Burstone, 1986). This is because of the

variation in soft-tissue thicknesses between individuals, the convexity/concavity of the

individual face and the lack of documented data on these depths. The susceptibility of

the soft tissues to change and relapse after the operation has increased the desire of

surgeons to obtain a better understanding of the morphology and morphological

changes of the face (Bhantia et al, 1985).

Recently, some new methods for analysing the shape of facial profiles have been

proposed. These have been developed by mathematicians and computer vision

scientists. Fourier analysis has been applied to profiles taken through the cranial base by

Lestrel and Roche (Lestrel, 1978; Lestrel and Roche, 1986), to profiles of the mandible

by Halazonetis and colleagues (Halazonetis et al, 1991) and to fronto-facial sagittal

profiles of modern man (Homo sapieans sapieans) and Australophiteus africanus by

Pesce-Delfino and colleagues (Pesce-Delfino et al, 1987). In this method, a curve-fitting

method is used to approximate the shape of the profile and obtain an accurate

quantification of the profile. The approximating curve is then described using the

Fourier method. However, it is difficult to relate the values of the Fourier coefficients to
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the shape of parts of the profile because of the global effect of each Fourier waveform

on the fitted curve.

A second method for describing facial profiles is the pattern recognition technique of

Scale-space (Witkin, 1983; Mokhtarian and Mackworth, 1986; Mackworth and

Mokhtarian, 1988) (see chapter 1). In this method, the curve is segmented at either the

maxima or minima and the curvature of the segments is calculated. These segments can

then be compared. The advantage of using the inflection points to segment the curve is

that this leads to a repeatable, objective segmentation, free from observer error. Dudek

(1991) and Campos, Moss and Linney (Campos et al, in press; Moss et al, in press)

applied this method to facial profiles.

4Z Distinguishing between faces

So far in this chapter, I have discussed methods used by orthodontists to measure the

face. Anthropologists and psychologists as well as orthodontists have made important

observations on the differences between faces and these are reported in this section. The

interest of anthropologists has been to identify and study racial, tribal or familial

differences between faces. They have measured the face either using i) callipers on live

or dry skulls or photographs, ii) x-rays or iii) stereophotogrammetry to measure a

number of points on the face and compute distances between them (eg. Domokos and

Kismartoni, 1974). Psychologists have iie investigated such topics as what makes a

face recognisable, male or female, familiar or unfamiliar using experiments with

photographs, computer generated images and live people. These topics are discussed

further in chapter 9.

4.2.1. Male and female faces

There are (usually) noticeable differences between the faces of men and women but

these are hard to describe and quantify. In fact, surprisingly few anthropological

measurements have been made comparing male and female faces. However, a

qualitative assessment of these differences has been published.

In his book about the human face Liggett (1974) summarized the differences between

the male and female face as follows: women tend to have smaller noses which are more

concave and wider at the alar base than men. Liggett observed that women's noses

appear similar to children's noses and postulated that some connection may exist

between femininity of a face and age. Women have small mouths and a smaller upper

lip height than men and less pronounced jawlines and brow ridges. They also have

larger eyes and a darker surround to the eye. Men tend to have squarer jaw, thicker

eyebrows, and a larger overall size of face. Women have less mobile faces due to

smaller muscles, hidden beneath more fatty tissues, which makes the texture smoother.
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The orthodontist Enlow (1975) observed that the male nose appears larger at the nasion

than the female and his eyes therefore appear to be deeper set and cheekbones less

prominent. The female appears to have a less prominent nose, larger eyes and more

prominent cheekbones than the male. He also suggested that the shape of the nose

differs between the sexes with the tip of the nose being more pointed and tipped

downwards in the male and more rounded and tipped upwards in the female. His

observations have led psychologists to investigate the importance of the nose region in

sex judgment (see chapters 7 and 9).

In a study of 10 faces using stereophotogrammetric data, Haga and colleagues (Haga et

al, 1964) found that the volumes of the buccal regions were greater in females than

males. Generally speaking the volume of the cheek were also greater in females than

males but, given the limited number in their study, there was an equal probability of

which side of the face was larger for a given individual. Shepherd (1989) noticed that

women appear to have fuller cheeks than men.

Psychologists have addressed the question of how we distinguish between male and

female faces. O'Toole and her colleagues have used principal component analysis

(described in chapter 9) to distinguish between male and female faces with 74%

accuracy (O'Toole et al, 1991). Burton and colleagues attempted to find a discriminate

function between male and female faces based on the measurement a large number of

distances, in 2 and 3 dimensions, and various ratios and angles computed from them

(Burton et al, in press). They found that the sex of the faces could be classified correctly

using 12 2D distances on full face photographs with 85% accuracy (compared to 95%

human ability). Using 3D measures the same accuracy could be achieved with only 6

variables. Combining 16 3D and "picture plane" variables gave a performance close to

human accuracy (94%). Interestingly, those misclassified by the analysis are not those

misclassified by humans. They noted that 3D information is likely to play an important

role in our ability to distinguish between male and female faces.

In a companion paper to Burton and colleagues, Bruce and colleagues (Bruce et al, in

pressb) investigated the perceptual basis for sex judgement and showed that humans use

a combination of local cues, relationships between key positions and 3D information

(see chapter 9). They concluded that knowledge of 3D shape aids interpretation in the

picture plane.

4.2.2 Facial asymmetry

It was discovered long ago that the two sides of the skull are not equal in size and

shape. This led to some debate about whether or not this phenomenon is related to the

left-handedness or right-handedness of the individual. Studies do not seem to have

supported this idea (eg. McManus, 1982). Despite the asymmetry typically present in
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skulls, the "normal" face has been found to be surprisingly symmetric in morphology,

size and area and although it may exhibit some asymmetry of facial expression these

differences are not correlated to any differences in size asymmetry (Sackeim et al,

1984). On the contrary, the "abnormal" face may be markedly asymmetric in form, for

instance in cases of hemifacial microsomia.

Facial asymmetry has been measured using the techniques of stereophotogrammetric

(Burke, 1971; 1974; 1983; Burke and Beard, 1967), morphanalysis (Rabey, 1977) and

from computer analysis of photographs (Coghian et al, 1987).

4.2.3 Racial differences

Many studies of the size and shape differences between races and tribes have been

undertaken. Race is a very difficult thing to define and there have been many

disagreements about how to define it. Some have used skin colour, others shape and

proportions of the head and even hair or eye colour. There seems to be no concensus of

opinion. Unfortunately, few measurements of the face have resulted and these have

been limited to a comparison of facial proportions; heights or widths of heads, noses

etc. Although, Marcellino et al (1978) discovered that shape was three times as

important as size in accounting for intertribal variation amongst south American Indian

tribes.

Investigation of Jewish populations in different geographical locations have shown that

they are much closer to one another in body proportions than their non-Jewish

neighbours (Kobyliansky and Livshits, 1985)

O'Toole and her colleagues have used principal component analysis (described in

chapter 9, section 4v) to distinguish between Caucasian and Japanese faces with 88.6%

accuracy (O'Toole et al, 1991).

4.2.4 Family resemblance

A number of anthropometric studies have indicated there is a strong genetic component

in the variability of facial dimensions. Comparisons of craniofacial measurements for a

sample of Indian families showed some correlation of these measurements between

families with a very strong correlation for twins (Byard et al, 1985). Sharma and

Sharma (1984) found that for Indian families there was strong genetic determination for

gross head size and that a paternal inheritance route for this was likely.

These studies have mainly been based on calliper measurements and the results have

been difficult to compare because of differences in the statistical analysis performed,

variation in choice of subject material (live subjects, dry skulls or X-rays), age and sex

of subjects. In 1985, a view was expressed that progress in providing a better
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description of the genetically determined facial structure was dependant on the

introduction of new measuring techniques that would enable a more accurate

description of the facial features (Hauspie et al, 1985).

4 Landmark analyses

To date the methods proposed for the analysis of facial shape have almost always been

firmly based on the movement of homologous landmarks (Bookstein, 1978a; 1978b;

1984a; 1984b; 1986; 1988; Siegel and Benson, 1982; Thompson, 1917). As already

discussed in chapter 2, the weakness of such an approach is that the landmark points

must be readily, and unambiguously, identifiable. On gently curving surfaces such as

the human back, or most of the face, this is not the case. Bookstein (1978a) has pointed

out the importance of examining "the curving surface bearing the points (landmarks)

and not the points (landmarks) per se' and this view has been reiterated by facial

surgeons who feel that they are not adequate to describe the intricacies of deformity

(Cutting et al, 1986a). Bookstein has recently proposed using "thin-plate splines" to

interpolate the edges between two dimensional landmarks (Bookstein, 1989). However,

the small number of homologous points on two curves is still a constraint on the

accuracy of the interpolation, and pseudo-landmarks need to be created. This method

has not yet been demonstrated in 3D although the potential for this may exist.

44 Possible implications of shape analysis for surgeons

The need for a comprehensive system comparing all aspects of the facial surface to

allow the formation of a normative data set has been expressed by facial surgeons

(Bookstein and Cutting, 1988; Udupa, 1986). Many facial conditions are defined using

qualitative terms. For instance, hemifacial microsomia involves a "flattening of the

maxilla" or a "narrowing of the maxilla" and a "displacement of the chin point", thus a

quantitative analysis of the face should also be easily interpretable in linguistically

definable terms. A more rigourous analysis of facial shape would help these conditions

to be defined quantitatively and the results of surgical correction to be assessed.

The question of aesthetic appearance has hardly been treated at all analytically,

although the functionality of the occiusial bite has been studied by the analysis of

electro-myographic signals (which indicate the balance of muscular function as the

patient bites). An analytic treatment would allow the surgeon some objective method of

evaluating the outcome of surgery, to determine its conformity to some plan and to pin-

point discrepancies between the planned and actual outcome. Again, Cutting has said

that a truly scientific investigation of aesthetic surgery is dependent on a comprehensive

method of surface deformation analysis (Cutting et al, 1986a).

It is anticipated that the formation of a database for quantifying the changes brought

about by surgical procedures and the development of quantitative norms (Savara et al,
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1985) will eventually help in the planning and prediction of surgery. A 3D analysis may

also have a significant influence on the accuracy of craniofacial diagnosis and allow the

establishment of a biologically sound treatment plan (Christiansen, 1978).

Additionally, an analysis and characterization of facial shape may well throw some

light on dysmorphobia. In this condition, the patient may complain of flat cheeks, the

jaw being out of proportion to the rest of his face, or some aspect of asymmetry in the

shape of his face, which others have difficulty perceiving. It maybe possible to quantify

the problems of which the patient complains, or, in some cases, convince the patient

that their problem is of a purely psychological nature. Moreover, slow changes in the

face, either perceived or real, could be investigated and quantified. This maybe

particularly important in the case of developing facial asymmetry or in the slow growth

of tumours.

Other studies where a quantification of surface shape changes is needed include

categorizing facial morphological types and assessing their relationships to

developmental anomalies and in the study of growth and development of the face in

general. The quantification of changes may help to explain the effect on the developing

face of surgical intervention and discover the effects of racial and sexual differences on

the outcome of the surgery.

4 Summary

The history of the measurement of the face that have been undertaken by orthodontists,

anthropologists and others has been described here. Measurements made by

orthodontists have largely been limited to two dimensional analyses, such as

cephalometry and profile analysis, although the production contour plots and Moire

fringe patterns have allowed some assessment of the 3D structure of the face to be

made.

Anthropologists have made some 3D measurements of face using callipers, but the

measures used by individual researchers have not been standardized, limiting the

usefulness of some of the comparisons. Attempts made by anthropologists at measuring

facial asymmetry, racial differences and family resemblance are described in section 4.2

along with a qualitative assessment of the differences between male and female faces.

The differences between male and female faces are discussed further in chapters 7 and

9.

The limitations of methods to date for describing facial shape, which have been based

on the location of landmark points, are mentioned in section 4.3. Methods for

describing facial shape have also been limited by the lack of availability of 3D facial
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data. The data acquisition methods described in chapter 3 have now overcome this

obstacle.

The possible implications for facial surgeons of the production of a method for

analysing facial shape is described in section 4.4. In 1986, one surgeon Cutting,

predicted that differential geometry would provide the appropriate tools for the analysis

of facial surface deformities (Cutting et al, 1986). This thesis follows this suggestion

and shows how differential geometry may be used to describe the 3D changes in shape

of the face which occur during surgery qualitatively or quantitatively. In the next

chapter, the criteria for a successful shape description method are outlined and the

potential of a method based differential geometry to meet these is discussed.
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CHAPTER 5

CHOICE OF METHODOLOGY

In the search for an algorithm that could be used to provide a mathematical description

of the face, and to distinguish differences between faces, a number of requirements

were noted. In this chapter, these requirements are set out and it is shown how the

approach that was selected, a method based on the mathematics of differential

geometly, meets them. The general concepts of differential geometry are reviewed and

previous work which has used certain aspects of differential geometry for object and

face description is described. The hardware and software that was used to implement

the chosen method is described. The actual method is described fully in chapter 6.

£1 General requirements

The first consideration is the nature of the object to be described. The face is a smooth,

continuous surface, therefore a surface-based method should be used as opposed to a

volumetric method. Since the face may be viewed, and recognized, from many angles,

the encoding of the facial surface should be independent of viewpoint.

In the analysis of medical images, it is most often small departures from the norm that

are more significant than the gross structure (Trivedi, 1986). Bearing in mind that the

aim is produce a method for describing changes in the face, the method chosen to

describe the face should be able to encode changes in the small scale structure of the

face. Ideally, the approach should also be simple and visual, allowing a qualitative

appreciation of the face. A hierarchical approach would provide flexibility allowing

both small and large scale changes to be described in a quantitative manner.

The 3D data sets which are produced from optically scanning the face are very detailed.

If all this data is used, the computational requirements are likely to be large. This factor

influenced the choice of hardware (see section 5.4). The chosen method needed to be

robust against noise because of its potential application in facial reconstructive surgery.

However, for surgery accuracy is of the utmost importance, this limits the amount to

which the acquired data can be smoothed in order to eliminate noise since smoothing

removes not only noise but fine surface structure.

Many of the techniques for shape description which have previously been reported have

been concerned with modelling 3D objects. These techniques have arisen from the use

of computer graphics for CAD/CAM for applications such as building descriptions of a

car for the design of a new car-line. I sought a means of reversing these models to

generate a description of a specific object, from acquired data, in terms of parts or

primitives.
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A neural network for the face?

Bearing these requirements in mind, I first considered using a neural network to

describe the face, since they have been applied to face recognition questions (see

Chapter 9). Neural networks are based on the observation that the human brain consists

of millions of cells, or neurons, which communicate with each other in parallel. A

multi-layered network of computational "cells" are built which respond, in a binary

manner, to stimuli and pass on information to subsequent "cells". The network can be

trained, by repeated presentation, to recognize patterns correctly. These include

distorted or shifted patterns (Fukushima and Miyake, 1982), partial or incomplete

patterns (Fukushima, 1988). However, the complexity of the system quickly grows with

the number and complexity of the pattern presented because more layers of cells are

required for recognition. To recognise a 3D object, the network would be need to be

very large. Although new patterns can be recognised, a large amount of time is needed

to train the network in the first place. It may be possible to "train" the network to

recognise a face or facial feature such as the nose and hence reject any face or feature

that had changed "too much" from that target face or feature, however it is not clear

how one would assess how much change is "too much" nor how a quantitative

assessment of that change could be made.

Neural networks do not provide an explicit description of the face and their output is

isoteric in nature. This means that a neural network can not output how its conclusion

was reached, merely that conclusion. In a medical context this is a serious drawback

(Price, 1989). It is also doubtful whether neural nets would have the required sensitivity

for the description of small scale facial changes, indeed questions concerning their use

for describing faces have been raised (Bruce, 1988). Another consideration is the

expense of construction. This rises rapidly with the complexity of the network and the

number of objects it is required to recognise. For all these reasons, this approach was

rejected.

Differential geometry

A more promising approach, and the one I eventually adopted, was to describe the

(facial) surface using the mathematics of differential geometry.

In the last two decades, methods for describing the surfaces visualized in range images

have been sought and a number of descriptions have been obtained. These have

included; parametric polynomial surfaces, tensor splines, contours showing maxima and

minima extrema, maps of Gaussian and mean curvatures, principal curvatures, lines of

curvatures and geodesics (Beck et al, 1986; Brady et al, 1985). All these description

have been based on various aspects of differential geometry.
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The theory of differential geometry is applicable to smooth differentible surfaces, which

are readily obtainable from range data. This requirement means that differential

geometry is ideal for studying a surface with few discontinuities such as the face.

Importanfly, the surface curvatures defined by differential geometry are locally
invariant to rotation and translation, allowing the surface to be described in a fashion

that is independent of viewpoint. They are also invariant to scale. Thus, it was in this

branch of mathematics that a method suitable for implementation and further

development was found that could be used to describe a face. Provided the resulting

description was stable enough to noise, changes in the facial surface could also be

quantified.

5.3.1	 Principles of differential geometry

Differential geometry is a well documented mathematical science but a brief review of

its concepts is given here for completeness and to aid the reader unfamiliar with this

topic. Further explanations can be found from any standard text (eg. Lipschultz, 1969)

and good summaries are containing in Beck et al (1986) and Hubert and Cohn-Vossen

(1952).

Consider a surface in parametric form r = r(u,v) that may be differentiated with respect

to u and v. The first derivatives are denoted by r , r , and the second derivatives by

ruu, r,,,, ruv. These derivatives allow intrinsic characteristics of the surface,

independent of the parameterization, to be derived. For instance the surface normal n is

defined

n=

	

	 --(5.1)
modI r x rJ

In Eudidean space, Pythagorus' Theorem gives the shortest distance between two points

(a straight line). On a curved surface, the infinitesimal distance element between two

neighbouring points (u,v) and (u + du,v + dv) is given by:

ds2 = r . rdu2 + 2r. rdudv + rye rdv2	- (5.2)

Integrating ds along a specified path u = u(t), v = v(t) on the surface gives the path that

is the shortest distance between the two points (a geodesic curve). Equation (5.2) is

known as the first fundamental form of the surface and can also be written as

ds2 = Edu2 + 2Fdudv + Gdv2	-- (5.3)

where E(u,v) = r. ru, F(u,v) = r . rv, G(u,v) = r . ry. It gives the distance between

two points to first order in du and dv. Since the distance ds lies in the tangent plane at

90



Methodology

the point (u,v), it does not tell us how the surface curves away from the tangent plane at

that point. The curvature comes from the second order equation, known as the second

fundamental form of the surface. The component of displacement between points (u,v)

and (u + du,v + dv) perpendicular to the tangent plane is one half of

= Ldu2 + 2Mdudv + Ndv2	 -- (5.4)

where L(u,v) = n . 	 M(u,v) = n .	 N(u,v) = n . r

If u and v can be expressed as a function of a single parameter t (u = u(t), v = v(t)), then,

the normal curvature of the surface at a point in the direction (u,v), where the dot

indicates differentiation with respect to t, is given by:

k= - J 2 +2M+N 2	--(5.5)

Eu2+2Fuv+Gv'2

and the radius of curvature is 1'k A sign convention is used to define a convex surface

as one having positive curvature and a concave surface as one having negative

curvature. It can be demonstrated that the first fundamental form and second

fundamental form of a surface uniquely determine the local surface shape, in terms of

its curvature, torsion and speed for a 3D space curve (Lipschultz, 1969) and that these

are invariant to rotation, translation and changes in the parameterization.

In equation (5.5), a curvature k is associated with each direction (u,v) on a surface. The

directions in which the normal curvature k attains extremum values occur when 'du =

0 and 'dv =0. This occurs when

(L + kE) + (M + kF) =0 	 -- (5.6)

and	 (M+kF)+(N+kG)'=0

For a consistent solution,

k2 - 2Hk + K =0	 -- (5.7)

must be satisfied where K is the Gaussian curvature of the surface and H the mean

curvature of the surface and are defined as

	

K = LN - M2	and	 H = 2FM - (EN +GL'	 -- (5.8)

	

EG-F2	2(EG-P)
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In 1760, Euler discovered that there is always a direction on a surface in which the

surface curves least and another direction, orthogonal to the first, in which the surface

curves most. These directions are called the principal directions and the curvatures

associated with them, the principal curvatures. The solutions of the quadratic equation

(5.7) are the principal curvatures (k and k..). These can be written in terms of the

Gaussian and mean curvature of the surface:

k.=H+(H2K)If2	 --(5.9)

and	 k=H(H2K)1a

From equation (5.9) it can be seen that k1 = k when H2 = K. Such a point is termed

wnbilic or spherical as the curvature k, is independent of direction and the surface is

locally spherical.

The Gaussian and mean curvatures can also be expressed in terms of the principal

curvatures. The Gaussian, K is the product of the principal curvatures and the mean, H

is the arithmetic mean of them ie.

K = k, k	 and	 H = (k + k,)	 -- (5.10)
2

If the two principal curvatures have the same sign, the Gaussian curvature will be

positive and the surface is called elliptic. Whereas if the two principal curvatures have

the opposite sign the Gaussian curvature will be negative and the surface is called

hyperbolic. A point at which one of the principal curvatures is zero is called a parabolic

point (Hilbert and Cohn-Vossen, 1952). When either one of the principal curvatures is

zero, the product of the principal curvatures, and therefore the Gaussian curvature,

becomes zero. The surface is then termed developable (ie. it can be rolled out onto a

plane). However, this is condition is not sufficiently conrain ing to uniquely define a

surface (Barrow and Tenenbaum 1981).

The Gaussian curvature, K, is an intrinsic property of the surface and therefore it

remains invariant when the surface is bent (without stretching or tearing) (Peet and

Sahota, 1985). The mean curvature is an extrinsic property and changes as the surface is

bent. Collectively, they are known as the suiface curvatures. Their properties are more

comprehensively explained by Besl and Jam (1986).

A surface curve (u = u(t), v = v(t)), whose derivatives (u,v) satisfy either of the two

equations in (5.6) is a tangent to a principal direction at every point. This is termed a

line of curvature and shows the directional flow of the maximum and minimum

curvature across a surface. Lines of curvature can be used to define "principal patches"

(Brady and Yuille, 1984). An asymptotic curve follows the direction of zero normal
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curvature, k, on the surface - the antithesis of a line of curvature which follows the

direction of extremal normal curvature. The direction of a surface's asymptotes can be

found from Euler's theorem if the principal curvatures are opposite in sign, ie. Gaussian

curvature is negative.

5.3.2 Anal ysis of surfaces using differential geometry

The first recorded attempt to use the mathematics of differential geometry to describe

the facial shape was made by the renowned German mathematician Klein around 1926.

Klein marked out parabolic curves (ie. the smoothed loci of parabolic points) on a bust

of the classical statue Apollo Belvedere in an attempt to put facial aesthetics onto a

mathematical foundation (Hubert and Cohn-Vossen, 1952). However, these curves are

not simple, do not appear to correspond to the facial features and are not suitable for

producing a robust description of the face (Brady et al, 1985). Parabolic lines have

recently been automatically marked on computer generated models of the face (Gordon,

1991b). Figure 5.1 shows the parabolic lines marked by Klein and Gordon.

Early differential geometric analyses of surfaces were limited by the enormity of

computational requirement and, until the last few years, many authors employed point-

wise descriptions of surfaces rather than extracting characteristic features. This was

probably also due to the lack of availability of sufficiently large sets of 3D data. But

with the advent of range data from optical scanning, together with more powerful

computers, descriptions of the entire surface have become possible.

Figure 5.1: Left: The parabolic lines marked by Klein on Apollo Belvedere. Right: automatically
generated parabolic lines superimposed onto a 3D model of the face (from Gordon, 199 lb. Reproduced

with permission).

A number of different approaches have been made using various curvature measures to

describe the shape of a 3D object and a number of different segmentations for range

93



Methodology

images based on these have been proposed. Besi (1988) and Fan (1990) describe in

depth some of these approaches. These approaches have all considered, in some way,

the curvature of the surface and very recently, some of these have been applied to facial

range images. For instance, the potential for using the sign of Gaussian curvature to

describe a surface for recognition purposes was noted by Marr and Nishihara (1978)

and Stevens (1981). Its usefulness is due to the fact that it allows an object-centred

description to be obtained and thus the description is complete for any chosen,

continuous surface, is local and additionally is readily computable. The segmentations

that have been produced fall broadly into two categories: segmentation into primitive

patches and segmentation by lines of curvature. These aie discussed in turn.

a Segmentation into primitive patches:

In the 1980's, several attempts were made to segment a surface into geometrically

describable patches. Faugeras and colleagues (Faugeras et al, 1983) proposed a

segmentation into planar and quadratic patches, by fitting the surface with a quadratic

least squares fit algorithm. Medioni and Nevatia (1984) used the Gaussian curvature

and the principal curvatures to obtain elliptic, hyperbolic, parabolic and planar patch

primitives. The zero-crossing of Gaussian curvature and the maximum principal

curvature were used to detect surface discontinuities.

Ittner and Jam (1985) investigated the power of six different curvature measures for the

identification of four surface primitives: sphere, plane, cylinder and cone. These six

measures were: the average curvature, minimum curvature, maximum curvature,

Gaussian curvature, mean curvature and ratio curvature. All six measures were found to

be robust. The number of points in the surface patch and size of the neighbourhood used

to calculate the curvature affected the accuracy of the measures in the presence of

different levels of noise. These findings provide confidence that if a curvature based

method for describing the facial surface is developed, it will prove suitable and

sufficiently robust, for surgical applications.

Vemuri et al (1986) computed the principal curvatures by fitting smooth patches to the

object surface using spline functions. Maximal regions were then formed by coalescing

patches with similar intrinsic curvature-based properties and surface points were then

classified accordingly.

Hoffman and Jam (1987) proposed a segmentation into planar, concave and convex

regions. Saddle points were classified as concave or convex according to the direction

in which the magnitude of the curvature was larger. This method was based on

clustering (or region growing) techniques using nonparametric statistical tests. This

results in a large number of moderately sized patches.
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In the late 1980's, BesI and Jam (1986; 1988) used the signs of the Gaussian and mean

curvatures: positive, negative or zero, to segment surfaces into eight "surface types".

The importance of their segmentation was, they claimed, that these eight surface type

could be used to describe any smooth and differentible surface. Thus they were

fundamental surface primitives. It was this segmentation method that was applied to the

3D data set, in order to describe the face (see chapter 6).

Medioni and Nevatia's (1984) surface type labels are in fact, a subset of Besi and Jam's

primitives. The difference between Besi and Jam's surface type labels and those used

for the Topographic Primal Sketch (TPS, see chapter 1), for intensity images, is

explained in detail by Besi and Jam (1986). They described, in lengthy papers, the

application of differential geometry to recognizing 3D objects and the properties of the

Gaussian and mean curvature.

Bhanu and Nuttall (1989) devised a description based on the magnitude and orientation

of the principal curvatures, which allowed them to describe objects using a "continuum

of surface types " . This method of description arose from their observation that conical

surfaces were not represented satisfactorily using Besl and Jam's 8 surface types. They

showed that certain regular objects, such as spheres, cones and cubes formed well-

defired clusters at specific points on a graph whose axes were the principal curvatures.

The goal of this work was object recognition.

Recently, Wienshall (1991) has used knowledge of the sign of the Gaussian curvature,

computed directly from motion disparities, to classify a surface into elliptic, hyperbolic,

cylindrical and planar regions.

b Segmentation by curvature lines:

Additional, complementary information for the segmentation of a surface may be found

from considering the surface discontinuities and extremal values of curvature. Amongst

these methods, Brady and colleagues (Brady et al, 1985) discussed the idea of using the

lines of curvature to parameterize the surface (Brady and Yuille, 1984). They showed

that this was not a good basis for describing many surfaces (Brady et al, 1985) and

proposed that asymptotes might prove to be a better descriptor. Brady also investigated

the use of surface intersections, planar and spherical surface patches and bounding

contours (Brady et al, 1985).

Calculation of the surface curvatures allows certain properties of the surface to be

extracted. "Jump boundaries", where a surface discontinuity occurs and "folds" where a

surface normal discontinuity occurs can be extracted from zero-crossings (ie. change of

sign) in curvature. "Ridge lines", the local extrema of curvature can be obtained from

the extremal values (Fan et al, 1986). Fan and colleagues calculated the surface
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curvature in four different directions and obtained the curvature extrema and zero-

crossings for each of these one dimensional curves (Fan et al, 1986). These were used to

identify surface and depth discontinuities that might then be used to describe or

recognize an object.

Haralick (1983) proposed identifying ridges and valleys on intensity images from zero-

crossings of the first derivative, taken in a direction which maximizes or minimizes the

second directional derivative. He demonstrated how this could be applied to a facial

image. However, the ridges he identified corresponded to highlights in the image and

the valleys corresponded to shadows illustrating the difficulty of using intensity images

to derive surface properties.

Gordon (1991a; 1991b) also proposed the use of "ridge" and "valley" lines to segment a

facial range image. She defined "ridge lines" as the local maxima in principal curvature

k,,. along the line of maximum curvature and "valley lines" as local minima in kmm

along the line of minimum curvature. Using k, greater than a certain threshold and

k,, less than a different threshold, these produced a much clearer, and more stable

pattern (see figure 5.2 for an example). Gordon's work will be discussed further later in

this section.

	 	

	 	

	

	

Jam and Hoffman (1988) combined surface patch information with jump edge

information to produce a shape representation of a 3D object. The object could then be

recognised using an evidence rulebase. A better segmentation of the image has been

sought by Haddon and Boyce (1990) by unifying region and boundary information.
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c Application to body surfaces:

In the early 1980's some pioneering work was reported on the use of the Gaussian and

mean curvatures for the analysis of human back shape (Hierhoizer and Frobin, 1980;

Frobin et al, 1982; Frobin and Hierhoizer, 1982a). Frobin and Hierhoizer used

photogrammetric measurements of the back, sampled at a number of points and

interpolated between points, to produce maps of the Gaussian and mean curvatures of

the back surface. They used the sign of these to classify the surface into planes,

cylinders, spheres and saddle surfaces. The importance of this method for analysing

biological surfaces is that the need for a unique, body-fixed, coordinate system based on

landmarks is avoided and the description produced allows the major features of the back

to be identified in an objective way. Later, Schwartz and Merker (1986) also used the

Gaussian and mean curvatures to describe the cortex of a monkey's eye.

Besl and Jam's demonstration of how the signs of Gaussian and mean curvatures could

be used to segment a surface into eight surface type primitives, that could be used to

completely describe any surface (Besl and Jam, 1985; 1986), prompted Hidson of

Defense Research Establishment, Ottawa (Hidson et al, 1990) and myself (Coombes et

al, 1990), working independently, to show how the facial surface could be described in

this manner. This work was reported in 1988 at the 5th International Conference on

Surface Tomography and Body Deformity held in Vienna. Since then, Gordon at

Harvard in her thesis (1991b) and I, Coombes (1991a; 1991b; 1992) have independently

pursued the use of these techniques for facial description and recognition. In chapter 6,

Besl and Jam's surface type description is described and used for analysing facial shape.

Lee and Milios (1991) used Besi and Jam's method to calculate the surface curvatures

by convolution (using a window size 7x7) and segmented range images of faces into the

8 surface types. In order to match faces for recognition purposes they then represented

each convex region by its Extended Gaussian Image (EGI - see chapter 1), which maps

points of the region to corresponding points on a unit sphere. The reason for using the

EGI representation is that it is invariant to changes in scale and orientation. A similarity

measure based on the correlation features in the EGI was used to match the data. They

observed that features such as the nose, chin, cheek and eyebrow correspond to convex

regions of the face and that these convex regions appear to be subject to less change

between facial expression than concave regions. They encountered difficulties in EGI

interpolation due to the inadequate sampling of areas of high curvature (eg. the nose).

In this work, the need for using the EGI representation to achieve invariance in scale

and orientation is removed by using a different method for calculating the surface

curvatures. This method is described in chapter 6 (section 6.2.4).
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The use of the negative minima of the principal curvature, kmjn, to segment a surface

into regions corresponding to features was suggested by Hoffman and Richards (1985).

Gordon (1991a) implemented this idea for facial surfaces. Although the segmentation

produced by this method was not complete, application of dilation and shrinking

operators enabled her to extract the eyes, nose regions effectively. To extract the face

from hair region, Gordon used the fact that the face is smooth compared to the hair. On

smooth areas, both principal curvatures are low, therefore Gaussian curvature will be

less than some threshold. Gordon found an even better criteria for detecting smooth

areas was k. 2 + k, 2 < threshold. This function has a steeper slope at high curvature

boundaries.

Gordon aimed to identify facial features through segmentation of the facial surface. In

her method she made use of the protrubance of the nose and its typical ridge

characteristic to identify the nose bridge from depth values and thereby define the plane

of symmetry of the face. This enabled her to locate other facial features such as the

eyes, by searching for concave (or convex) surfaces of a certain size and distance from

the line of symmetry. By applying a further constraint, that two regions be found,

symmetrical about the midline, a more accurate location of these features was obtained.

She considered extracting facial features to be an iterative process, as features are

extracted information is provided that can be used to refine, or correct earlier feature

definitions. Gordon noted the effect that facial expression would have on her analysis

and therefore she deliberately did not use such changeable regions as the mouth.

d Sensitivity of surface curvatures to noise.

It has been pointed out by a number of authors that the calculation of the surface

curvatures is likely to be sensitive to noise because they contain second order partial

derivatives. However, this need not create a prohibitively large problem (Fan et al,

1986). Smoothing of the data with a Gaussian filter has been used by a number of

authors to obtain a reliable description (Fan et al, 1986; Gordon, 1991b). Gordon

analysed the effect of smoothing on the curvature values obtained and concluded that

smoothing the whole image with the highest level of smoothing required would

severely modify the curvature values and location of features in highly curved areas.

She proposed that an adaptive smoothing method, based on local estimates of curvature,

should be used in order to obtain accurate and reliable measurements (Gordon, 1991b).

For the purpose of object recognition, tolerance of small differences can be achieved by

the setting of a threshold below which differences in the surface description are ignored.

Abdelmalek (1990) reported an algebraic analysis of the effect of noise on the

segmentation of range images into Besi and Jam's surface types. He measured the noise

standard deviation for a sample range image and found that both the Gaussian and the

mean curvatures were more susceptible to noise when they have small values, ie. on
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nearly planar surfaces, and that the Gaussian curvature is more susceptible to noise than

the mean curvature.

For our application, the assessment of small changes to the facial shape, it is these fine

scale differences that we are interested in and wish to preserve. For facial surface

changes, the difference between two individual faces and facial expressions are all

small changes. Therefore the stability of the segmentation with respect to noise in the

data is important. This is discussed in chapter 6.

£4 Implementation

Before the production of a description for the face based on its Gaussian and mean

curvatures is discussed, it is appropriate to mention how the programmes were written

and implemented. The amount of 3D data and the iterative nature of some of the

procedures made the anticipated computational requirements large. These

computational requirements, together with the available resources limited the choice of

hardware and programming language. Only high powered machines were suitable.

Another possibility was using parallel processors such as Transputers.

When this work was begun, the Medical Graphics and Imaging group were in the

process of converting their programmes to run on P.C. hosted Transputer networks, in

order to market a computer graphics workstation that would simulate facial surgery.

Thus it seemed logical to write programmes in a compatible format that could

eventually be included with this system. Transputers were chosen over other

alternatives providing graphics because of their cost effectiveness in producing

graphical display. All the routines and algorithms described in this thesis were written

in OCCAM2 and implemented on a P.C. hosting Transputers.

OCCAM2 is a language based on communicating sequential processes (the second

version was released in 1987). It is concurrent, that is to say it has potential for

executing in parallel. OCCAM2 was written especially to enable the Transputer to

function in its most efficient manner. (Both OCCAM and the Transputer were designed

by INMOS.) The Transputer is a programmable VLSI (very large scale integration)

device containing communication links for point-to-point inter-transputer connections.

In this work, only one Transputer was used to execute the OCCAM code and a second

Transputer executed the graphics display commands concurrently.

Summary

The general requirements for a good shape descriptor for the face were discussed in

section 5.1. It has been shown that application of differential geometry techniques to

describing surfaces inherently meets some of these requirements. For instance, the
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surface geometry is described, independent of the viewpoint from which the surface is

seen. The recent availability of large amounts of 3D body data, from optical surface

scanning, has allowed entire surfaces to be described using this methodology. This

methodology allows the surface to be segmented into regions or primitive patches and

either by modelling the surface using fundamental surfaces or by using extrema

curvature values to define valleys and ridges. Gordon, Hidson and I have pioneered the

application of these techniques to the facial surface. In order to make full use of the

available data, I have implemented these techniques on a Transputer-based PC.

The suitability of differential geometry for meeting the other requirements of a good

facial shape descriptor has not been demonstrated in this chapter and some concern has

been expressed regarding the tolerance of the surface curvatures to noise in the data.

However, in the next chapter, differential geometry is applied to the face producing a

hierarchical description of facial shape, which is also easy to interpret visually. It is

also shown that the facial description is reasonably robust against noise in the data and

the ability of the description to represent small scale changes in the facial structure is

examined.
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CHAFFER 6.

DESCRIPTION OF THE FACIAL SURFACE

Strategy

In the previous chapter, the selection of a methodology based on differential geometry

and implemented on a Transputer-based PC was discussed. In this chapter, the

adaptation and implementation of these methods for the description of the facial surface

is described.

Three separate algorithms for calculating the surface curvatures are described, two of

which have previously been reported and the third, a least squares surface fitting

algorithm for irregularly sampled surfaces, is new. The information carried by the

surface curvatures is represented graphically on a KH-map according to the distribution

of the curvature values. The signs of the surface curvatures, positive, negative or zero,

are used to encode the surface into eight fundamental surface types. By colour coding

image pixels to represent these different surface types, a surface type image (STI) can

be displayed. Alteration of the thresholds on the surface curvatures which delineates

between zero curvatures and the other two signs, allows a series of STI's to be produced

which are hierarchical in terms of curvature.

The performance of all three surface curvature algorithms for describing both regular

test objects and the facial surface is assessed. These are important and new evaluations

for all three algorithms. The assessment shows the greater accuracy of the least squares

algorithm over the other two algorithms.

An assessment is made of how robust the least squares algorithm is to artifacts that are

produced by the optical scanning process and random and quantization noise in the

acquired data. The stability and repeatability of the resulting facial description is

demonstrated. These are important considerations for the practical application of this

method in describing faces or changed faces.

Calculation of surface curvatures:

In the computer vision literature, two methods have been reported for calculating the

Gaussian and mean curvatures of a point on a continuous surface. The first uses

convolution windows (Besl and Jam, 1987, 1988) and the second uses selective local

fitting of windows to the surface (Yokoya and Levine, 1989). In addition to these, I

report here another method for calculating these curvatures based on fitting a least

squares quadratic surface patch around each point for an irregularly sampled set of

points (such as optical surface scan data). I will describe each of these methods in turn.
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Facial Description

The first two methods begin by representing the surface as a discrete depth-map (z-

buffer), regularly sampled in x & y, from a single viewpoint. This is simply a range

image representing the surface from a single viewpoint by the depth value (z) at a point

(x,y) on the 2D projection, which is given by a single-valued function z(x,y). The depth

map is generated from the irregularly sampled 3D source data from the chosen

viewpoint using a standard interpolation algorithm (Newman and Sproull, 1981). The

third method is not calculated from a single viewpoint and performs calculations using

the actual x, y and z coordinates of the measured data points.

6.2.1 The method of Besi and Jam (1988)

In this method, the surface curvatures are computed for

each pixel of the depth map image, by passing a local

neighbourhood operator over the depth map (Besi and

Jam, 1988). The size of the convolution window can be

varied in order to optimize the surface sample (see section

6.2.3). The column vectors for the convolution windows

are calculated in the following manner:

For an N x N window of border M = (N-1)/2, the 3 vector

operators of the convolution filter are given by:

i) dO=',Nforallu, where-M<=u<=M

eg. for a 7 x 7 window,	 d0='i7(1 111111)

ii) d1 =3u/(M(M+ 1)(2M+ 1))

eg.fora7xlwindow,M=3
	 d1=1,(32101 23)

iii) d2=l/p)*(u2(M(M+1)/3))

where P(M) = 8/45 M5 + 4/9 M4 + 2/9 M3 - 1/9 M2 - 1/1 5 M

eg. for a 7 x 7 window,	 d2 = 1'M (5 0-3 -4 -305)

These functions are graphically depicted in figure 6.1.

The convolution matrices, which are equally weighted least-squares derivative

estimation window operators, are given by the following combinations of these column

vectors:
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[Ge] = d0d11 	 [G] = d 1 d01 [G] = j2T

[G] = d2d0T	[Gj = d 1d1T	-- (6.1)

The convoluted

image data are stored in 5 matrices of the same dimensions as the image data (GV, GU,

GUU, GVV, GUY) and these are then used to calculate the Gaussian (K) and mean (H)

curvatures at each point in the image.

H(x,y) = (1 + GY2(x .yi*GUU(x.y) + (1 + GIP(x .vi)*GVV(x.y) -
2*GU(x.v'*GV(x.v)* GUV(x.y)

2(1 + GU2(x,y) + GY2(x,y))3a

K(x,y) = GUU(x.v)*GYY(x.v) - GUV 2(x.y)	 -- (6.2)
(1 + GU2(x,y) + GV2(x,y))

6.2.2 The method of Yokova and Levine (1989)

In this method, the curvatures are calculated from the selective local fitting of bi-

quadratic functions to the surface. The method is based on the computation of the first

and second partial derivatives of the surface by locally approximating the object surface

using bi-quadratic polynominals. The Gaussian and mean curvatures are computed from

these partial derivatives. The local surface fit used is claimed to improve the curvature

estimates compared to the windowing technique. The partial derivatives can also be

employed to calculate two edge-based segmentations of the surface, a "jump-edge"

segmentation which detects discontinuities in depth and a "roof-edge" segmentation

which detects discontinuities in surface normals (see section 6.7). These segmentations

can be combined with the surface type segmentation of the surface to give more

information about the surface. I will return to these two edge descriptors later in this

chapter.

The selection of an appropriate window size is discussed in section 6.2.3. The best fit

function for the window, centred at each point (x,y), is determined. Then for each point,

the window is chosen from all the windows which overlap the point that provides a

minimum fitting error.

At each point in the depth-map, a continuous differentiable function is fitted to the

surface. The form of this bi-quadratic function is:

z(x,y) = ax2 + by2 + cxy + dx + ey + f 	 --(6.3)

Higher order equations attempt to model the surface more closely. However, this means

that they also include the undesirable effect of fitting the noise in the data better. They

would also yield many more surface types giving a more complex description. The local

bi-quadratic surface is fitted within a (2m + 1) by (2m + 1) window centred on point
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(x,y) using a standard least-squares method. The coefficients a through f, associated

with the point (x,y), are obtained by mask operators. The fitting error of the window

W(x,y) is calculated as the sum of the squared fitting error, E2(x,y).

m m

E2(x,y)=	 faiZ+bj2+cij+di+ej+fz(x+i,y+j))2

i=-n j=-m	 --(6.4)

It is assumed that the presence of a discontinuity in the data, within the window area

used for calculation, leads to inaccuracies in the estimation of the partial derivatives.

This is because differential geometry is applicable only to smooth continuous surfaces.

This approach seeks to minimize errors introduced by surfaces discontinuities by fitting

a best-fit window to each data point. This window is the one which provides the

minimum fitting error. For each point (x,y) the best fit window W(x - u, y - v) (where u

and v are the offset of the window from the point (x,y)) amongst (2m + 1) * (2m + 1)

windows minimizes:

E2(x - u, y - v) = mm (E2(k,l):(k,l) W(x,y)) 	 -- (6.5)

Once the best fit window has been determined, the surface fitted at the point (x,y) is

represented using the set of coefficients a(x - u, y - v) through f(x - u, y - v), The fitted

depth value at point (x,y) is determined by

z(x,y) = a(x - u,y - v)u2 + b(x - u,y - v)v2 + c(x - u,y - v)uv +	 --(6.6)
d(x - u,y - v)u + e(x - u,y - v)v + f(x - u,y - v)

This is the selective local surface fit. This is compared with the actual surface values to

check the accuracy of the fit. If required, this equation can be used to derive a

smoothing operator for reducing the noise effects in the data whilst preserving the edges

in the data (see Yokoya and Levine, 1989 for details). In this work, an alternative

algorithm was used for smoothing the data which is described section 6.2.5.

Differentiating equation (6.3) and using the selective local surface fit, the first and

second partial derivative estimates at point(x,y) are

(x,y) = 2a(x - u,y - v)u + c(x - u,y - v)v + d(x - u,y - v)
ax

(x,y) = 2b(x - u, y - v)v + c(x - u,y - v)u + e(x - u,y - v)

(x,y)=2a(x-u,y-v)
ax2

(x,y) = 2b(x - u,y - v)
äy2
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Figure 6.2: Effect on defined surface type
with increasing window size.

Facial Description

(x,y) =	 (x,y) = c(x - u,y - v)	 -- (6.7)
axay	 axay

Substituting into these equations for the coefficients of the best-fit window gives a set

of partial derivative estimates at point (x,y). The Gaussian (K) and mean (H) curvatures

for each point are computed from these as follows:

K =	 z*az(aL '2
ax2 ay2 taxayJ

(i +	 + r22

L	 ax) Iay))

H =	 + + *(\2 + *f2	 2**z*i
ax2

	

	2 y) ay2 Iax)	 axayaxay

2(1 +(az2+(az23n
)	 ))

-- (6.8)
6.2.3 Optimizing the surface sample

For these two algorithms, the surface sample was optimized by varying the size of the

window used for the convolution (in the Besi and Jam algorithm) or to fit the bi-

quadratic functions (in the Yokoya and Levine algorithm). If the window size is too

small, the effect of noise becomes more significant. On the other hand, if the window

size is too large, then the values obtained for the surface curvatures may not adequately

reflected the 3D structure of the surface (figure 6.2). This latter case, has a similar effect

to smoothing the surface data before performing the surface curvature calculation.

A number of different window sizes were

"a

/tabiereit

"-I

implemented for both algorithms, these

ranged from 3 x 3 through 13 x 13. The

general formulation, as well as some

explicit formula, for the convolution

matrices or the quadratic functions for

these windows sizes are given in Besi and

Jam (1988) and Yokoya and Levine

(1989) respectively.

It was decided that a size of 7 x 7 was the smallest window size that gave rise to a

description of the surface that was stable to noise in the data. Therefore, a window size

of 7 x 7 was used to evaluate the performance of these algorithms on regular test objects

and the face (see section 6.4).
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6.2.4 Least squares fitting of surface patches

The first two methods that were used to calculate the surface curvatures were based on

the extraction of a depth map of the surface from a particular viewpoint. The depth map

approximation is not truly independent of surface orientation since the areas of the

surface represented on the depth map by the image pixels, and therefore used by the

convolution windows and surface fit algorithms, are not constant but depend on the

slope of the surface as seen from the chosen viewpoint. If the slope appears great then

the image pixels will represent larger areas of the surface than if the slope is shallow.

For the face, seen from the anterior view, this means that it is quite likely that large

errors will occur at the edges of the facial image and on the sides of the nose.

Conversely, the method now presented of least squares fitting is conducted on the

actual surface data and does not require the extraction of a depth map from a particular

viewpoint. The curvatures of the surface are calculated directly from the acquired 3D

data and so this method is fully independent of the orientation of the data.

In this method, a least squares quadratic surface is fitted about each point in the data.

The coefficients of this fitted surface are used, as in the Yokoya-Levine algorithm, to

calculate the partial derivatives and hence the Gaussian and mean curvatures.

However, before the least squares surface is fitted a number of steps are taken to ensure

a good fit to the data. Firstly for each point, which will subsequently be referred to as

the "current point", all the surrounding points within a given radius are found (limits on

the maximum number of profiles and scanlines along the profile, either side of the

current point are set). The surrounding points are used to fit a least squares surface

patch to the current point, I will call these the "patch points". Next the transformation

matrix, M, which orientates the surface normal of the current point outwards along the z

axis (the radial distance) is found. All the patch points are then transformed by the

matrix M, so that the orientation of the patch is now centred along the z axis. This is to

stndardize the direction from which the patch is fitted and the curvatures calculated.

The derivation of the transformation matrix is based on geometrical consideration's and

is detailed below.

Lemma: Calculation of transformation matrix to align the surface normal of the current

point along the z axis.

If we consider the surface normal at a point on the surface (x,y,z) to be pointing in some

direction in space with components its orientation to the z axis (0,0,1) can be

achieved by two rotations. First a rotation about the y axis by an angle 6, followed by a

rotation about the x axis by an angle (90 - B), where B is the angle made by the surface

normal vector to the y axis.
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Figure 6.3: Alignment of a surface normal Figure 6.4: Illustration showing how the angle 6
vector (xe, y, z) to (0,0,1) by a rotation 	 maybe defined.
of 6 about the y axis and (90 - B) about the
x axis. Clockwise is a positive rotation.

Now from trigonometry,

cos B = y and sin B = I(1y2)

cos (90- B = I(1-v	 and sin (90 - B = ' ..

Also,

sin 6 = cos a / sin B,

where a is the angle the surface normal vector makes with the x axis.

therefore,

sin 8= xL/1jy

and using the relation, ;2 + y 2 + x,2 = 1

cos6=z/*1-yJ

-- (6.9)

-- (6.10)

Matrices R1 and R are standard matrices which rotate a vector about the x and y axis

respectively. They are

	

( i	 0	 o	 (cosö	 0

=	 0	 cos(90-B) -sin(90-B)	 R =	 0	 1	 0

	

0	 sin(90-B) cos(90-B))	 -sin6	 0	 cos6

Multiplying these together gives the combined rotation matrix M;

(cos6
	

0
	

sinö

I sin(90-B)sinö
	

cos(90-B)	 -sin(90-B)cosö	 --(6.11)

-cos(90-B)sinö
	

sin(90-B)
	

cos(90-B)cosö
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Substituting for these in terms of the surface normal components;

M=[ yxJ2)

-xn

0
IJy2)

yn

xJ)
yzJ2) -- (6.12)

which is the form of the matrix required.

Verification of this matrix can be obtained from checking the result of

(0

M	 = 10	 -- (6.13)

I1

It was also verified by plotting the components along each of the axes for a test patch of

face data. The appearance of the patch of data viewed along the z axis should be a

roughly circular patch and along the x and y axis, where the transformed data is seen

edge-on, a relatively linear patch or elongated ellipse should be seen. Thus the matrix M

is used to transform all the patch points, and their surface normals thus

	

(x j '	('

M	 'I	 1Y'dt1
	 -- (6.14)

	

z)	 \Zdat*

so that the patch is orientated along the z-axis.

a Fitting a least squares quadratic surface patch

The transformed patch points are now fitted by a least squares quadratic surface. The

mathematical detail of this is given in Lancaster and Salkaukas (1986, ppl47-l5l). A

quadratic surface cannot be well fitted to a discontinuous surface. Fortunately, the facial

surface is a largely continuous surface and providing the size of surface patch fitted is

not too large, little surface detail is lost. Fitting a least squares surface does not always

yield a unique solution (see Lancaster and Salkaukas for details), but this is not a

problem for this application.

Each of the set of (x,,y) data points in the patch, where i = 0, 1, ... N have a value

"zdata'. It is assumed that the surface data is approximated by the quadratic function z

of the form:

z(x,y) = a0 + a 1x + a2y +a3xy + a.4x2 + a5y2 	-- (6.15)
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for some choice of coefficients a0 through a5. At each point in the data the difference

between the surface elevation, z, and actual surface elevation, zdata, is z(xy 1) - zdata,.

For a least squares solution, function z is adjusted to minimize:

E(z) =	 -zdata1)2	 - (6.16)

This is achieved by altering the choice of values for the coefficients a 0 through a5. The

accuracy of the surface patch fitted to the data was calculated by comparing the patch

fit at the current point with both i) the current points actual depth value and ii) the mean

fitting error for the patch.

The partial derivatives of the equation can then be derived allowing the Gaussian and

mean curvatures at the current point to be calculated. This entire process is repeated for

all the points in the data. For a test image of 18 profiles, this algorithm took just over 3

minutes to run on one Transputer. A typical facial data set contains approximately 210

profiles therefore, the projected running time for one face was approximately 40

minutes, which is very slow.

b Using a variable patch size.

The accuracy of the surface fit may be improved if the size of the patch fitted around

each point is allowed to vary. This forces larger patches to be fitted over shallowly

curved surfaces, such as the cheeks, and smaller patches to be fitted at more highly

curved portions of the face, such as the nose. Thus programme was iterated with the

size of the patch being decreased from a maximum radial size (eg. 12 mm), removing

the most distant point each iteration, until the mean error of the fitted patch to the patch

points was within a predefined limit (eg. 0.5 mm). To ensure that the patch did not grow

too small during this process a minimum patch size was also defined (eg. 2 mm). If the

programme reached the minimum size and no fit was found within the error allowed,

the curvatures were assigned a dummy value to indicate this and no surface type was

assigned to that point, which was displayed as black on the surface type image. The

orientation of the points' surface normals were checked to ensure that no points were

included in the patch that were located on a backward facing surface. Without this

check, the quadratic surface fit function would treat these points as if they were located

on the same surface. On the face, this could lead to possibly quite significant errors

around the nose bridge region.

For this variable-patch size algorithm, the calculation time would obviously be a lot

longer than before because of the iterative procedure, which fits several patches for

each one fitted in the fixed-patch algorithm. In view of this anticipated long run time,

consideration was given to what could reasonably be done to shorten it. The options
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were as follows: i) to further optimize the code or ii) to implement the code on more

than one Transputer ie. in parallel. If the run time could not be quickly shortened then

the option to run the programme overnight remained. The first option could obviously

be done fairly quickly and would have significant effect on the run time, although the

run time would still remain long. The second would require further p:ogramming and

strategy as well as the purchase (or loan) a number of Transputers. Approximately 4 to

8 Transputers would be required to bring the run time down to around 10-20 minutes.

Since the cost of Transputers is approximately £1500 each and the necessary funds were

not available and neither at this advanced stage in the work, was the time required for

the programming, this course of action was not embarked upon. The code was

optimized and the programme run overnight.

The following optimization of the code was carried out. The distances of the patch

points from the current point were calculated. These were then sorted by order of

distance from the current point using a standard heap-sort type algorithm (Press et al,

1986, pp.231-232). This allowed the number of points included in the patch to be

decreased by one (or more) at a time as the patch retreated inwards, without having to

recalculate these distances every iteration. One could simply read the first n points from

an array and use them. Everything that could be removed from inside the iterative loop

was removed. When this was completed, the computation for one head (typically 210

profiles) still took some 3 hours to run.

The minimum and maximum patch sizes, as well as the fitting error of the patch were

selected by experimentation on a test image. The test image was actually a portion of a

real laser scan of the face (figure 6.5). The criteria used for selection were that the

surface type representation produced (see section 6.3.2) would contain as few as

possible single pixels patches and the patches would not appear too "blocky" in nature.

Most importantly the description should be stable to small variations of these initial

conditions. I found that the following sizes produce a good description. A minimum

patch size of 2.0 mm, containing some 12 points, and maximum patch 20.0 mm,

containing some 200 points. The mean error between the patch of data and the fitted

surface was either 0.5mm or 1.0mm.

Comparisons were made between the fixed patch size method and the variable patch

size method for the test image (figure 6.5). These showed that the variable patch

method was more noise tolerant than the fixed patch method resulting in tidier surface

type patches at a smaller error.
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6.2.5 Smoothing the data

Altering the tolerance on the allowable error for the fitted patch is similar in effect to

smoothing the data. Additional smoothing can be achieved by pre processing the data

using a low pass filter. Sonic smoothing pre-processing was used for the older, more

noisy scans. The algorithm used to smooth the data averaged the data values at a point1s

neighbours in the manner shown in figure 6.6.

o	 1/3	 0

o	 2/3

1/3	 1	 1/3
______ -
	 icnIIne

0	 2/3	 - p(x,y)
o	 1/3	 0

profiles

Figure 6.6: Smoothing of data using a low

pass I ilter show ung ih .ontruhutuon ol

a(lpa( ent p01111 1(1 the point p(x ,y)

The effect of smoothing the data was assessed by

smoothing one laser scan a number of times. The

effect Ofl the surface type description can be seen

in figure 6.7. Some of the smaller surface type

patches were removed (such as the vertical green,

ridge lines on the cheeks) and some smaller

patches were amalgamated together (eg. the blue
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saddle ridge patches corresponding to the philtrum of the upper lip). The shape of the

remaining patches were smoother, but well preserved - even after smoothing 10 times.

An evaluation was made of the amounts of each surface type on the face, at 11 chosen

threshold levels and for the levels of smoothing shown in figure 6.7. This revealed only

very small changes in the amount of surface type between smoothing levels. The

greatest difference between the original unsmoothed representation and the 10 times

smoothed one was for the flat surfaces which increased by 2%. The least abundant

surface type, the valleys, changed by only 0.4%.

This study suggests that smoothing the data and hence the removal of data noise, does

not effect the surface type representation drastically. Indeed, if a large amount of

smoothing is made then the gross facial structure should be more easily extracted by the

surface encoding scheme.
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Representation of the curvatures values

Once the curvature values for each point on the surface have been calculated a method

is required for visualiiing this information in the simplest possible sense. Two methods

are presented for graphically representing the data.
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6.3.1 The KH-map
The magnitude and distribution of the values of surface curvatures together with the

frequency with which they occur on a surface, can be illustrated by plotting a graph of

the Gaussian curvature, K, (as ordinate) against the mean curvature, H, (as abscissa). A

form of this graph was first drawn up by Yokoya and Levine (1989). Eight surface

types can be determined by the signs of the two curvatures and correspond to certain

regions on this graph (figure 6.8). A forbidden region exists above the curve K = H2,

where it is physically impossible to obtain such a surface. In my version of these graphs

(the KH-map), the axis scale for each surface curvature was defined as +1- 2 standard

deviations of the most frequently occurring curvature value. 50 bins were allotted to the

four standard deviations and the frequency of occurrence of values of Gaussian and

mean curvature within the bins are displayed as one of six intensities, with darker

shades indicating more frequently occurring values. An end bin on each axis was used

to indicate values outside the axis scale range. These are the bottom and right hand bins

respectively. Figure 6.9 shows an example for the surface curvature values calculated

for one face.
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Figure 6.9: KH-map for a lace. Blue squares
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6.3.2 Surface type description

As mentioned above, the computed values for Gaussian and mean curvatures of the

surface can be used to define the "surface type" at each image pixel by consideration of

the sign of both curvatures (BesI and Jam, 1988) (figure 6.10). The sign of the curvature

is calculated by comparing the curvature value with a pre-selected threshold value. For

example for the mean curvature, H:
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H > threshold value	 signH = +1

HI < threshold value	 signH = 0	 -- (6.17)

H < -threshold value	 signH = -1

and similarly for the Gaussian curvature, K. The surface type at the pixel, T(x,y) is

calculated from these signs:

T(x,y) = I + 3(1 + signH(H(x,y)) + (1 - signK(K(x,y)))	 - (6.18)

By colour-coding the pixel according to its surface type a "surface type image" (or STI)

may be produced. This is a useful, readily understandable way of displaying the

information. These surface types together with the colour coding that I have used

throughout this work to represent them are shown in figure 6.10.

Peak	 Ridge	 Saddle ridge	 Minimal

• 'Si	 i	 ri
Pit	 Valley	 Saddle valley	 Flat

Figure 6.10: Thc eight fundamental surface types.

Figure 6.11: LcIL to right, sur1ace ol positive, icro and negative mean curvature uperi 	 Onto
optical surface scan of the Iac
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Figure 6.11 shows separately for one face the surfaces of positive mean curvature (ie.

peak, ridge, saddle ridge), zero mean curvature (flat and minimal) and negative mean

curvature (pit, valley, saddle valley). The least squares fit method was used to calculate

the surface curvatures.

6.3.3 Encoding the face (threshold settings and susceptibilit y to noise'

For the face, the data have some random variation from calibration errors or noise (see

section 6.6). Therefore it is necessary to set thresholds on the curvatures, Km and

below which the surface is classified as flat. The surface type description is stable over

a range of thresholds. Varying the thresholds also allows the surface to be described at a

hierarchy of levels according to the magnitude of curvature of interest. The manner in

which the threshold should be altered is still a matter for debate but the condition, K

<= H, 2, must hold or some points will lie in the forbidden zone, which is

geometrically impossible. The rule Km = H, 2 was used to alter the thresholds, C.

along the parabola bounding the forbidden zone. BesI and Jam (1986) used the maxima

of both curvatures and set the threshold values according to the amount of noise

estimated to be in the image data. This estimation was obtained from fitting a equally-

weighted least-squares planar surface to the surface. Yokoya and Levine (1989) did not

address the problem specifically but pointed out that the optimal values for these

thresholds is thought to depend on the level of noise in the data. They suggested

scanning a reference flat surface and finding the minimum thresholds on K and H

necessary to classify the surface as flat without falling into the forbidden zone. Besi and

Jam (1988) attempted to eliminate noise from their data using a iterative region growing

procedure, based on variable order bivariate surface fitting.

0.02	 0.03

Figure 6.12: A lace encoded into surface types at three different threshold levels. Left to right: low,
medium and high thresholds (the threshold on H is indicated).

Applying this description to the face, when the surface curvature thresholds are set high

(eg. figure 6.12 right), the most curved parts of the face are easily seen; represented as

peaks, pits, saddle ridges and saddle valleys. These major facial features persist as the
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thresholds are lowered and less curved features are detected (see figure 6.12). The

patches of each surface type that are produced by the description are perceptually

meaningful and it is easy to identify such parts of the face as the chin, eye orbits, nose,

lips and inner canthi of the eyes from visual inspection of the surface type image. So the

segmentation of the face achieved by this approach matches the human interpretation.

One way of summarizing the information contained by a series of these hierarchical

STFs is by the use of graphs. In figure 6.13, the overall amount of each surface type

present, as a percentage of the entire surface is shown for increasing thresholds on the

curvatures for the face represented in figure 6.12. At high threshold levels, ie. very

curved surfaces, a large amount of the face is classified as flat, only small regions of the

face, which correspond to the major facial features are described by other surface types.

At lower threshold levels, corresponding to less curved surface, smaller amounts of the

surface are represented as flat and large amount by other surface types.

40% s- Peak,
	

Ridges	 Saddle Ridges
	 Pt

NIL
0 .01.02.03.04.05	 0 .01.02.03.04.05

threshold onH	 threshold ouH

._ 70%

10%
0% I_I_I_I

0.01.02.03.04.05

threshold on H

0	 I	 I	 I	 I	 I
0 .01 .02 .03 .04 .05	 0 .01 .02 .03 .04 .05

	
0 .01 .02.03 .04 .05
	

0 .01 .02 .03 .04 .05

threshold on H	 threshold on H
	

threshold on H
	

threshold on H

Figure 6.13: Variation of the total area of each surface type on one individual's face with increasing
curvature thresholds.
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£4	 Evaluation of curvature algorithms

Two of the three algorithms for calculating surface curvatures described in this chapter

have previously been reported, but to date no one has reported an assessment of their

relative performance on either standardized, geometric surfaces or on anatomical

surfaces such as the face. In this section, 1 assess the performances of all three

algorithms described in section 6.2 for geometric surfaces and the face, using the KH-

map and surface type representations. Where appropriate a window size of 7 x 7 was

chosen for these tests, as stated in section 6.2.3.

6.4.1 Geometric objects

The geometric test objects used to evaluate the performance of the curvature algorithms

were spheres, cylinders and saddles. Data for these objects were obtained from either

optical surface scanning the object, or calculated by one of two different ways (see

appendix A for the equations of these solids and the code for generating this data).

In the first calculation, a test depth map of the object was written directly and then

described by both the Besl and Jam and Yokoya and Levine algorithms (section a).

These two algorithms rely on a depth map being extracted from the surface data, so the

simulation of the depth map enabled an assessment to be made of whether the process

of extracting a depth map from the surface data influenced the performance of these

algorithms.

A second test object was mathematically generated as a series of profiles, simulating

optical surface scan data that is free from noise or calibration errors. Descriptions of this

test object were produced from all three algorithms (section b). Comparison of the

descriptions produced from these two forms of the test object allowed some assessment

to be made of the effect of extracting a depth map.

Finally, optical surface scans of geometric objects were taken and again all three

algorithms used to describe them (section c). Comparison with the simulated test object

(section b) allowed some indication of the robustness of the algorithms to noise in the

acquired data to be made. The effect of data noise is evaluated in section 6.5.

Figure 6.14 shows an example of the KH-map representation and surface type

description for the simulated cylindrical and saddle surface respectively produced using

the Besl and Jam algorithm. Note the clustering of curvature values in different parts of

the lU-I-map. One would expect that for a given geometric surface, the curvatures would

cluster in a small region on the KR-map corresponding to the surface type that one

associates with that surface (eg. a point in the peak section of the KR-map for a sphere).

Thus the ability of the algorithm to produce a small distribution of points is a
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indication of its accuracy. For the cylinder, the cluster on the Gaussian curvature axis

corresponds to the ridge surface and for the saddle surface the cluster around the mean

curvature axis corresponds to the minimal surface.

a Depth map generated surfaces

As mentioned previously, depth maps were directly written for the test objects and used

to calculate the mean and Gaussian curvatures using the Besi and Jam or the Yokoya

and Levine algorithm. The value of the calculated curvatures was determined for a

small number of centrally located points on the surface. These were compared with the

expected values of the mean and Gaussian curvatures for the test object (the sum and

product of the principal curvatures respectively) to establish the accuracy of the

algorithm. Very good agreement was found for both algorithms. In the case of the

sphere, the algorithms were accurate to 0.5% for the mean curvature and 0.1% for the

Gaussian curvature.

Further evaluation showed that there is a marked difference in the distribution of the

values of the curvatures calculated by the algorithms. Considering the spherical test

objects, whilst the curvatures calculated at the centre of a spherical surface are very

accurate, towards to edge of the "field of view", the values obtained for the curvatures

become much less accurate. This is because at the edges, a larger area of the surface is

being represented by the image pixel, from which the curvature is calculated. These

edge effects are visible as surface misclassification in the surface type images produced

using the Besl and Jam algorithm (eg. see figure 6.16). The Yokoya and Levine

algorithm's surface approximation method removes these edge effects.

The curvature values obtained using the Yokoya and Levine algorithm were more

scattered on the KH-map than those obtained using the Besi and Jam algorithm.

b Simulated scanned surfaces

The test objects were simulated in optical surface scan format by writing a series of

profiles. For the Besl & Jam and Yokoya & Levine algorithms, a depth map was

extracted from this data in order to calculate the surface curvatures. The least squares

algorithm used the simulated data directly.

Interestingly, both depth-map based algorithms obtained less accurate curvature values

for the simulated laser scanned sphere than the directly written depth-map (mean to

0.7%, Gaussian to 1.5%). The KH-map representations produced using these algorithms

show that extracting a depth map from the laser scan data introduces a greater variation

in the surface curvatures that are calculated using these algorithms (see figure 6.15 (top

left and centre) for an example using the Yokoya and Levine algorithm).
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Figure 6.16 (above) shows a comparison of the surface type descriptions, at one

threshold level, for the simulated sphere obtained from all three algorithms. The strong

edge effects produced by the Besi and Jam algorithm can be clearly seen together with

horizontal striations in both the Besi and Jam and the Yokoya and Levine algorithms.

The least squares algorithm represents every pixel as peak surface. The close clustering

of points on the KH-map produced by the least squares algorithm compared to the other

algorithms (see figure 6.15 centre) demonstrates it's greater accuracy over the other

algorithms.

c Optically scanned surfaces

Three geometric objects were scanned; a sphere of 125mm radius, a cylinder and a

saddle surface. The greater accuracy of the least squares algorithm compared with the

other algorithms was demonstrated for these objects. In figure 6.15 (right), the much

smaller variation of points on the KH-map for the least squares compared to the Yokoya

and Levine algorithm is demonstrated. Figure 6.16 (below) shows the surface type

descriptions produced by the three algorithms for the optically scanning sphere.

Figure 6.16: Comparison of the surface type descriptions produced by the Bcsl and Jam (left), Yokoya
and Levine (centre) and irregularly sampled least squares (right) algorithms respectively. Above, a
simulated sphere. Below, an optical surface scan.

Comparison of the optically scanned sphere (section c) with the simulated sphere

(section b) revealed the imperfections in the laser scanned data, due to system noise.

These differences, although detectable via the curvature values, do not greatly effect the

surface type description produced when the least squares algorithm is used.
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The effect of scale was investigated using

three sizes of spheres with radii of 45mm,
90mm and 125mm respectively. KH-maps

and surface type description's were

generated for these spheres and it was

shown that as the size of sphere increased,

the position of the most frequently

occurring curvature values moves down the
Figure 6.17: The effect of size of sphere on the
distribution of curvature values.

parabola K = H2 towards zero (see figure 6.17). This was predicted as the surface

represented by an image pixel is less curved for spheres of larger radii.

e Additional testing of the Yokova-Levine algorithm

In the Yokoya-Levine algorithm, the matrices given for the coefficients a through f and

the calculated fitted depth were tested using test objects by considering the expected

values for them. The objects used were a test plane (inclined in various directions), a

test curve and the two test spheres, described above. The minimum error (Emin) for

these objects was also calculated giving an indication of the limitation of the algorithm

in fitting these surfaces. The partial derivatives and values of the mean and Gaussian

curvatures were also obtained. These allowed an assessment of the accuracy on the

mean and Gaussian curvature values that will be obtained from this algorithm. The

algorithm calculated values of the coefficients and depth were in close agreement with

the expected values.

6.4.2 The face

Besl and Jam
	

Yokoya and Levine
	 Least squares

Figure 6. I	 Coiti	 on ul I h	 urI .k c type k '.& ript R)fl. produced k w the 'i,ne face using the threc
algorithms
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The performance of the algorithms for the facial surface are shown in figure 6.18.

Whilst all three algorithms represent the same portions of the face with the same or

similar surfaces, the least squares representation demonstrates a clearer correspondence

to the perceived facial surface structure and the patches of each surface type are less

"blocky".

Sensitivity of the algorithms to noise

The next step was to consider the effect on the representation of possible distortions in

the optically scanned data. The errors involved in the collection of a data set for a

person's face, from the UCL optical surface scanner, has been estimated to be 1mm in

the vertical direction (ie. along a profile) and 0.6 mm between profiles (Moss et al,

1989). These errors could arise from noise which could be either random noise, and

from several sources, or quantization noise due to the radial resolution of the optical

scanner or from systematic problems to do with the measuring techniques employed.

C.

o.. laser scanned sphere

c) with random noise with quantization noise

Figure	 an optically scanned sphcre with a simulated sphere with noise added

For the UCL scanner, one systematic problem is known. This is due to the head not

being correctly positioned above the axis of rotation of the chair on which the subject is
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seated. The effect of this is to alter the spatial resolution at which the surface is sampled

and the presence of this error is noticeable in the distortion from horizontal of the

quantization noise bands on the optically scanned sphere (see figure 6.16 below). This

problem was noted but no full assessment of this systematic problem was made. The

effect of noise is now described.

In order to make an overall assessment of the amount of noise present in the acquired

data, the optical surface scan of a sphere, 125 mm in radius (figure 6.19a) was

compared with a mathematically generated one of the same size (figure 6.19b). Various

amounts of noise were added to the simulated sphere, and comparison was made with

the optically scanned sphere until the KR-map and surface type descriptions

corresponded well.

6.5.1 The effect of random noise addition

Two sorts of noise were added to the sphere to simulate the possible noise present in the

acquired laser scans of facial surfaces. These were normally distributed (Gaussian)

random noise and quantization noise. The random noise was calculated from a standard

algorithm (Groeneveld p.108, 1979) where the noise added to the radial position of the

surface, x is given by

x = x + sd * err

where sd is the standard deviation of noise to be added in mm and err is

err = I (-2 * log(randoml)) * cos(2ir * random2)

random! and random2 being random numbers between 0 and 1. This formula was

tested by calculating the value of err 100 000 times using different random numbers and

checking the number of times each value of err occurred. This was indeed found to be a

normal distribution (figure 6.20).

Figure 6.20: Distribution of 100 000 randomly generated numbers,
normalised to represent a Gaussian distribution of noise
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Various amounts of random noise were added to the simulated sphere (figure 6.1 9c) and

KH-maps and surface type images were produced for each noisy sphere using the least

squares algorithm (figure 6.21). Comparison of these representations with those

produced for the optically scanned sphere (figures 6.15 bottom right and 6.16 bottom

right) shows that not more than 0.2 mm of normally distributed random noise is present

in the laser scans, if this noise is the sole cause of error in the surface curvature values.

Figure 6.21: Effect of adding random noise to a sphere. Left, 0.5mm noise. Centre, 0.2mm noise. Right
0.1mm noise.

6.5.2 The effect of guantization noise

In optical surface scans, quantization noise can arise due to the fact that points along the

acquired profiles are digitized to the nearest pixel by the CCD camera. Hence a smooth

spherical surface will be encoded with small horizontal bands running across it (see

figure 6.1 9d). To simulate the effect of quantization noise, the real numbers values for

the radial position of the surface, were rounded to the nearest 1mm, 0.5mm or 0.25 mm.

A simulated sphere was again used to evaluate the effect of this kind of noise and three

noisy spheres were produced with the above amounts of noise. KH-map and surface

type representations were produced using the least squares method (figure 6.22) and

comparisons were made with those obtained for the optically scanned sphere. These

comparisons show that less than 0.25mm of quantization noise is present in the

optically scanned sphere.
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Figure 6.22: Effect of adding quantii.au.ion noise to a sphere. Left, 1.0mm noise. Centre, 0.5mm noise.
Right 0.25mm noise.

6.5.3 Overall assessment of noise in laser scans
The combined effect of random and quantization noise errors was assessed by

generating a number of simulated spheres with various amounts of both types of noise.

Again, the KH-maps and surface type images for these spheres were compared with

those for the optically scanned sphere.

normally distributed noise

quantization noise

2 * standard deviation

eg.
Normally distributed noise of sd 	 0.25
Quantization noise of width 0 5

Figure 6.23 shows that the normally

distributed random noise should be

half the quantization noise. Figure

6.24 shows that 0.25mm quantization

noise and between 0.1mm and

0.15mm of normally distributed noise

would give a good explanation of the

KH-map and surface type image of

the laser scanned sphere. Thus

relative amounts of these two types

of noise is consistent with theory.

Figure 6.2: The relative widths of normally distributed and
quantwation nOise.
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Figure 6.24: Above,
surface type images and
below, KH-maps for two
combinations of
normally distributed and
quantization noise added
to a simulated sphec.
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Stability and repeatabilit y of the facial description

6.6.1	 Errors in facial surface scans

The optically scanned sphere, used to investigate the effect of data noise above, has

been measured to be accurate to within 0.1mm at a point and is a rigid object. However,

for a face, the amount of noise present could reasonably be expected to be greater than

this value due to the difficulty in holding one's head absolutely still during the scan.

Also, it is well known that a person grows shorter during the day due to gravity. Other

factors which may possibly affect facial appearance are facial activity such as eating

and talking and skin blemishes such as spots or changes of mood. These effects have

not been measured. However, the optical surface scanner has been shown to provide

accurate and repeatable scans (the stability of the optical surface was discussed in

chapter 5).

6.6.2 Repeatability of the description for an individual

To estimate the difference between facial scans incorporating these differences in facial

appearance, several scans of the same person were taken over a two week period. These

were then registered together, ie. the orientation of the heads were matched using the

technique described in chapter 7. The surface curvatures and surface type at every point

were calculated and differences in the resulting surface type descriptions compared.

Four of these scans and the corresponding surface type descriptions, at the same

medium threshold level, are shown in figure 6.25.
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Figure 6.26: Variation of each surface type over the face for four scans of one individual.
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Figure 6.25: Four scans of the same individual and their surlace type images.

Some small differences are visible especially in the more mobile parts of the face, such

as green ridge lines on the cheeks and the eyes. Note also that in the left most scan the

subject had a large spot between his brows that was not present when the other scans

were taken. No smoothing of the data was made.

Figure 6.26 compares of the amount of each surface type on the face with increasing

thresholds, for the four surface type descriptions shown in figure 6.25. Variations in the

amount of each surface type between scans are 1% of the entire surface or better. This is

more significant for some surface types others, depending on the proportion of the

surface which they cover. Thus for the valleys this difference is more significant that for

the peaks. In general, good agreement is shown between the four analyses.

6.6.3 Effect of facial expression

The mobility of the soft tissues allows the face to assume a range of different facial

expressions and yet these changes have little effect on our recognition of a face. The

role played by facial expressions in communication, has led researchers to investigate

how they are produced, and latter to attempt to simulate them.

Drawings of how different emotions are portrayed in a face were made in 1806 by Sir

Charles Bell. His work was aided in the late nineteenth century by the advent of

photography (Ekman, 1973). Duchenne investigated the muscle forces which produce

facial expressions. Working at the time of the French Revolution, he applied electrical

impulses to freshly guillotined heads to produce different expressions. The soft tissue

movements that correspond to a particular expression have been documented. For
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instance, a smile widens the mouth and nostrils, decreases the height of the upper lip,

raises the eyebrows, partially closes the eyes, opens the mouth and decreases the

distance between the mouth and base of the nose (Bledsoe, 1966). Ekman and Friesen

(1971) discovered that some expressions panculturally convey the same meaning. This

led them to develop a method for counting the activity of facial muscles (Ekman and

Freisen, 1976).

In the last decade or so, the quantification of the soft tissue movements produced by an

expression and the computer simulation of facial expressions have been undertaken.

Pilowsky and colleagues (Pilowsky et al, 1985) used a mathematical model developed

by Thornton and Pilowsky (1982) to manipulate facial muscles in order to simulate

expressions and to quantify facial measurements relative to facial expression. This

method was photography based. A 3D model based on muscle-action has been

developed by Walters and Terzopoulos (Walters, 1987; 1989; Walters and Terzopoulos,

1990; 1991). This model has been used to simulate different facial expressions and,

recently, speech.

The effect of facial expression on the surface type description is demonstrated in figure

6.27 and the variation, across the facial surface, of the amount of each surface type with

increasing curvature threshold levels is shown in figure 6.28.

Hi

A smile

I
d

A frown

Vr

•	 S

-4..	 -

Figure 6.27 - The cifect of facial expression on the
surface type description
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Figure 6.28: The effect of facial expression on the amount of each surface type across the entire facial
surface.
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Facial Description

.1 Summary and enhanced segmentation

The method described in this chapter allows the segmentation of the facial surface into

patches of different types (shapes) of surface. A hierarchical description of the face,

based on its curvature is produced, and this description has proved to be perceptually

meaningful and allows a large amount of data to be readily appreciated.

Three algorithms for calculating the surface curvatures were described and their ability

to describe geometrically regular objects and the facial surface has been described. The

advantage of the novel least squares algorithm, in terms of the accuracy of its

representation has been demonstrated. The comparative long run time of this algorithm

is a concern, but is a problem that is summountable by parallelization of the computer

code.

An assessment of the effect of random and quantization noise on the representation has

been made. Noise in data was estimated to be between 0.1mm and 0.15mm of random

noise and 0.25mm of quantization noise. This amount of noise will only effect the

surface type description at low threshold level. Smoothing the data was shown to have

very little effect on the surface type description. This establishes confidence that noise

in the data will not serious effect the representation produced. and that fairly small scale

changes can be described with confidence.

The surface type description has been shown to be reproducible for a face with a neutral

expression. The effect of facial expression on the description has been demonstrated for

two instances. It is important to establish the degree of reproducibility of the description

for an individual face, so that a level of confidence can be placed on any comparison

made between two faces. I have shown here, that a relatively high degree of confidence

can be placed in the surface type description produced for a face.

Combining the surface type description with discontinuity maps of the surface ("jump

edges") and surface normal ("roof edges") has been suggested for enhancing the

segmentation of objects (Yokoya and Levine, 1989). For the face, very few surface

discontinuities exist. However, the production of discontinuity maps, suitably

thresholded, may prove of value.
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CHAPTER 7.

ANALYSIS OF DIFFERENCES AND CHANGES IN THE FACE

In this chapter, I discuss how the differences in shape between individual faces, or the

changes in shape made to one face may be described using the surface type

representation. Three methods of analysis are described (section 7.3) and some ideas on

how an autonatic comparison of facial changes or differences might be made in future

work are then discussed (section 7.4). This is novel work. However, before the surface

type descriptions can be analysed satisfactorily, the two surfaces in question must be

accurately registered together so that the comparison made is meaningful. It is also

useful for a standard or "average" face to be defined. These requirements are described

in the next two sections.

Finally, in section 7.5, an assessment is made of the sensitivity of the surface type

description to global changes made to the facial data (such as caricaturing) and to local

alterations, made by application of a mathematical function across a small region of the

face. The resilience of the surface type description against these changes to the data set

will allow the determination of the magnitude of change in facial shape that is required

in order for the change to be perceptible. This innovation could be useful in assessing

the outcome of facial surgery and for the investigation of the role of various parts of the

face in facial recognition.

Li.	 Registration of 3D surfaces

In order for a valid comparison to be made between two optical surface scans, a method

must first be found to accurately register the two surfaces together. A suitable method

for registration has been derived by Fright and Linney (in press). This technique permits

the comparison of two or more head surfaces without the need for a common coordinate

system by enabling surface measurements to be registered, or normalised, with respect

to spatial position, orientation and scale in three dimensions. This method is briefly

described here.

Firstly, an operator identifies a set of landmark points on the surfaces of both heads.

These are marked interactively by moving a cursor across a shaded image of the facial

surface, which is displayed on the graphics system. The accurate location of the

landmarks is assisted by the display of vertical and horizontal profiles across the face

through the cursor point concurrently with the shaded image. This guides the landmark

selection to points of maximum convexity or concavity. The 3D position of the

landmark is computed from the two dimensional screen position, the z buffer value at

that point and the matrix transformation from screen space to object space.
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The landmarks used for the registration should be located, as far as possible, across the

whole facial surface so that the coordinates are well distributed in all three planes of

space, thereby facilitating an accurate registration. The landmarks used for the

registration of non-patients were: the inner canthi, the outer canthi, soft tissue nasion,

the left and right alar base, subnasale, soft tissue B point, menton and otobasion inferius

(figure 7.1).

Figure 7.1 Landmarks used for the registration of facial surfaces

It is a requirement of this technique that the landmarks used must be located on regions

of the surface that have remained unchanged between the two scans. For the facial

surgery patients studied in chapter 8, much of the lower two-thirds of the face was

moved during their surgery. Therefore, in these cases the landmarks chosen were

confined to the forehead and eye regions (figure 7.2). These were the left and right,

inner and outer canthi and the nasion together with five points on the forehead. The

forehead points were defined by mathematical construction as follows. A best fit line

was constructed through the five marked points and the face was orientated with the

mid saggittal plane at 90 degrees to this line. The first forehead point was marked a

distance of 30mm from the nasion along a perpendicular projection from the

constructed line. Two pairs of points were marked either side of this point at 15mm

intervals, perpendicular to the mid saggital plane.

Once appropriate landmarks have been selected, the spatial locations of their 3D

coordinates are averaged together to effect the registration. The error in registration of

the landmarks is minimised using a least squares technique. The accuracy of the

registration increases with the number of landmark points chosen and with their wider

distribution across the facial surface. This ensures that the effects of individual errors,

incurred by the measuring system and the operator, are minimised. Once the facial

surfaces are registered together, a comparison of surface changes or differences can be

made with confidence.
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Figure 7.2 Landmarks used for the registration of facial surfaces for patients

Production of an average face.

The derivation of an average face provides a useful standard against which different

faces can be compared, thus allowing abnormal facial conditions to be described and in

some slight cases, detected. Eventually, it may also be of help for defining a

comparative basis for facial aesthetics (see chapter 8). The availability of an "average"

face allows an assessment to be made of the result of an operation to correct facial

deformity revealing the areas in which the face has become less extreme in appearance

(moved closer to the "average") or become more extreme (moved further away from the

"average").

Orthodontists have long been interested in the production of average or standard faces

and different types of faces. Angle (1900), Down' (1948) and Ricketts (1981) all

developed facial indices based on the classification of the facial profile into groups.

These indices were designed to describe the types of facial abnormality that are

congenital in nature and to tell the facial surgeon how to move the facial bones in order

to correct them.

Galton (1878) was interested in the production of average faces for another reason. He

superimposed photographs of two or more faces using multiple exposures, in an attempt

to define facial characteristics of health, disease and criminality. A requirement of

Gallon's technique is that the original images must be of the same size and pose, have

features of similar proportions and the pupils of the eyes must be exactly aligned.

Interest in this superposition method is still being shown today. Langlois and Roggman

(1990) have recently tried to improve it by adjusting the facial images to be equal in

size and orientation and vertically scaling and averaging the image intensity. Benson

and Perrett (1991b; 1992) have also manipulated photographic images prior to
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producing a composite face. In their composites, the problem of blurred edges is

avoided by using some 200 coordinates marking the outlines of various facial features.

They have used this method to produce average male, average female and average

person (androgynous) faces (see figure 7.3). They have also produced "hyper-male" and

"hyper-female" faces by doubling the differences between each feature point in the

average male and average female faces.

Figure 7.3 Li iid Perreus Photographic averages, Left to right, a hyper-female face (this
accentuates the differences bctwcen the average female and male): average female (16 faces);
androgynous face (average of 16 female and 16 males); average male (16 faces) and a "hyper-male" face.
Reproduced with permission.

A technique for averaging 3D optical surface scan data has recently been derived by

Fright and Linney (submitted). For this method, the individual surfaces must first be

registered using the technique described in section 7.1. Differences can be expected

between the size of individual heads and in their position and orientation during

scanning. Thus before an average head surface can be produced a number of factors

must be normalised. Firstly, a transformation matrix, which minimises the error

between the individual landmarks and the reference in a least squares sense is derived.

This matrix then maps the landmarks and the rest of the data for an individual head onto

the average. The surfaces are then resampled on a regular cylindrical grid in the

common coordinate system. The new radial measurements of the surfaces are averaged

to produce an average head surface. Thus the head surface acquires a standard (the

average) position and orientation in space and a standard size and proportion.

Optical surface scans of 13 females and 14 males were used to produce an average

female head and an average male head via this technique (figure 7.4). Surface type

descriptions were then computed for these. Figure 7.4 shows these surface type

descriptions at a medium threshold level.

7.3 Anal ysis of surface type descriptions

In this section, I describe three methods for analysing the differences between two

surface type descriptions. These analyses are illustrated using the surface type

descriptions computed for the average male face and the average female face (figure

7.4).
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Figure 7.4 Above, the average male head (left) and average female head
(right). Below, the corresponding surface type descriptions.

7.3.1 Qualitative analysis

The first method of analysis is a qualitative description of the surface types, in which

the relative position and size of certain surface type patches are assessed by visual

observation of the surface type images.

A qualitative consideration of the surface type encodings for the average male and

average female heads reveals some notable differences: compared to the female head,

the average male head has larger areas of peak surfaces at the inner corners of the

eyebrows and at the chin but smaller areas of peak surfaces across the cheeks. The

average male also has areas of ridge surfaces extending from the upper lip downwards,

parallel to the lip corners which are absent in the female, and a larger area of minimal

surface between the lower lip and the chin centred on the soft tissue B point.

Some of these differences may be related to the relative protuberance of facial features

on male and female faces. Bruce, Richards and I have recently demonstrated, using

simple quantitative comparisons between the average male and average female, that in
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the male face the brows, chin and nose are more protuberant than the female whereas

the female has slightly more protuberant cheeks (Bruce et al, submitted). This could

explain the differences in amount of peak surfaces. However it does not account for the

ridges extending from the upper lip.

This analysis of the 3D average male and female heads broadly concurs with Benson

and Perrett's findings for their photographic average faces. Benson and Perrett (1991b,

1992) found that the male faces tend to be longer with more protuberant nostrils, thicker

eyebrows and squarer jaws with subtle differences in the shape of the cheeks.

Psychological tests on the rated masculinity and femininity of Benson and Perrett's

average faces have shown that the sex of these faces are correctly perceived, implying

that the shape of the internal facial features are sufficient for judging the sex of a face.

7.3.2 Regional analysis

A second method of analysing the surface type descriptions is to divide the face into

regions and compute the amount of each surface type within each region. The region, or

feature, of interest was defined interactively by using a cursor to mark a box around it

on a Mercator projection of the surface type data (see figure 7.5).

Nose width
(outer edges of pits slar base)

Eves width I

(outer exten4of saddle ijdge ii outer canthii)

I	 I	 I	 I

I	 .	 Eves heiphi
(uppercxtentofpeakatbowndge)

'	
"j'	 Noscheieht

-	 (upper extent of saddle ridge at nasion)
(lower exlesg of saddle ridge at orbital)

- - ..	 - - - __(lower extent of saddle valley at subnasale)

(lower extent of pits at alar base)

(lower extent of peak at mauon)

Lower face width
(outer extent of saddle valleys)

Figure 7.5 Definitions of eyes, nose and lower face regions, as marked from a low threshold level
surface type image, shown here as a Mercator projection.

The consistent placing of this enclosing box was ensured by using the location of

certain "landmark" surface type patches, at the lowest threshold level computed. Whilst,

it may be argued that the human visual system does not use such artificial linear

constructions to define regions, the consistent marking of the region from face to face at

least allows us to make a reliable comparison of the surface encoding and to begin to
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explore whether or not this sort of surface encoding carries any useful information. In

this work, three regions of the face have been considered; the nose, the eyes and the

lower face. These were defined as shown in figure 7.5.

Once a feature or region has been defined, the percentage of each component surface

type contained within the region can be computed, yielding a quantitative analysis of

the amount of each surface type in the region. This can be carried out for different

curvature thresholds and represented graphically as a function of increasing thresholds

on the curvatures (eg. figure 7.6).

Amount of surface tvoe In realon

Threshold on curvature

incr..ang(y cu,v.d .u,10

Figure 7.6: Graphical comparison of the
amount of surface type against threshold
level.

A summary of this analysis for the average male and

female heads is shown in figure 7.7. If we assume

that the surface types that can be associated with

prominence are those of positive mean curvature (ie.

peaks, ridges and saddle ridges) and those associated

with retardation have negative mean curvature (ie.

pit, valley, saddle valley), then we would expect to

find more peaks, ridges and saddle ridges on the

male brow, chin and nose and more flat and minimal

surfaces (of zero mean curvature) for the female.

In the eye region, which includes the brows, there is a greater amount of peak and ridge

surfaces for the average male compared to the average female, this could correspond to

the relative prominence of the surface. The male also has more ridges at high threshold

levels, implying that the brows are more curved. The average female has more flat, less

curved surfaces.

At the chin, the average male has more ridge surfaces at low thresholds (ie. a shallowly

curved surface) and also more flat surfaces. These maybe indicative of a squarer

mandible. The female head has more saddle ridge, minimal and peak surfaces.

At the nose, the average male has more ridge surfaces at high thresholds (Ic. a highly

curved surface) but more flat and minimal surfaces too perhaps indicating a square

shape. The average female has more saddle ridge and pit surfaces.

Overall, this analysis of the amount of each surface type in the eyes, nose and lower

face regions for the average male and female heads, tends to support the notion that the
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prominence or retrussion of the facial surface is reflected by the surface type amounts,

but this is not particularly clear.

nose

m > I (all)	 m / I similar
m > > I (high)	 m > f (high)
rn/f similar	 f>m(all)
f>>m(all)	 m>f(all)
m>f(high)	 m>f(all)
f> m (low), m > f(high) I> m (all, low)
m slightly> f (all)	 m / I similar
m > I (alfl	 m sliahtiv > I (

lower face

f,.m(hinh
m>> I (low)
I,> m (low)
m >> I (high)
I>> m (all)
I> m (low), m > I (high)
I slightly> m (low)
m sliahllv > I (alfl

Figure 7.7: Summary of a comparison of the amount of each surface type over low to high threshold level
for the average male and average female. m = male, I = female, in three regions of the face. Brackets
indicate threshold range over which the comparison is valid, if not all thresholds.

7.3.3 Anal ysis of Surface Type Patches

A far better method for analysing the surface type description would be to use various

statistical measures to quantify the surface type patches produced by the description.

For instance, one could calculate, for each surface type patch within a region of interest,

the area, orientation, length and width of each patch (see figure 7.9). The interfacial

variation could then be assessed directly from the variability of these patches. Although

the comparison between two sets of such parameters is straight-forward, a method for

comparing two surface type descriptions by their patches has not yet been fully

implemented since its robust implementation relies on developing a fully automatic

method for identifying the surface type patches. This is by no means easy and is not

attempted here, but is the subject of on-going research. However, by manually

identifying of a small number of patches, such a detailed comparison between two faces

is illustrated.

a1	 Forming patches

Adjacent pixels of the same surface type can be linked together into patches. These

patches appear to correspond to parts of the facial surface that are perceptually

meaningful, such as the nose tip, chin or eye orbitals. The boundaries of the patches are

found as follows.

For each point in the data set, the surface type, T, is noted and keeping the position

along the profile constant, an algorithm steps back through the profiles to find the point

at which the surface changes type. This point, bp, lies on the boundary of the patch. A

boundary search algorithm then starts with the boundary point (bp) and, using a eight-

way connected search algorithm, searches its neighbouring points to find the next point

of the boundary. This second boundary point becomes the starting point for the next
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search and so on (Press et a!, 1986) (see figure 7.8). Once, all the boundary points have

been found, a "flood-fill" algorithm is used to fill the patch with a dummy number

(Pavlidis, 1982) thereby ensuring that the patch pixels are not found again when this

process is repeated for the next patch. It is straightforward to extract various parameters

of the patch at this stage, such as the area or centre of gravity. Some salient parameters

are discussed below.

1.T k left to find boundaly p4xel
(Iw)

2. Start boundary search at 225°
flo direction f tracking. (this
ensures that the next boundary

pixel found is below bp)

3. Continue searching for each
new boundarypixel at 9 to
the previous found direction

Pixel found direction

> Direction to begin new search (90° to found direction)

Figure 7.8: The boundary search algorithm. Starting with the boundary point (bp),
neighbouring points are examined in turn to find the next boundary pixel. The
start direction is at 90 degrees to the direction of the previous search.

h	 Patch Parameters

In the computer vision literature, a number of parameters that provide meaningful and

stable measures of the shape of bounding contours have been suggested. A review of

these parameters is given in Brady and Horn (1983). Some of these measures were

selected and used to describe the shape of the surface type patches. These measures are

illustrated in figures 7.9 and 7.10 and described below.

.lNY	

ANG
LENX	 .9

Patch of Area (A)
Orientation vector varies (+90 to -90) (ANG)
Center of Gravity (CX, CY)
Maximum extension in X and Y directions (LENX, LENY)

Figure 7.9: Some measures of surface type patches.
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aa Geometric measures:

i) Area: The number of pixels in the patch.

ii) Surface Type: The fundamental surface type of the patch.

iii) Maximum size in the x and y directions: The maximum and minimum extension of

the patch across the acquired profiles (x) and scanlines (y).

iv) Centre: The geometric centre of the patch (centre of gravity).

v) Orientation: The orientation of the principal eigenvector of the patch. (The direction

is inverted if the vector lies outside -90 degrees to +90 degrees range).

bb Measures estimating the complexity of the contour shape:

i) Bending Energy: The bending energy of a contour was defined by Bowie and Young

(1977a) and provides an estimate of the complexity of a contour in terms of the energy

needed to deform a circle into the contour. Thus a contour with 2 "lobes" would have

lower bending energy than one with 3 "lobes". It has also been called the curve of least

energy (Horn 1983).

ii) E2A: P2A is a well-known measure estimating the complexity of an enclosing

contour. It is defined as:

P2A = Perimeter2 / Area

P2A has been used with some success for interpreting irregularly shaped objects

(Witkin, 1981; Brady and Yuille, 1984) and is commonly used in pattern recognition

and industrial vision systems. Brady and Yuille (1984) showed that this measure is

fairly insensitive to noise and stable with respect to the viewpoint, provided the

eccentricity is not large. However, Pavlidis (1979) criticized it for giving the same

value for widely different shapes ie. not being information preserving!

SQRT 2)
Perimeter of the patch: the line joining

Figure 7.10: The patch perimeter is defined as the line joining the centres
of the boundary chain pixels. The area of the patch, calculated as the sum
of the pixels in the patch. is therefore overestimated by the enclosed
perimeter and hence a correction has to be applied.
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For the surface type patches, a patch is defined as the number of pixels of the same

surface type which axe adjacent to each other. Thus to calculate P2A for a patch, the

perimeter of the patch must be calculated using the distance from the centre of each
boundary pixel to the centre of the adjoining boundary pixel (this may be either 1 or 12)

(see figure 7.10). This distance is recorded in the patch boundary's chain code. When

the area of the patch is calculated, account has to be taken of the parts of a boundary

pixel which are outside this perimeter. A good approximation to the area enclosed by
the perimeter is:

Area = (number of pixels in patch) - ((chain code length /2) + 1)

In addition, a normalization factor of 4ir is needed, in order to set the value of P2A for a

circular patch to be zero (since ciivumference/area = (27rr)2 I itr2).

iii) Smoothness of a space curve: Another measure that was considered was the

smoothness of the curve, which was defined by Barrow and Tenenbaum (1981) as:

f2da
J (ds)

Where k is the differential curvature (defined as the reciprocal of the radius of the

osculating circle at each point on the curve) and s is position on the curve. However,

this parameter is very dependent on high order derivatives of the curve and

consequently on small scale behaviour. Hence small wiggles in the bounding contour

contribute a disproportionately large amount to the integral for the contour as a whole.

This is obviously not desirable as it will be very noise sensitive. The measure is

minimized by dk/ds, which is zero for straight lines and so a bias towards linearities is

introduced. For these reasons this measure was not used.

Patch	 Type	 cx	 cy	 area lenqth x length y orieni. angle 	 P2A

upper lip	 peak	 85	 172	 143	 19	 11	 -4.06	 5
nose tip	 peak	 89	 142	 283	 29	 18	 -87.81	 14
nose bridge	 saddle ridge	 88	 97	 412	 61	 31	 -85.84	 119
innercanthus(right) pit	 74	 115	 199	 33	 14	 -80.89	 369
rightala	 pit	 76	 157	 56	 12	 7	 7832	 1943
inner canthus (left)	 pit	 97	 116	 127	 32	 20	 74.28	 1342
left ala	 pit	 99	 157	 40	 14	 6	 -79.69	 1277
nose side (right)	 saddle valley	 78	 132	 189	 32	 14	 -82.91	 607
nose side (left)	 saddle valley	 96	 136	 322	 66	 35	 -81.09	 1159

Figure 7.11: List of parameters describing surface type patches on a face. Cx, cy is the centre of the
patch; length x, length y the extend of the patch in the x direction (across the profiles) and y direction
(across the scanlines); orient.angle is the orientation of the principal axis.
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Algorithms were written to automatically calculate these parameters for each patch on

the image. A listing of some of these parameters, describing nine sample patches on one

face is given in figure 7.11.

L4 Towards An Automatic Description of Facial Changes

In this section, a possible approach, based on artificial intelligence concepts, is outlined

for the identification of these surface type patches in a surface type image. The

implementation of a robust method for automatically identifying which patches on one

surface type image correspond to the same patches on another surface type image,

would enable a fully automatic method for describing changes in facial shape to be

achieved.

7.4.1 Assignment of patches to features

As already mentioned, the surface type patches carry a perceptually meaningful

interpretation corresponding to facial features, or portions of facial features, such as the

nose tip, eyebrow, cheeks etc. Labelling some or all of the patches with their perceptual

interpretation would provide a linguistic description of the face and hence facial

change. However, the number of patches to be identified, and their liability to change in

size and shape, as well as location makes the computer recognition of these patches

very difficult.

In the last decade or so, methods for object recognition have incorporated expert

knowledge about the object and applied a series of "rules" based on this knowledge in

order to classify the object. This has led to more reliable object identification and

allowed a level of confidence to be attached to the recognition of an object. The

application of techniques from the field of artificial intelligence and mathematics

including expert knowledge, rule-based methods (eg. Xu and Wan, 1988; Feldman and

Yakimovsky, 1974) and fuzzy logic (Zadeh, 1983; 1988) may give assistance to the

recognition of surface type patches.

A first stage, would be to subdivide the surface type patches into major facial features

(eye, nose, mouth, cheek etc.), thereby reducing the patch recognition problem. The

frame-based techniques of Yager (1984a; 1984b) may facilitate this stage. The

principles of this technique are outlined below.

a Linguistic Frame representation.

The linguistic frame method (Yager, 1984a; 1984b) represents information about an

image and its interpretation. It provides a neat way for assessing the degree of matching

between image data and a predescnbed object and is based on the way in which an

"expert" would apply his knowledge.
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In this method, a frame is defined as a "data structure for representing stereotyped

situations in artificial intelligence", a structured representation of an object or class of

objects. If one wishes to determine whether or not a particular frame can be applied to

all, or part, of an image then knowing some elements composing the frame, one can

predict the rest of the elements (termed "slots"). These slots have allowable values

containing facts about the object we are searching for in the data and are tested to see if

they are fulfilled by the data. An example would be:

Frame: Family (Coombes)

Slots	 Potential value	 (A nossible match

Father	 Male
	

(Richard)
Mother	 Female

	
(Esther)

No. of children	 A non negative integer
	

(2)

a

It is possible to use "fuzzy values", from the theory of approximate reasoning,

(summarized in Zadeh, 1988b) for these slots. These are imprecise prepositions used to

describe a value. For instance, the value "height" maybe described as "tall", "fairly tall",

"average", "rather short" etc.

The linguistic frame representation operates on a rule-basis of interdependence

containing knowledge about the object model to which the data is to be matched, ie. If

(condition X is true) then (condition Y is also true). For example, If location is west

town then prices are high. Hence conditional probability values can be used to assess

whether a statement is likely to be true and the slot condition fulfilled. The truth of a

statement may also be fuzzy; eg. at least half, more than 5 etc. Confidence levels can be

attached to a statement via probability. Hence if X is the most likely interpretation and

Y is the second most likely interpretation then the confidence of the assignment (Conf.)

is: Conf. = Xj The frame can be evaluated using these inference rules, ie. if slot 1 and

slot 2 and either slot 3 or slot 4 are satisfied (or mostly satisfied) then frame is true.

A mechanism for determining the effects of applying a rule and for establishing the

order in which the rule-base is searched can be incorporated into the system. When a

"fireable" rule is found, the data is searched for information. If the information is found

the rule is "triggered" and the description updated. An iterative process can be

established until no new information about the data is found until or the frames are

completed.

Facial feature frames

Applying this approach to the surface type patches, the knowledge which humans (as

experts) have about the constitution of the human face should be utilized. That is that
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most faces have one nose, two eyes, two cheeks, a mouth, a forehead and a chin, and

that these have a specific relationship to one another (eg. the nose is above the mouth).

These "major features" would consist of the frames. The slots would consist of the

surface type patches. For the "nose" frame, the slots would include the patches

corresponding to the nose bridge, nose tip, nasion, nares and the sides - where the nose

joins the cheeks.

Thus the rule-base could be formed by the feature structure and used to assign patches

to frames and interpret them in terms of the constituents of the facial features.

Probability analysis could be used to attach a level of confidence to the interpretation of

each patch and patches with a high level of confidence could be used as "seeds" for

placement of the feature frames. A standard orientation of the face would need to be

assumed. Figures 7.13 and 7.14 give an example of how the nose frame might look.

Frame: Nose

Slots	 Values
Surface Tvoe Location from seed Size	 Patch parameters

Nose Tip
Nose Bridge
Nasion
Subnasale

Left nare

Right nare

Left side
Right side

ridge
saddle ridge
saddle ridge
valley
saddle ridge
valley
saddle ridge
valley
valley
valley

seed	 see fig.7.14
above
above, above slot 2
below
below
left
left
right
right
left
right

a nose frame.

Figure 7.14: Patch locations in the nose frame.
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Once a methodology for identifying the surface type patches has been established, the

surface type patches found on the average face could be used to evaluate which patches

are essential for the recognition of a feature. An evaluation of the reliability of patch

assignment and correct interpretation should also be made.

7.4.2 Comparison between two faces.

The identification of surface type patches with their perceptual interpretation provides a

powerful tool for the analysis of changes in facial shape, brought about by growth or

surgery or for describing the differences between individual faces in terms of shape.

Two or more surface type images can be compared by comparing patches with the same

interpretation (ie. considered to be the same feature). Such patches may be termed

"Changed features" to distinguish them from patches that are only found in the first (eg.

pre-surgery) image ("Disappearing features") and those found only in the second (eg.

post-surgery) image ( "New features").

The parameters of the surface type patches described in section 7.3.3b) can easily be

compared using algorithms, based on simple geometry and measured as a percentage of

the first image patch.

Although an automated method for identifying the surface type patches has not yet been

achieved, I have illustrated the potential of this method for describing the changes in

facial shape produced by reconstructive surgery (Coombes et at, 1991a). This involves

identifying and selecting several patches from a list of all patches for a surface type

image and making the following comparisons between them.

i) Change in area.

ii) Change in lengths of the principal and secondary axes.

iii) The two components of shifts in the location of the centre of gravity.

iv) Change in Bending Energy.

v) Change in P2A (perimeter2/area)

a Change in the central location of the patch

The change in the central location of the patch is measured in terms of two components

parallel to the principal and secondary axis of the patch in the first image. A negative

sign indicates movement towards the centre and a positive sign indicates movement

away from the centre. Thus the change is measured with respect to the patch's initial

position is not dependent on the coordinate system. The magnitude of the change, vec

is:

vec2 = 6x2 + 6y2
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If a is the orientation of the principal axis in the first image, the orientation of the

principal axis in the second image B is, B = arctan (öx / by).

The vector joining the first centre to the second centre is rotated through an angle (B -

a), to remove the difference between the two centres due to the orientation of the

principal axis in the first image (figure 7.15).

Thus the shift in the direction of the principal axis is:

&prin = sin (B - a) * vec

and the shift in the direction of the secondary axis is:

ö.sec = cos (B - a) * vec

bsec a i cr

Secondary axis . )i.
$ .prin

N \ •••..-	 Principal axis

\CX,CY

Figure 7.15: Diagram showing the transformation of the patch centre from CX,CY in the first image to
CX,CY' in the second image. The components of the transformation are 8.prin perpendicular to the
principal axis of the patch in the first image and 6.sec perpendicular to the secondary axis. a is the
orientation of the principal axis in the Iirst image, and B the orientation of the patch in the second image.

b Change in the angle of the principal axis

The change in angle of the principal axis is a measure of the change in the orientation of

the patch. A negative sign indicates a clockwise change and a positive sign indicates an

anti-clockwise change (figure 7.16)

90	
/	

ark! P

/ pPoe1tive change In orientation
\	 Principal axIs 1

1 Negative change in orientation
1zcpa/anr2?

—90

Figure 7.16: Change in the orientation of the principal axis.
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For the first orientation angle al and second orientation angle a2:
IF
al > a2

angle.change :- -(al - a2)
al < a2

angle.change :- (a2 - al)
TRUE
angle.change :- 0.00

Sensitivity of surface t ype description to global and local changes

7.5.1 Caricature

S to genius""Caricature is the tribute that mediocrity 
jy Oscar Wilde (1856-1900)

One method of globally altering the shape of the face is to caricature it. This technique

is popular with cartoonists since it conveys identity rapidly through an outline form and

shading. The technique of caricaturing is to exaggerate the more prominent features of

the face compared to less prominent ones. Therefore, in regard to face recognition, it

has been expected that caricaturing the face would improve recognition performance.

However, for artist-drawn caricatures this has not been found to be the case (Hagen and

Perkins, 1983), suggesting that face recognition is not based merely on the most

prominent features (which are assumed to be the most distinctive).

A pre-requisite for computerised caricaturing of the face is the generatio4n "average"

face. For line-drawn caricatures, an average face may be produced from a set of

coordinates marked on a number of faces (Brennan 1982; 1985; Dewdney, 1986). A

line-drawn caricature of an individual can then be produced by comparing the

coordinates of various features for the individual with the average coordinates and

exaggerating those features which differ from the average the most. Brennan (1982;

1985) found that if such line-drawn caricatures are exaggerated enough, they lose their

human qualities and degenerate into a chaotic state that she termed "facelessness".

These caricatures were nor found to be any more recognisable than realistic line

drawings, although highly exaggerated caricatures were recognized significantly faster

than the true line drawing (approximately twice as fast). This is only true for full-face

views.

Benson and Perrett (1990) extended Brennan's method to produce "continuous-tone"

caricatures. A photograph of individual was divided into triangular portions using

landmark coordinates. The caricature was formed by exaggerating the triangular grid

and "texture mapping" the photographic portions onto this caricatured grid. This

method was applied to investigate face recognition questions. Benson and Perrett found

that the recognition of a photographic caricature depended on the familiarity of the face

to the observer, the distinctiveness of the features, the features that are exaggerated and
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degree of their exaggeration (Benson and Perrett, 1990). They also produced

"anticaricatures", these are images in which the distinctiveness of the face is reduced

by decreasing its deviation from the average face (Benson and Perrett, 1991a) (see

figure 7.17). Benson and Perrett (1991a) found that the most recognisable images

occurred for a small positive exaggeration (4.4%).

Another method of caricaturing the face was proposed by Kirby and Sirovich (1990).

Digitized photographs were standardized using the interoccular distance and then

averaged. The test face was then subtracted from the mean face and the sum of the

eigenpictures used to give the degree of caricature, using the Karhunen-Loeve

expansion (also called principal component analysis (PCA) or the Hotelling transform).

The production of 3D average heads from optical surface scan data (section 7.2)

enabled Fright to exaggerate the face of an individual with respect to that average to

produce a three dimensional caricature of that individual. This involves a global

alteration of the facial surface. The alteration is made radially with respect to an axis

passing through the tip of the chin and the crown of the head. The extent of

exaggeration, with respect to the average male or female, can be varied allowing a

whole series of progressively more caricatured faces or less caricatured faces to be

produced (figure 7.17).

The effect on the facial shape achieved by caricaturing the face in this manner has been

assessed by calculating surface type descriptions for each of a series of caricatures of an

individual (figure 7.18). Qualitative examination of the surface type descriptions show

that the shape of the face has been changed considerably by the caricaturing process,

especially at high levels of exaggeration.

TOWARDS	 AWAY FROM
the average the average

4

rrHi

AVERAGE 50%	 100% 150%	 200%

(Anti-	 (Caricaturing)
caricaturing)

Figure 7.17: Production of caricatures
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The recognisability of images of these 3D caricatures has been assessed by

psychological experiments (Bruce et al, 1992). Bruce and colleagues found that the

original facial surface images were preferred over both caricatures and anticaricatures

of 50%, 75%, 125%, 150% and 200% degrees of caricature. This indicates that either

this particular method of caricaturing is not equivalent to two dimensional methods, or

that the degree of caricaturing used was too great to aid recognition. The surface type

description shows that the face has been considerably changed in shape, providing a

possible explanation as to why these caricatures are badly recognised.

Next page:
Figure 7.18: A series of 3D caricatures of an individual (above) and corresponding surface type images
(below). Above, left to right, the average woman, 50% caricature, 100% caricature (the original scan).
Below, left to right, 100% caricature, 150% caricature and 200% caricature.
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7.5.2 Local Spline Alteration

The facial surface data can also be manipulated in a locally defined region. One way of

doing this is to apply a two-dimensional B-spline algorithm between two surface points

and modify the enclosed surface gradient (Hanna and Bruce, 1992). Hanna has

implemented this algorithm to make the nose and chin more convex or concave in

shape. The gradient of the recorded profiles were altered by a certain percentage in

either direction.

For the nose, the length of the section of profile to be changed was determined by

selecting, interactively, the points on the profile that most closely corresponded to the

nasion, the nose tip and the mid-point between the brows. The adjustment to the nose

gradient was applied to the "midline" profile - passing through the centre of the nose

ridge, and to three profiles to either side. This procedure resulted in a smooth altered

surface (figure 7.20).

f
Changes to chin were produced in a similar manner, though td produce changes which

were as visible as those to the nose, larger percentage alterations to the gradient were

needed (because chins are naturally flatter). The chin changes were applied to 17

profiles - the midline profile and eight on either side. The control points were selected

to be those which corresponded most closely to the nenton (tip of the chin), the soft

tissue B point (the point of inflection between the lo\'er lip and menton) and a point

approximately half-way between (see figure 7.19).

Figure 7.19: Alteration of the nose and chin using a b-spline. Area of application
between the solid lines and anchor points shown.

Figure 7.20 shows an example, where the nose has been moved outwards (ie. made

more convex) or inwards (more concave) by 60% of the original nose gradient. The

effects of these alterations can be quantified by calculating the surface type image for

the distorted surface and comparing it with the original unchanged surface. In the

example shown, the outward movement has resulted in the enlargement of the mid-

bridge peak and the peaks at the inner brows and the pit at the right inner canthus is
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reduced. The inward movement has removed the mid-bridge peak, replacing it with

saddle ridge surface.

ç: I

60% inwards	 unmodified surface	 60% outwards

Figurc 7.20: Alteration of the nose using a b-spline technique. Above Facial surface images. Below the
corresponding surface type descriptions.

This technique was used to alter the shape of the nose in order to investigate its effect

on the perceived masculinity or femininity of the resulting surface image (Bruce et al,

in press b). This investigation found that more convex noses were described as more

masculine and more concave noses were described as more feminine in appearance for

both male and female heads.

A second investigation considered the effect on the amounts of the surface types in the

nose region (section 7.3.2) caused by altering the nose gradient, by 20%, 40% and 60%

in an inward and an outward direction. Two faces were used, one male and one female,

both of which appeared to us to have unremarkable nose shapes. A much greater effect

in terms of the proportions of surface types was seen for the female face than the male

in both inward and outward directions. This greater impact of the nose changes for the

female face compared with the male is clearly shown for the peaks, saddle ridges,

minimal surfaces and pits and, to a lesser extent for the saddle valleys. For the flat

surfaces, there are no obvious differences between the two heads. Only for the ridges

and the valleys, does the male head seem to give a somewhat greater difference in

amount of surface type. These two surfaces have zero Gaussian curvature. One would

expect from this analysis, that the nose changes would be more easily detectable in the

female head. This was indeed the case. For the female head, both inward and outward
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changes reduce the amount of pit surface. This is due to a reduction in the pits at the

inner canthi. This reason for this effect may be due to the spline being applied over too

great a range of profiles, since the nose bridge is very narrow between the inner canthi

for this woman.

10%I
.01 .015 .02 .025 .03 .035

threshold on H

Pits - male

20%

18%

14%

12%

10%
.01 .015 .02 .025 .03 .035

threshold on H

20%

18%

16%

14%

12%

10%

8%t
.01 .015 .02 .025 .03 .035

threshold on H
Pits - female

28% ••"
26%
24%

' 22%

.	 .	 .
.01 .015 .02 .025 .03 .035

threshold on H

-*- 6Oin —0— 4Oin -4— 2Oin ' .... none —+— 20out -*- 4Oout —$1-- 60out

Figure 7.21: Graphs illustrating the variation of surface types with percentage of nose gradient alteration
for a female face and a male face. (continued overicaf)

In a more general investigation into the detectability of these nose changes on the facial

surface image and the corresponding surface type image, psychological experiments

were conducted in order to discover whether these changes were noticeable. We found

that for both images an alteration of the nose gradient by 20% was perceived as not

noticeable, whereas an alteration of 40% was just noticeable and a 60% alteration was

definitely noticeable (Bruce et al, submitted).
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threshold on H
	 threshold on H
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Figure 7.21(cont.): Graphs illustrating the variation of surface types with percentage of nose gradient
alteration for a female face and a male face.

7.5.3 Addition and Subtraction of Surface Type Patches

The b spline technique described in the previous section enabled the shape of the nose

and the chin to be altered. In order to alter other parts of the face a new method, based

on the surface type patches was sought. In this method, the 3D data (optical surface

scan) corresponding to the surface type patch (or an amalgamation of surface type

patches) was moved outwards or inwards. Zero movement was applied to the patch

boundary, a maximum movement to a central axis of the patch and the movement of the

rest of the patch was blended between the two. Thus the three stages involved in this

method are i) to smooth the patch boundary, ii) to find the central axis of the patch and

iii) to blending the movement across the patch data using a function that alters the data

in a smooth manner. The resulting smooth alteration of the data set, by a known

amount, will enable controlled experiments to be conducted to investigate which parts

of the face are important for various face recognition tasks and to simulate the results of

surgical operations.

Since the surface type patches typically have somewhat ragged edges, the first step was

to smooth the edges using an erosion/dilation algorithm. This algorithm and its effect on

a typical patch is illustrated in figures 7.22 and 7.23. It was found that dilating then

eroding three times gave a reasonably smooth boundary whilst preserving the overall

shape of the patch. The patch was dilated first in order to prevent patches such as the

one in figure 7.24 splitting in two.
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Figure 7.fl: Erosion and dilation of a patch. Dilation algorithm. For each patch pixel Y, examine
locations X. If location X is not part of the patch then include in the patch.

Figure 723: Erosion and dilation of a patch. Left,
patch after 1 dilatation followed by erosion.

Figure 7.24: Example of a patch where eroding first would split the patch

Once a relatively smooth patch boundary was achieved, a method was sought for

determining the central axis of the patch, that would correspond to the maximum

movement. Suitable methods considered were finding the medial axis of the patch (eg.

Pavlidis, 1982; Zhang and Suen, 1984) (figure 7.25) or eroding the patch boundary to

produce contours (figure 7.26). Smoothing the patch boundary, frees the medial axis

from erroneous branches and produces smoother contours.

Either of these techniques seemed to be suitable. However, for the next stage, producing

a uniform blending between the central axis and the boundary, the contouring technique

was simpler to implement. Therefore, this method was chosen.
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.c	 '.	 '

•10

I

Figure 7.2S: The medial axis of the patch.

Figure 7.26: Erosion of the boundary to produce contours.

Several functions were implemented to blend the 3D data corresponding to the surface

type patch, between zero movement at the boundary and one at the central axis. These

functions included a Gaussian function and a cosine function, raise to a power. The

chosen function was sampled according to the number of contours, M, produced when

the patch was eroded. These functions are illustrated in figure 7.27.

3	 6	 9	 12
M

1

.8

c,)

I

.2

0
0

(1-cos x)/2

(1-cos112x)/2

- - - gaussian o=3

- - gaussian 0=4

Figure 7.27 Possihic funLtions ucd to blend the patch movement.
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Figure 7.28: Movement of the portion of the optical surface scan image contsponding to the right
eyebrow peak and chin peak using different blending functions.

The movement f(x) was defined as follows;

For a Gaussian function:

0	 (	 2'
f(x) =	 j_ exp\x /2a)

x=-M cr/s

where a is the width of the Gaussian

A correction of crl2it is applied so that f(x) lies in the range 0-> 1.

For a cosine function raised to a power, p:

	

M	 (!
f(x) =	 I — cospi..1 )

	

x=O	 2

f(x) lies in the range 0 -> 1.

The amount of movement required is simply

patch.movement := f(x) * maximum.movement

The results of applying these functions to the patch data are shown in figure 7.28. The

function cosY appears to produce the best blending, however, the movement made to the

patch is still noticeable and very localised. A better method, might be to blend the

change over a larger area and set half the change to occur at the patch boundary. This

would mean that most of the change would occur across the patch and a small change

would be made, in order to blend to zero, outside the patch. This idea has not been

implemented yet.
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LI Summary

In this chapter, comparison of two surface type description by three different methods

have been presented and illustrated using the "average" male and "average" female

heads. In the first method, a qualitative comparison is made which allows differences in

shape to be described in terms of facial features. For the average heads, this comparison

suggests that the differences in shape maybe due, in part, to the relative prominence of

the facial surface (or underlying skull). It would be interesting to investigate this

relationship more closely. This could be done for patients who have undergone

reconstructive surgery by comparing the differences in facial shape, quantified by the

surface type method to the differences in movement of the soft tissues and skeletal

form, which can be described using a radial distance metric, developed by Fright and

used by McCance in his thesis (McCance, 1992).

A quantitative method for describing differences in various regions of the surface type

description was reported. Differences in the eyes, nose and lower face region were

described. This method allows us to begin to explore whether the surface type encoding

carries any useful information and is used for the examples discussed in chapters 8 and

9.

A better method is to quantify the differences in the patches of each surface type.

Suitable parameters for comparison were discussed. The implementation of such a

comparison for a large number of faces relies on developing a fully automated method

for identifying these patches on the surface type image. A suitable method for this

maybe to define a frame for each feature, and use a rule-based method to assign patches

to appropriate frames. This is an area for further work.

The accuracy of these comparisons relies on a good registration between the two data

sets. The registration method that has been used could be improved by increasing the

accuracy with which the landmark points are identified and or perhaps by using

different landmark points. The production of an average head has been extremely useful

for making comparisons between faces. The differences between the 3D average male

head and average female head appear to correspond well to the 2D photographic

averages that Benson and Perrett (1991b, 1992) produced.

The response of the surface type description to changes in the face was demonstrated

for a global alteration, caricaturing, and for local alterations, made with spline functions

to the nose and chin. Considerable alteration to the description was produced by

caricaturing. Contrary to the expected outcome, the recognizability of the facial surface

images was found not to be aided by the caricaturing process. Local alterations

produced local changes to the surface type description. This technique was used to
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relate the shape change produced to the perceptibility of that change. This has

implications for ideas about facial recognition and maybe of use in assessing the impact

of facial surgery.

Finally, local alterations to the data set were made, over a specific sur1ace type patch.

The performance of a number of different blending functions were evaluated, in order

to obtain a smooth, undetectable change for visual presentation. Of those tested, the

cosine function appeared to give the most gradual change. The ability to modify facial

surface data in a principled mathematically fashion, based on the shape of the surface

will be of benefit for the simulation of facial surgery and experiments into facial

recognition. However, it is unlikely to be possible to apply one function to all

modifications, since the perceptibility of the alteration will depend on the shape of the

area to which the function is applied and the curvature of that area.
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CHAPTER 8

APPLICATIONS I: CLINICAL

"The psychosocial consequences of having to spend a significant portion of one's
childhood with a major uncorrected facial malfor,nation can be devastating."

Cutting (1989)

U.	 Facial surgery

The ability to change the shape of the face through surgery is not as new as one might

think. The first published work, showing diagrams of operations, was De Chirurgia

Curtorum by Tagliacozzi which appeared in 1597, but a form of surgery was practised

at least a thousand years ago in India (Liggett, 1974). Operations have gradually

become more sophisticated in nature and recently the planning of reconstructive surgery

using computer-graphics based techniques has been made possible (Cutting et at,

1986a; Moss et at, 1988). Today, facial surgeons believe that further advances in the

computer-aided planning of surgery are dependent on a better understanding of soft

tissue changes (Cutting et al, 1986a).

The significance of the advances made in facial reconstructive surgery is underlined by

the profound psychological effects of facial deformity. Some individuals can become

quite neurotic about their facial appearance, although their face appears quite normal to

independent observers. The perceived imperfection in one's face has been shown to

strongly influence the decision of a prospective patient on whether or not to undergo

surgery (Belt et at, 1985) and has long been recognised by orthodontists (eg. Simon in

1923 cited by Wood, 1969). Gayed (1988) investigated the psychological effect of

facial shape in the assessment he made of dysmorphophobic patients. It has also been

shown that people have a tendency to avoid contact with a person who appears in some

way to be unusual or abnormal. In a study conducted on the Slrathclyde Underground,

Bull and Houston (1990) found that people actually moved away from a person who

had a port wine stain.

In chapter 4, the desire of facial surgeons for a mathematical methodology that could

analyse the complex soft tissue changes which result from surgery to the face was

described. In this chapter, the method of surface type analysis, developed in chapters 6

and 7, is applied to some clinical cases. These examples include cases of congenital

malformation, facial asymmetry and growth. This application allows its potential for

meeting this challenge, as well its limitations, to be assessed. In addition, the semi-

automatic extraction of (3D) landmark points from the surface type description is

described. This is a new development which may be of clinical value. Finally, the

potential of the surface type method for advancing our concepts of facial aesthetics is

indicated.
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8.1.1 Cleft palate patient

Cleft palate is the commonest congenital facial deformity with an incidence of between

3.6 per 1000 births for Indians, 0.5 per 1000 for Negroes and 1 per 1000 for Caucasians

(Houston and Tulley, 1986). Clefts may involve the primary and/or the secondary

palates and may be incomplete (not involving the lip), unilateral or bilateral. Usually,

clefts of the lip are repaired shortly after birth and clefts of the palate at around 6 to 12

months. Many patients treated in the Western world develop midface hypoplasia and

lack of development in the midface. There is controversy as to why this happens, some

surgeons believe it to be because of an intrinsic deficiency of tissue, others feel it is

caused by the surgery itself with the scarring inhibiting growth. People with cleft palate

have a sunken appearance in their mid-face due to lack of growth in this region. This

lack of growth is apparent in three dimensions: antero-posteriorly, laterally and

vertically. It is most commonly corrected by a Le Fort I osteotomy operation that moves

the maxilla forward (see Albery et al, 1986 for further details of this and other facial

operations). The cut lines for this operation are illustrated in figure 8.5 (on page 16Z).

Sometimes it is necessary to move the mandible as well during the operation either due

to deformity of the mandible or in order to obtained good occlusion.

Figure 8.1 shows facial surface images of a cleft palate patient, aged 14, before (left)

and after (right) an operation to correct the lack of growth to the midface. It also shows

surface type images produced from the optical surface scan data. These are shown at a

medium threshold level. During the operation the maxilla was advanced and the tip of

the nose turned upwards. The effect on the appearance of the face was dramatic. Indeed,

some of the facial surgeons involved thought that she appeared quite beautiful after the

operation and the patient herself was delighted and more out-going in temperament.

The surface type analysis reveals how the facial shape has been changed by the

operation. Moreover, it seems that these changes can be intuitively understood in terms

of the operation performed. Before the operation, the peak surface (red) corresponding

to the upper lip is just separated from the peak surface corresponding to the lower lip.

Post-operatively, this peak is much larger and entirely separate, due to the advancement

of this region. Also before the operation, the areas extending from the alar base to the

corners of the mouth were largely represented by minimal surfaces (light blue). These

minimal surfaces were considerably reduced post-operatively, and replaced by ridge

and peak surfaces. Thus the sunken form over the maxilla has been turned into

protuberant form by the operation. Other notable changes include, a reduction in the

saddle valley (brown) along the left side of the nose and an increase in saddle valley

surfaces over the lower eye orbits.
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Pre-operative,	 Post-operative,
anterior view	 anterior view

Surface type image
	

Surface type image
(medium threshold)
	

(medium threshold)

Figure 8.i: Cleft palate patient.
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Figure 8.2: Cleft Palate patient. Comparison of the amount of each surface
type in mid-face (left)and lower face regions (right).
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Figure 8.2(cont.): Cleft Palate patient.
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Figure 8.2(cont.): Cleft Palate patient.

—A— pre-op. -- post-op.
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Further analysis of the surface type description can be made for regions of the face (see

figure 7.5) Analysis of the mid-face and lower-face regions is presented in figure 8.2. In

the mid-face region, this shows an increase in peak, ridge and saddle valley surfaces

with threshold level (ie. curvature), together with a reduction in the minimal surfaces. In

the lower face region, little change is shown except for a reduction in minimal surfaces
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8.1.2 Skeletal Class II patient

This condition is defined by the anterio-posterior relationship of the maxilla and the

mandible to each other and is such that the maxilla is prognathic relative to the

mandible or the mandible is retrognathic relative to the maxilla or a combination of the

two (see figure 8.3b). Patients of this class typically exhibit a small receding lower jaw.

a) Class I
	

b) Class II
	

c) Class UI

Figure 8.3: Skeletal classification, a) class I - the facial profile is well balanced with the mandible and
maxilla in correct alignment. b) class II - the mandible is retrude with respect to the maxila. c) class Ill -
the mandible is prominent with respect to the max ii Ia.

This class is divided into two

divisions which may be defined in

terms of the position of the

incisors (see figure 8.4). In

division I, the incisors point

forwards giving the face a

"goofy" appearance. In division

II, the incisors are relatively

upright and there is typically a

deep bite and prominent malars.

The profile often appears quite

good in division H, and in fact a

Figure 8.4: Incisor classification.

lot of top models have a class II, division II face. Corrective surgery is usually

bimaxillary with the mandible moved forward during surgery.

In the example of a skeletal II, division I patient shown in figure 8.6, we see optical

surface scan and surface type images pre-operatively, post-operatively and

approximately one year post-operative (after a second operation). In the first operation

the patient had: a bimaxillary Le Fort I osteotomy (see figure 8.5) - this moved the

maxilla retrusively and the mandible forward via an inverted "L" mandibular osteotomy
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approximately one year post-operative (after a second operation). In the first operation

the patient had: a bimaxillary Le Fort I osteotomy (see figure 8.5) - this moved the

maxilla retrusively and the mandible forward via an inverted "L" mandibular osteotomy

and costochondral graft on her right

hand side. In the costochondral graft, a

portion of a rib adjacent to the sternum

is removed and inserted into the jaw. In

the second operation almost one year

later, she had a genioplasty, which

moved the chin forward and a dermofat

graft, in which fat was taken from her

inner thigh and placed over the left hand

side of the face to "pad it out". One and

a half years after this she had a third

operation, a rhinoplasty, this is not

shown or discussed here.

The relative advancement of the mandible compared to the maxilla is seen best from the

three-quarter viewpoint and can be seen after the first operation. The effect of the

dermofat graft is most easily seen in the anterior view on the right side of the laser scan

image.

Considering the first operation, the surface type images show an increase in peak (red)

and ridge (green) surfaces around the jawline, related to the forward movement of the

mandible relative to the maxilla. The reduction in the peak surface corresponding to the

upper lip, the reduction in the pits (white) at the alar base and in the minimal surfaces

(light blue) over the area extending from alar base to corners of mouth, indicate that the

whole of the upper lip has, in general, become less curved. New pits at the corners of

the mouth and ridge surface below the corners of the mouth show that the curvature at

the corners of the mouth has been increased.

Considering the second operation, the surface type images show small changes, the

most visible of which is the replacement of some peak surfaces on the lower left cheek

with flat (pink) surfaces. Thus the main effect of the derrnofat operation was to flatten

the lower left cheek. The peak at the chin has become at separate region from the cheek

peaks implying that the chin has been further advanced.

Analysis of the changes in the amount of each surface type in the mid-face and lower

face regions are shown in figure 8.7. In the mid-face region, the first operation
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Pre-operative
	

Post-operative
	

Post-op plus 1 year
anterior view	 anterior view	 anterior view

three-quarter view

urface type image
nedium threshold)

three-quarter view

s

4

Surface type image
(medium threshold)

three-quarter view

1'z.	 .•	
L(

,13

___

Surface type image
(medium threshold)

Figure 8.6: Skeletal Class II patient
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Figure 8.: Skeletal Class II patient. Comparison of the amount of each surface
type in mid-face (Ieft)and lower face regions (right).
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Figure 8.7(cont.): Skeletal Class ii patient.
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Figure 8.7(cont.): Skeletal Class II patient.

—k— Pre-op.	 -- post-op.	 —4-- post-op. plus 1 year
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the first operation and reduced medium level minimal surfaces. Across both operations,

there are small reductions in peak surfaces, little change in the flat surfaces, a reduction

at medium levels of the valley surfaces and small changes in the saddle valleys.

In the lower face region, the first operation, caused the following changes to shallowly

curved surfaces: the ridges and saddle ridges were reduced and the pits and saddle
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there were considerable reductions in pit and saddle valley surfaces, whilst at high

curvatures, the valleys surfaces were considerably reduced.

8.1.3 Skeletal Class Ill patient

This condition is also defined by the anterio-posterior relationship of the maxilla and

the mandible to each other. In this case, the maxila is retrognathic relative to the

mandible or the mandible is prognathic relative to the maxilla or a combination of the

two (see figure 8.3c). In this condition the chin appears prominent and long with a large

mandibular facial height. Again, corrective surgery is often bimaxillary.

Figure 8.8 shows an example of a skeletal Ill patient before and after corrective surgery.

He had Le Fort I maxilliary osteotomy to advance the maxilla and a mandibular

osteotomy with a subsigmoid pushback to decrease the prominence of the lower face.

The resulting change in facial shape is revealed by the surface type images. There is a

large reduction in the amount of peak surface across the chin and lower cheeks, which

are replaced by mostly minimal surfaces. The peak surfaces over both cheeks are

enlarged at the expense of ridge surfaces, the lower lip peak is reduced, and the upper

lip peak enlarged.

An analysis of changes in the amount of each surface type in the mid-face and lower

face regions is shown in figure 8.9. In the mid-face, increases in peak and valley

surfaces at low threshold levels, are balanced by a reduction in ridge surfaces. At high

thresholds, corresponding to greater curvatures, there is a small increase in flat surfaces.

Across all thresholds, slight reductions occur in minimal, pit and saddle valley surfaces.

In the lower face, the most change occurs at low threshold levels, indicating that the

changes in shape are small. A large reduction in peak and ridge surface is offset by

sharp increases in minimal, pit, saddle valley and valley surfaces.
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Figure 8$: Skeletal Class III patient
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Figure 81: Skeletal Class Ill patient. Comparison of the amount of each
surface type in mid-face (left)and lower face regions (right).
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Figure 8.(cont.): Skeletal Class Ill patient.
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Figure 8.1(cont.): Skeletal Class Ill patient.
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8.1.4 Asymmetry patient

Gross congenital asymmetries of the face arise from deformations of the first and

second branchial arches of the fetus, and involve the eyes, ears, mid-face and mandible.

The most common is Hemifacial microsomia (also called craniofacial microsomia)

which occurs in about 1 in 3500 births. This condition can be extremely mild or very

severe. During growth, the "normal" side of the face will often grow to compensate for

the asymmetry and tends to overgrow, leading to increased facial asymmetry. The

timing of an operation is very difficult and every time surgery is undertaken there is

inevitably scar tissue which inhibits normal growth. All surgery has a morbidity and

this surgery can be life threatening.

An example of a hemifacial microsomia patient is shown in figure 8.10. The patient has

had three operations to date. The first operation was a Le Fort I bimaxilliary which

moved the maxilla 2-3mm to the left, and involved the insertion of a rib graft in the

mandible and a myotomy (repositioning muscle tissue). The centre illustrations show

the face after this operation. The second operation was a dermofat graft to the right side,

together with a reduction of the masseter muscle on the left. The right-hand illustrations

show the face after this operation. She has also had a third operation, a genioplasty

within the last twelve months. This last operation is not discussed here.

The surface type image for the pre-operative scan shows a large peak surface on the left

hand side of the lower face, compared to flat surfaces on the right hand side. The

changes in shape shown by the surface type images for the first operation, are a

reduction in this peak area and movements to the right of the lower lip peak and the

minimal surface that lies between the lower lip and chin. In the second operation, the

lower lip peak and this minimal surface is moved leftwards and a further small

reduction in the peak on lower left cheek occurs.

Figure 8.11 shows an analysis of the amount of each surface type in the left and the

right hand sides of the faces for the three images shown in figure 8.10. The division

between left and right sides was made by the mid-saggital line, passing through the

nasion and centre of the nose tip. Considering the first operation, surface types which

show a reduction in asymmetry ate the shallowly curved minimal surfaces and flat

surfaces of a medium threshold. Interestingly, the amount of valley surfaces on the right

hand side has been considerably increased whilst those on the left side considerably

decreased. However, only a very small amount of the facial surface is represented by

valley surfaces. The analysis shows that the second operation has considerably

improved the facial asymmetry with all surface types showing an improved balance

between the left and right sides.
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Figure 8.l Asymmetry patient
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Figure 811: Asymmetry patient. Comparison of amounts of surface types on the
left and right hand sides of the face.
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Figure 8icont.): Asymmetry patient.
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Facial growth

Change of shape is implicit in the term growth implying that facial growth proceeds

through a change of shape. The advancement of studies of growth is thus dependent on

the development of appropriate mathematical tools for analyzing size and shape and

these have played a key role in the progression of growth studies.

Many investigations of facial growth have been made and for many purposes. In the last

century, an abundance of research papers have been published in journals of

anthropology, genetics, orthodontistry, plastic surgery, radiology and biometrics to

name but a few. Three examples of these which show this wide interest are; facial

growth before and during puberty (Baughan et al, 1979), the growth of the cranium and

palate in Downs Syndrome children (Barden, 1983) and the differences in the cranial

base shape described by Fourier analysis (Lestrel and Roche, 1986). In this latter

investigation, the strongest changes found were due to the puberty growth spurt and

showed stronger changes, of longer duration, for males compared to females. No

apparent shape change was found during adulthood. It is not proposed to review these

many studies in this work, the reader is referred to the reference list of Sadler and

colleagues for a broad sample of this work (Sadler et al, 1990a).

It is, however, important to note that these studies have all been based on charting

changes in the position of various landmark points with time. In this sense, the literature

is very complete but all these measurements reveal very little about changes in the

shape of the face during growth. It is this knowledge which is vital in testing models of

facial growth (such as the spline model for growth of the nose used by Sadler et al,

1990a) and for predicting the growth of a face.

Whilst surgeons have concentrated on abnorm growth due to deformity or tumours,

psychologists, anthropologists and orthodontists have become interested in "normal"

growth. Early this century, the founder of the British orthodontic society, George

Northcroft, charted the growth of his son William's face by taking plaster casts every

year from the age of six until twenty-one. In 1987 this son, aged 72 then, agreed to visit

University College to have the procedure repeated and also to have an optical surface

scan. As a result, it was shown that the weight of the plaster distorted the facial surface

by around 10mm (Moss, 1989). Orthodontists have tended to assume that once a person

has reached 21 years, the amount of facial change due to growth is negligible (Bjork,

1966, Baer and Harris, 1969, Enlow, 1975). In contrast to this opinion, the Northcroft

study showed that between the ages of 21 and 72 years, the chin had grown outwards

and some (smaller) change had occurred to the nose.
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yeazJrn the age of six until twenty-one. In 1987 this son, aged 72 then, agreed to visit

UniversiC11geo have the procedure repeated and also to have an optical surface

scan. As a result, it the weight of the plaster distorted the facial surface

by around 10mm (Moss, 1989). 5ilibdozijjsthave tended to assume that once a person

has reached 21 years, the amount of facial ciiTgt-.d rngrowth is negligible (Bjork,

1966, Baer and Harris, 1969, Enlow, 1975). In contrast t1l1ts-opjon, the Northcmft

study showed that between the ages of 21 and 72 years, the chin hadjw,..twards

and some (smaller) change had occurred to the nose.

In order to see how the shape of the face changed due to growth, the surface type

method was applied to facial data of an adolescent boy, who had four optical surface

scans taken over a two year period. Figure 8.12 shows anterior facial surface images for

these four scans together with medium threshold surface type images. Whilst many

surface type regions remain in the same place, small changes to these regions are visible

over this period.

Analyses of the changes in the amount of each surface type for these four scans, over

the entire face and in the eyes, nose and lower face regions are presented in figure 8.13.

Disappointingly, no clear trends, such as an increase in the amount of peak surface with

growth, are revealed by the analysis.
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L3	 Curvature based definition of landmarks

Another possible clinical application of the surface type method is to use the regions of

each surface type to automatically define landmark points on the facial surface. These

landmarks may then be used to register two scans together, or to determine relative

change between pairs of landmarks.

•	 -----

r-

a) Landmarks at pit of inner canthus b) Landmarks at peak on right cheek

c) Landmarks shown on surface type image d) Landmarks shown on laser scan

Landmarks are defined as the maximum curvatures of :-
1) the pit at the left inner canthus, 2) the peak at the nose tip, 3) the peak at the
right cheek, 4) the saddle ridge at the nion and 5) the peak at the chin.

Figure 8.14: The dcliniuon of landmark points using the maximum curvature of each region. Maximum
mean curvature (H) shown as a "+" and maximum Gaussian curvature (K) shown as a "x".

Figure 8.14 shows an example of this application. A cursor is moved interactively to

select a region of interest. Two landmarks are then automatically derived for each

region; these are the (absolute) maximum curvature of the mean curvature, and
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(absolute) maximum of the Gaussian curvature. These are sometimes coincident (eg.

figure 8.14b) and sometimes not (eg. figure 8.14a). This procedure can be repeated to

select as many landmark points as required. Once all landmark points have been

derived, they can automatically be displayed over the facial surface image and saved to

file. Figure 8.14d shows the location of five pairs of landmarks, found from the surface

type image (figure 8.14c). Good correspondence is seen with the nose tip, nasion, left

inner canthi, left cheek and chin. Either or both landmarks from a region could be used

for registration.

The advantage of using this approach to obtain landmarks is that the landmarks can be

computed mathematically from the curvature data, thereby enabling the consistent

positioning of the landmark and removing observer error from its location. In practice,

for facial landmarks such as the outer canthi, observer error can be quite large. This

approach also allows landmarks to be reliably located on shallowly curving areas of the

facial surface such as the cheeks which would not normally be selected as good

landmark points due to large observer errors. Hopefully, this method will lead to a more

robust registration between surface scans but this is the subject of on-going work.

$4	 Facial aesthetics

'There is nothing so rare as perfect beauty in women"
Raphael (cited by Angle, 1900, p.16)

In this last section, the concept of facial aesthetics is discussed, including a brief

summary of how ideas concerning an aesthetically pleasing face have varied through

the centuries. The ways in which the surface type description method may help with

achieving an aesthetically pleasing outcome of surgery is discussed and the possibility

of using it as a basis for putting facial aesthetics on to a stronger mathematical

foundation is mentioned.

The shape of the face is undoubtedly important for the aesthetic impact of the face. The

appearance of the face is extremely important to a person for their self-confidence and

self-love and is often, if not most commonly, the reason why a person seeks corrective

surgery. One of the main criteria used to assess the success of a facial operation is how

aesthetically pleasing the result of surgery is to the patient, the surgeon and others. At

first sight therefore, it is somewhat surprising, given its surgical importance, that so

little work has been undertaken on establishing a basis for facial aesthetics. This maybe

because the language employed to describe an aesthetically pleasing face is highly

nebulous. Before discussing the implications of this thesis for facial aesthetics, I must

firstly describe the various ways in which aesthetics has been defined and mention the

different concepts of what constitutes an aesthetically pleasing face.
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Aesthetics is defined in the Chambers concise dictionary as "relating to perception by

the senses; generally relating to, possessing ... a sense of beauty" and beauty, according

to the artist Dflrer "was the reverse of deformity" (Angle, 1900, p.16). However, a lot of

terms are used to describe an aesthetically pleasing face. Some commonly used ones are

"pretty", "handsome", "attractive", "harmonious", "balanced". These are all qualities

which are hard to quantify but it is generally agreed that these terms involve an intuitive

sense of proportion.

The idea of proportion is evident in the earliest attempts at defining aesthetics. These

date back to the Greek philosophers, Plato and Aristotle. It was Plato's opinion that "the

qualities of measure and proportion invariably.., constitute beauty and excellence"

(cited by Peck and Peck, 1970). Aristotle concurred. "True beauty is necessarily

displayed by harmony" he said (cited by Peck and Peck, 1970). And so Greek sculptors

defined "classic" or "golden" proportions for the face to use as standards. These golden

proportions were routed in the Pythagorean theory of numbers and defined using the

Fibonacci sequence. Yet the Greeks believed that standardization of all faces into only

one ideal face was impossible and many statues of the same beauty display considerable

individuality.

Another idea, put forward by the philosopher Kant, was that beauty was intricately

bound up with simplicity. Psychologists of the Gestalt school concurred, laying

emphasis on the importance of the whole form, not just one a particular feature.

Other writers have suggested that the beauty of a face is connected to the "sexual

ability" suggested by its form (notably, Frumkin, the American sociologist). Others

strongly disagree, notably Simone de Beauvoir and Schopenhauser. Given this idea, it is

interesting to observe that has been popular over the centuries to exaggerate the

masculinity or femininity of a face. The symmetry of a face may also play a role but its

importance can be overstated since no face is entirely symmetric and, as Francis Bacon

observed, a wholly symmetric face can be very boring.

However, any standards used for judging facial aesthetics must be treated with care

because of differences of opinion between cultures and epoches as well as individual

taste (Pepper, 1974). The old adage, "Beauty is in the eye of the beholder" (Margaret

Hungerford, cited by Wood, 1969) is very true. Anthropologists have found that ideas

of beauty vary from people group to people group and that these ideas can be very

localised. Aesthetic judgements have also been demonstrated to vary with age

(Eysenck, 1940). Art, and more recently the media, has played an important role in

influencing our ideas of beauty and our familiarity with particular types of faces. In the

developed world today, the standards for aesthetics are a result of the ideas and
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influence of the artists, sculptors and philosophers of western civilisation and modern

media preferences and movie makers.

8.4.1 The ideal face through the ages

Ideas of facial aesthetics have changed over the ages and thus it is interesting to

consider examples of great beauties from various ages. Figure 8.15 shows some

examples of beautiful and/or typical faces from different eras.

The ancient Egyptians liked faces which were a mixture of Negroid and Caucasian

features. Queen Nerfertiti was contemporarily renown for her beauty (figure 8.15 a).

The Greeks admired faces with "ideal" proportions. The Greek ideal had a "short, finely

curved and prominent upper lip, a full round but less prominent lower lip with a marked

depression at the base, giving roundness and character to the chin" (Angle, 1900, p.16)

as well as a longish straight nose. Some of the best examples of this ideal are the statues

Apollo Belvedere (figure 8.15b) and Venus de Milo and the works of the sculptors

Phidias and Praxiteles. The Romans used the standards set down by the Greeks as

guide-lines, but tended to favour more lifelike representations such as the statue of

Emperor Augustus shown in figure 8.15c. European Medieval culture believed the

perfect face was divided into sevenths and not thirds as the Greeks thought. A number

of "canons", to describe the way a face should be divided, were expounded by

Renaissance artists such as da Vinci, Dürer and Martinez (Farkes et al, 1985). Leonardo

cia Vinci believed that the nose had a great effect on a face and he and DUrer drew

sketches of different sized noses to illustrate just how dramatically the facial profile is

altered by the nose. Medieval society idealised a small, thin mouth and pale skin.

Leonardo's Mona Lisa typifies this. English Victorian society (1827-1901) also liked a

pale skin. In modern times, a face based on a full, slightly protrusive dentition is

preferred.

Some renown beauties display quite marked orthodontic abnormalities. For instance,

Queen Nofret the Beautiful (28th century B.C.) was severely skeletal II (Wood, 1969)

and many other examples can be found amongst works of art. Even as recently as the

1960's some of the beauty queens had noticeable class II, division I malocciusions

(Wood, 1969). On the other hand some beauties such as Queen Nerfertiti, David by

Michelangelo (figure 8.15d), the statue Apollo Belevedere and the 1967 Pervian Miss

World display features and proportions that are considered orthodontically normal.

In modern times, interest has been shown in the facial structure of declared beauty

queens. Investigations have involved the measurement of various angles and ratio

relationships. Holdaway used lateral cephalograms to investigate the appearance of a

Miss America (Holdaway, 1983; 1984). He found that measurements of various lengths
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and soft tissue depths showed good proportions of the face and that the angles between

some landmarks (eg. facial angle, nasion to menton) were approximately 90 degrees.

Peck and Peck (1970) carried out a similar analysis of beauty queens and discovered

that certain relationships between soft-tissue landmarks were preferred.

8.4.2 The search for an aesthetic standard.
It has been widely recognized that faces fall into a number of classes or types and

therefore, that one aesthetic standard is not feasible. One of the earliest facial

classifications was made by DUrer who, recognising the variability of faces, suggested

variations on the canons of absolute beauty which he and other Renaissance artists laid

down. He describe what is now termed a normal Class II, division I face and a normal

Class II face. Others have added more categories to this classification (Angle, Downs,

Ricketts etc). These are all based on the relationship of the skeletal bones to each other

or the incisors.

In the subject of orthodontics, a great interest has naturally been taken in facial

aesthetics. The first orthodontist to write on the subject of aesthetics was Angle (1900)

and his ideas have been influential. In his early writings, Angle seemed to subscribe to

the view that the statues of the Greek god Apollo should be used as a standard of beauty

(Riedel, 1950) but later, according to Riedel after he met a certain Dr. Wuerpel, he

revised his position and assumed that placing the teeth in normal occlusion would yield

the most harmonious face possible for an individual. Angle stated that a profile was in

perfect harmony when a straight line joined three specific points together, these were

the most prominent points of the frontal and mental eminences and the middle of the ala

of the nose. This "line of harmony" was taken from a statue of Apollo. However, Angle

felt formulae for describing facial appearance should not be rigidly applied, but used

instead as guide-lines for each facial type. He sensed the conflict between good

occlusion and a pleasing facial appearance which sometimes exists.

In their work, orthodontists have largely tried to standardize facial appearance to some

norm, although some such as Brodie (1944 cited by Riedel, 1950 and Wood, 1969)

maintained that orthodontists were not qualified offer opinions on the beauty of a face,

since all were unique and individual. Brodie appealed for the entire concept of "the

norm" to be abandoned and for orthodontists instead to be guided only by the

individual.

In the search for an aesthetic standard, the basis for aesthetic judgement needs to be

known. Some studies have investigated whether a common basis of judgment exists

regarding what is considered an aesthetically pleasing face. In 1960, iliffe (1960) asked

the readership of a national UK newspaper to order, in terms of preference, a set of

195



Clinical Applicalions

photographs of young women. He found that a common basis of judgement existed,

between all social classes, geographical location and both sexes. There was however, a

slightly lower correlation between the oldest (over 55 years) group and the youngest,

which led him to suggest that culturally accepted norms maybe transmitted through the

educational process and that these maybe subject to slow change.

Faces of different ethnic origins, such as Nordic, Assyrian or Greek, are widely

different in appearance. However, Martin (1964) found that the standards for judging

the aesthetic nature of faces from a particular racial origin were the same for people

both from the same racial origin and from other origins. In 1939, the orthodontist

Heliman wrote that when "differences in development become abnormal they present

the same aspect in all racial types and become distinguishable as malocciusal types"

(cited by Riedel, 1950). Thus standards for aesthetics as well as the recognition of

abnormal or deformed faces spans racial origin.

The aesthetic preference of people seems to be for typical or non-extreme faces. Carello

and colleagues (Carello et al, 1989) suggested that the attractiveness of a facial profile

was dependent on its distance from an archetype (standard profile type), which

confirmed the ideas of de Smit and Dermaut (1984) who conducted a similar

experiment for faces with various sorts of deformities. They found that people tend to

prefer less extreme faces (class I types with deep set faces compared to open faces and

class II compared with class Ill). Some orthodontists have conducted some studies to

determine whether fellow orthodontists have a common opinion as to the aesthetic

nature of a face. Riedel (1950) reported the judgments of United States Midwest

orthodontists on profiles traced from people with normal and abnormal occlusion, and

found that profiles with their skeletal parts arranged in a straight line with little dental

protrusion were preferred. Fromm and Lundberg (1970) conducted an evaluation of the

success of an operation (to correct for a prognathic mandible) using a panel of medical

assessors judging pre- and post-surgical cephalograms.

Whilst studies using profiles found preferences for certain types of profiles, the use of

other viewpoints has given inconsistent results. In one investigation, orthodontic

surgeons were asked to match profiles with anterior and three-quarter views of the same

face (Powell and Rayson, 1974). This was done very badly. In addition, if silhouettes of

the profiles were used, the sex of the face could not even be reliably judged. This

illustrates the unreliability of assessments from 2D outlines. Another part of Powell and

Rayson's investigation showed that whilst the profile may be deemed to be satisfactory,

the anterior view of the same face might be assessed differently or vice versa. They note

that three-quarter views provided more information than anterior or profile views but

were commonly used because of the difficulty in standardizing them.
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Earlier in this section, various methods of dividing the face into ratios or canons were

discussed. A fascinating paper by Ricketts (1982), investigated whether the "Golden

Section" defined by the Greeks occurs in the body and, in particular, in the face. The

Golden section originated in the Pythagorean theory of chosen numbers and was taken

up by Plato as a mathematical relationship expressing universal harmony. It is a

proportion of 0.618 (15+1)12 whose reciprocal 1.618) which is derivable from the

Fibonacci sequence (0,1,1,2,3,5,8,13,2 1...). Ricketts related this to the concept of beauty

(which he defined as something which arouses the senses to an emotional level of

pleasure) and showed how by standardizing with the trichion (the point on the forehead

where the skull-cap begins) and the nose tip - tragus line, many occurrences of these

ratios, both vertically and horizontally, can be found in people considered by others to

be beautiful (such as film stars or beauty queens). He also said that a beautiful face will

also have rhythm since rhythm occurs when a proportion recurs uniformly and

demonstrated how the mandible grows along a logarithmic spiral (which can be formed

from "golden" triangles). It is intriguing to see that form and beauty canaescribed using

such mathematics but the debate over whether the "golden section" is aesthetically

preferable to divisions of unity is still current today. One recent paper reported that no

such preference was found although the authors only considered the division of

geometric figures such as squares and rectangles and not natural objects such as faces

(Davis and Jahnke, 1991)!

8.4.3 Implications from the surface type methodology

From observation of the faces selected through the ages as being beautiful (figure 8.15),

it appears that these faces have two factors in common. Firstly, they are of smooth

appearance, with no small lumps or bumps and smooth texture. Secondly, the facial

features are not extreme and no single feature dominates the face. There is individual

variation, and this variation appears to make the face particularly interesting but the

variation is small and adds rather than detracts from the aesthetic appearance. This

indicates that an aesthetically pleasing face should be free from sudden changes in

curvature on surfaces such as the cheeks or forehead which are otherwise smoothly

curving in form.

It would be interesting to describe some faces considered to be particularly beautiful

and some not so aesthetically pleasing using the surface type methodology. This has not

been attempted here, but it is likely that an investigation of this sort would reveal which

types of surfaces should be present at specific locations on the face. For instance, a nose

may consist of a peak at the tip, pits at the inner canthi, a saddle ridge on bridge and

saddle valleys at the side. Some noses (those which are convex in shape) also have a

small peak on the bridge. On a female face this may not be aesthetically pleasing since

a preference for concave shaped noses (Bruce et al, 1992), which do not have this peak
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has been noted. It may be that a range of aesthetically pleasing surface types at certain

locations may be specified and any deviation from that range may not be aesthetically

pleasing. Hence, a target face, composed of certain surface types may be defined that

could act as an aesthetic guide to the surgeon planning an operation. However, the

application of such as aesthetic guide to surgical planning, relies on the correspondence

between bone movement and soft tissue movement becoming better known.

&5 Summary

The application of the surface type description and analyses, described in chapter 6 and

7, to the clinical cases studied here reveals the potential of this method for analysing the

complex changes in shape which occur in the soft tissues, when a face is altered by

reconstructive surgery.

For the four patients studied, the areas of shape change are fairly easily grasped by

studying the two surface type description produced for the pre- and post-surgery cases.

The amount of change can be obtained from the graphical analysis of the amount of

each surface type, in the relevant region, before and after surgery. The magnitude of the

change can also be interpreted from these graphs, since larger changes will effect higher

threshold levels. Thus this method, and analysis does appear to provide useful

information about how the shape of the face has been altered by reconstructive surgery.

The hierarchical nature of the analysis, incorporated into the graphs on the threshold

axis, allows an assessment of the importance of the change to be made.

However for the facial growth case, the graphical analyses do not give as clear a

picture. It is difficult to draw any definite conclusions from them. One possible

explanation for this may lie in the poor quality of the first scan (1990a) in the chin area.

It may be that when scans, more widely spaced in age, become available the trends will

become clearer.

A second clinical application of the surface type description was demonstrated in

section 8.3. The automatic location of landmark points on the facial surface may help to

improve the accuracy of registration, since landmarks can be positioned consistently, as

well as to speed up this procedure. This will also make the relative change between

pairs of landmarks easy to determine.

Finally, the concept of facial aesthetics was examined and the changing ideas of an

aesthetically pleasing face through the ages was described. One of the concerns in the

planning of orthodontic treatment and reconstructive surgery, is the aesthetic impact of

the alteration to the face. Thus some form of standard, or guidelines, for aesthetic

beauty has been sought. My hypothesis that the faces that have been, and are today,
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considered as asethetically pleasing should be smoothly curving in form could be tested

using a set of faces, rated by independent observers to be of different aesthetic levels

and encoding them using this curvature-based method. This is area of future research.
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CHAPTER 9

APPLICATIONS H:
3D SHAPE AND FACIAL RECOGNITION

"He had that sort offace that, once seen, is never remembered"
Oscar Wilde (1856-1900)

The mechanisms by which we recognise faces have been a subject of great interest

throughout the second half of this century. The aim of this chapter, is to place the work

reported in this thesis, and in particular the analysis techniques described in chapter 7,

into its appropriate context as it pertains to previous face recognition studies. Over the

last three years, Bruce and her colleagues at the university of Nottingham (now at

Stirling), in collaboration with myself and my UCL colleagues, have examined the role

which maybe played by 3D shape in facial recognition (Bruce et al, 1989; Bruce et al,

1991b; 1991c; submitted). Our investigations have been facilitated by the surface-type

methodology reported in this thesis.

Faces and their attributes are extremely recognisable to us. We recognise objects as

faces and discriminate between male and female faces with an extremely high degree of

confidence. Other tasks we can perform with faces are to say how unusual they are (ie.

whether or not the face is distinctive), whether a face is familiar or not and assess its

aesthetic impact (eg. rating it in terms of "attractiveness"). All these tasks can be

performed with great speed. However, it is interesting to note that people are really not

very good at verbally describing faces (Davies et al, 1978: Laughery and Fowler, 1980)

and are susceptible to confusion when asked to recognize faces that they are not very

familiar with. Familiar faces can be identified as belonging to specific individuals;

although sometimes our memory will fail to assign a name to a face. This memory

failure suggests that name information is stored in a separate part of the brain from the

visual processing information (Bruce et al, 1991b). Our understanding of the

mechanisms involved in the visual processing procedures is still largely unknown (Wu

and Huang, 1990).

Cognitive psychologists have put forward several theories to explain the relationships

between different aspects of facial recognition (see A. Ellis, 1991 for a review and

Bruce, et a! 199 lb for an example of current thinking) but it is the understanding of the

visual information that is encoded from faces, to enable these tasks to be performed,

that remains very unclear (Bruce et al, submitted). In the last few years, some

psychologists have expressed the opinion that 3D shape information may play an

important role in these processes (Bruce, 1988; Bruce and Burton, 1989; 1991d; Bruce

et al, 1991b; 1991c; Bruce et al, submitted, Burton et al, in press). Other face-

psychologists such as Watt, Perrett and Craw, insist that 3D shape is not an important
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pycho1ogits such as Watt, Perrett and Craw, insist that 3D shape Ic not an important

factor and emphasise how much might be achieved without any explicit description of

3D shape.

In parallel with this psychological research, an increasing amount of work has been

done by computer vision scientists on devising systems to automatically recognise

faces. These systems are aimed at application in security and forensics (Hawkes, 1989;

Sherman, 1990; Nixon and Jia, private communication). Attempts at producing

automated face recognition systems have analysed facial images, infering information

about 3D shape from shading. Shading is dependent on illumination conditions, the

reflectivity of the surface (albedo) as well as the surface geometry, information about

obtained about the shape of the surface from this method is restricted. For instance,

whilst it is certainly true that faces are recognized from photographs, it is nevertheless

the case that if a full-face photograph is studied, one can tell very little about the

appearance of the face in say profile.

In this chapter, the factors which are believed to be important for recognition are

described and, where appropriate, the manner in which a surface analysis could be of

benefit for this research is indicated. These factors fall into two groups, the facial

features themselves (section 9.1) and their configural arrangement (section 9.2). This is

followed by a description of the psychological evidence which suggests 3D shape does

play a role in our ability to recognise faces (section 9.3). In section 9.4, our preliminary

investigations of the role that may be played by the facial surface in sex judgements and

other face recognition tasks are presented.

In addition to considering the role of shape in facial recognition, a brief review of

systems that have been devised in order to automatically recognise faces is made in

section 9.5. Advantages of using a depth based method are described. Finally, the

implications for forensic systems of a role played by 3D shape in face recognition are

discussed (section 9.6).

,J.	 The interrelation of facial features

It seems clears that faces are encoded by reference to a general face prototype

(Valentine and Bruce, 1986; Valentine and Ferrara, 1991) which contains information

about both the facial features and their configuration. In this section, the studies which

have indicated the relative importance of the features for facial recognition are

reviewed. The configural aspects are dealt with in the following section (9.2). Some 22

facial features and accessories as well as the facial proportions have been reported

which may be used for recognition (Laughery and Fowler, 1980). These are: eyes, nose,

mouth, lips, ears, forehead, cheeks and cheek bones, jaw and jawline, chin, hair,

hairline, eyebrows, sideburns, moustache, beard, face shape, glasses, eye colour,
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Some of these features could be identified, and characterized using the surface type

description.

The relative importance of these various features in recognition has been of great

interest to cognitive psychologists. Studies of the eye movements of observers viewing

facial photographs have shown that there is concentration on certain areas of the face

which correspond to various features (eg. Walker-Smith et al, 1977) but the correlation

of these fixations with the amount of information taken in by the observer is not yet

known (Haig, 1985). It is important to note that most, if not all, of the investigations

into the relative importance of facial features have been carried out on full-face views.

It is, therefore, not surprising that features such as the nose, whose shape is best

observed from other viewpoints, have proved unhelpful. This was acknowledged by

Davies and his colleagues (Davies et al, 1977).

It is thought that different facial features hold different importance for different

recognition tasks. Certain features may be important for recognising different

individuals (Haig, 1986a), such as the eyebrows for Denis Healey, and for

distinguishing between the sexes (Bruce et al, 1991a). It has been postulated that a

major hindrance to these experiments may be the way a feature is defined (Haig,

1 986a).

Surface type analysis could be of benefit for these investigations, since it allows

features to be defined in a mathematically consistent manner. Moreover, the importance

of each facial feature, or even components of a facial feature, in facial recognition could

be assessed by altering the portion of the facial surface which corresponds to that

feature. This could be achieved by changing the shape of the portion of the surface

defined by a surface type patch (or patches), using the technique described in chapter 7

(section 5.3). The importance of a feature could be investigated by relating the

detectability of changes in the facial surface, as perceived by impartial observers, to the

shape change produced. In our preliminary investigations, the effect of altering the

shape of nose and chin, using a B spline technique (section 7.5.2), was shown to have a

significant effect on the perceived masculinity and femininity of the face (Bruce etal,

submitted).

9.1.1 Familiarity and sex judgment

In the brain, different facial features appear to be used for the recognition of familiar

and unfamiliar faces. Familiar faces are recognised more quickly from their internal

features (ie. the eyes, nose, mouth etc.) than unfamiliar faces but there is no difference

in the speed with which familiar and unfamiliar faces are recognised from the external

features (ie. hair and facial surround) (Young et al, 1985).
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An effective method for hindering recognition is the use of disguise (Patterson and

Baddeley, 1977). Thus, one method that has been used for investigating the importance

of various features in recognition tasks is to hide selected features. Another method

used is to move features within the facial image (Hosie et al, 1988). Roberts and Bruce

(1988) found that masks that concealed the eyes, but not the brows, slowed familiarity

decisions the most. This was consistent with earlier work which noticed the importance

of eye region for these decisions (Shepherd et al 1974; Haig 1986a).

Masks that concealed the nose, including the nasion area, slowed sex decisions the most

but had no noticeable effect on familiarity decisions. If noses were presented in

isolation from the rest of the face, the sex judgement task was reduced to the level of

chance. This led Roberts and Bruce (1988) to suggest that it was the interaction of the

size and shape of nose with the rest of the face that was important for sex judgement.

This indicated that strong roles maybe played by 3D shape information and the

configuration of features in sex decisions.

In a later report which used unfamiliar faces, Bruce et al (in pressb) found that masking

noses seems to have a greater effect on male faces and masking eyes had a greater

effect on female faces. Whilst this is somewhat at odds with Roberts and Bruce's

results, it is generally believed that the nasion area is important for sex judgement.

9.1.2 Unfamiliar faces
A number of researchers have investigated the relative saliency of features in the

recognition of unfamiliar faces. These studies are of importance for evaluating the

reliability of eye-witness identifications. Amongst these studies, Ellis and colleagues

found that the most noticeable feature was the hair followed by the eyes, mouth, nose

and chin (Ellis et al, 1975a). Others have placed slightly different emphases on the

importance of these features. Davies and colleagues suggested an order of forehead,

eyes, mouth, chin and nose (Davies et al, 1977) and Haig the eyes and eyebrows,

hairline above temples, mouth and upper lip area, lateral hairline beside the temples

(Haig, 1985), though in an earlier paper Haig had considered the head outline to be the

dominant influence (Haig, 1984).

Eye movement studies have shown that the most noticed facial features are the hair,

eyes, eyebrows, nose and the shape of the face (ie. whether its round, lean and oval

faces or square) (Davies et al, 1979a) and the least noticed features are the ears,

forehead and chin (Ellis et al, 1989). This is interesting since ears and chins can be very

distinctive features (Farkes and Munro, 1986). Several other studies have indicated that

most attention is paid to the upper facial features rather than the lower ones (eg.

Laughery and Fowler, 1980).
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Haig (1985) conducted an experiment which concealed various portions of the face by a

distributed aperture technique. He found that there was a great deal of disagreement

between observers on how the target faces differed and he argued that we remember

most clearly what we perceive to be the most prominent features and that this

perception may vary between individuals.

9.1.3 Different types of human faces

All of the studies mentioned so far in this chapter appear to have been conducted using

Caucasian faces viewed by Caucasian observers, although this is not made very clear in

the literature. The well-known difficulty that Caucasian observers experience in

recognising unfamiliar Negroid/Mongoloid faces (and vice versa) may be due perhaps

to them placing a different importance on the facial features. Ellis (1975) hypothesized

that different features were used by different races for discriminating between faces.

Later that year, Ellis and colleagues found that black Zimbabweans more often used eye

size, eyebrows and ears to describe a face whereas white Scots used hair texture and eye

colour (Ellis et a!, 1975b). The white subjects seemed to observe the target face more

widely, using more features to describe it but were considerably less accurate at

identifying black faces than black subjects1Negroidubjects have also been found to be

worse at recognising white faces than white subjects (Shepherd et al, 1974). Later, the

basis used for judging African and European faces was shown to be different and

moreover, that these bases were used by observers from both races (Shepherd and

Deregowski, 1981).

Exposure to a variety of faces from another race has been demonstrated to improve the

performance of white subjects in recognising INegroid' Oriental faces (Malpass et al,

1973; Elliot et al, 1973). This may be because they begin to make use of the more

subtle changes in features which make better discriminators for these faces (Ellis,

1975). Studies that have been conducted in more multi-racial areas, such as California

using American and Japanese observers, show little difference in discrimination ability.

This is thought to be due to an increased familiarity with faces of different ethnic

origins.

If a database of Negroid(Mongoloid faces were collected it may be possible to use the

surface type description to assess differences between racially different human faces.

22	 DisruDtion of facial recognition

Our ability to recognize faces can be disrupted in several ways. These disruptions are

briefly stated below because they provide important evidence of the role played by the

face as a whole entity in recognition, compared with the role of each feature in a

collection of parts, described above.
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The idea that the configural relationship between the facial features is more important

than any individual feature was first expressed by Galton in the late 19th century (see

Young et al, 1987 for a summary of Gallon's ideas). Nowadays, the available evidence

suggests that faces have both component and configural properties which give rise the

different processing strategies which can occur simultaneously and interact with each

other (Sergent, 1984; Rhodes, 1988).

In 1990, Kirby and Sirovich (1990) drew attention to evidence that the brain uses

parallel pathways to process information (Anderson and Hinton, 1981) and suggested

that recognition processes may occur in parallel. In the case of the face, the eyes,

mouth, nose etc. could be recognized simultaneously, which could explain how an

individual may be perceived as having "her eyes" or "his nose". However, Haig felt that

a combination of parallel and serial processes was more likely since some responses

would need to be evaluated individually (1-laig, 1986b).

9.2.1 Feature displacement and confugural arrangement

The movement of facial features within the face inevitably affects its configuration

(Sergent, 1984). This may have serious consequences for recognition if, as some

research has suggested, the face is treated more as a whole than as a sum of individual

parts. Evidence to support this view include the findings that the perception of one

feature can be influenced by surrounding features (Haig, 1986a) and that recognition is

disrupted by viewing the top half of one face and the bottom half of another face

simultaneously (Young et al, 1987).

The effect of displacing facial features on recognition has been investigated by using

images stored on computer, isolating and slightly displacing facial features to produce

Photo-fit type pictures (Haig, 1984; 1986a; Bruce et al, 1991a). Haig discovered that

people are very sensitive to vertical mouth movements, vertical eye and nose

movements and to movements of the eyes inward but not to outward eye movements.

He suggested that this may be to do with the relative position of features, their apparent

size and saliency and, especially, their interaction with the surrounding areas of the

face. This ability to remember, and subsequently recognize, subtle configurations of the

face was confirmed by Bruce and colleagues using faces generated by "Mac-A-Mug"

software for the Macintosh computer (Bruce et al, 1991a). This research has serious

consequences for forensic kits such as Photo-fit which treat the face sum of individual

parts which can be independently retrieved by eye-witnesses.

9.2.2 Inversion and photographic negation

Two other disruptions to recognition are to "invert" (turn upside-down) or "negate"

(take the photographic negative of) the face. The inversion and negation effects are

additive, ie. subjects are worse at identifying displacements of facial features when the
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face is both inverted and negated (Kemp et al, 1990). This implies that they affect

independent processes. Both inversion and negation have been found to be disruptive

for sex classification (Bruce et al, in pressb). People have been shown to be less

sensitive to changes in facial features when a face is either inverted (Yin, 1969; Sergent,

1984; Valentine, 1988) or negated (Galper and Hochberg, 1971).

It has been known for a long time that people find upside-down faces difficult to

recognize. The same effect has been reported for inverted words, but inverted faces

have been found to be disproportionately difficult to recognize (Yin, 1969). It was first

postulated that this was due to a disruption of facial expression cues and, indeed

Michelangelo and other artists noticed that facial expression is extremely difficult to

portray on inverted faces. A profound effect on expression has been found by inverting

features within an upright face. This has become known as the "Thatcher illusion" after

the face it was first demonstrated on (Thompson, 1980, see figure 1.1). When the

compound face is viewed from upside down, a normal appearance is perceived but

when it is viewed upright, a grotesque expression is seen. Further experiments have

shown that the presence of nearby facial features can influence the interpretation of an

inverted feature when they are viewed in isolation from the rest of the face (Parks et a!,

1985). Conversely, if the positions of the eyes, nose and mouth are altered within a face,

the same sort of disruption to facial expression is seen only when the face is inverted

(Valentine and Bruce, 1985). These studies have provided evidence for a uprightly

orientated "frame of reference" for faces.

In fact, faces are not uniquely vulnerable to inversion. The same difficulties arise when

dog-breeders try to recognize inverted dogs (Diamond and Carey, 1986). Thus it

appears that inversion only affects "experts" badly, and all adults are expert at face

recognition. Children do not suffer the same difficulties with inverted faces. This is

attributed to them being less expert at face recognition than adults (Diamond and Carey,

1986). It has been suggested that in adults inversion interferes with the encoding of the

facial configuration (Carey and Diamond, 1977). This idea has been supported by

investigations conducted by Sergent (1984), Young and colleagues (Young et a!, 1987)

and Valentine (1988). If this is correct then it follows that our perception should not be

affected by inversion if we are only using local features in a given face processing task.

Faces displayed in photographic negative are also extremely difficult to recognise. As

already mentioned it has been suggested that negation may disrupt cues of shape

objained from shading and shadows. Phillips (1972) and Hayes and colleagues found

thakit was only the low frequencies of the image that are affected by negation (Hayes et

a!, 16). But negating a photographic image with a wide range of grey-levels creates a

comp1e representation of the original scene with a variety of factors that will influence

its interdretation by the brain. It has been proposed that the brain assumes an overhead
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lighting model when interpreting 3D scenes, probably because of the overhead Sun

(Ramachandran, 1988). One method of investigating the effects of negation, which may

allow a separation of the factors involved, would be to study the effects of reversing the

depths of surface under different conditions of illumination. It is apparent that negative

photographs of faces do not look like faces turned inside out, as one would expect if this

processing were entirely due to shading information. In fact, we choose to see such real

masks as faces (Gregory hollow face illusion) and there seems to be a strong bias to see

convex rather than concave surfaces in general and faces in particular.

An investigation into this effect should take account of the three dimensional nature of

the surface. The experimental material required to investigate these phenomena can be

produced using the techniques we have developed at UCL for displaying facial surfaces.

Such an investigation could separate the shading and depth cues. It would be possible to

position the source of illumination at any required angle. Different types of shading

could be used (Phong, Gouraud etc.) and the 3D data reversed to reverse depth. These

methods should make it possible to discriminate between the effects of different aspects

of negative images of the face. Hill at Stirling university is currently researching this.

9.2.3 Blurring Faces

The recognition of blurred (ie. intensity averaged) images of faces was investigated by

Harmon (1973) and Sergent (1986). They found that we can recognize blurred faces,

providing the level of blurring is not too great. This suggests that the configural aspects

of the face are used to facilitate recognition in these cases. Harmon (1973) also found

that filtering out high spatial frequencies from coarsely quantized blurred images

greatly enhances recognition, implying that configural information is carried by low

frequency components. He also assessed the effect on recognition of adding noise of

various frequencies to the image.

For upright, positive faces, no disruption to recognition performance has been found for

differences in pose, expression, age, lighting or hairstyle (within reason) if the face is a

familiar one. However, the recognition of once-viewed faces is disrupted by such

factors (Bruce, personal communication). Dynamic information has not been found to

have any significant advantage over statically presented images for either familiar or

unfamiliar faces (Bruce and Valentine, 1988).

3	 3D shaDe in human face recognition
In 1988, Bruce hypothesized a possible role for 3D shape information in the recognition

of faces (Bruce, 1988). She stated that up until that time research into the mechanisms

of face processing had been based on treating the face as a "flat pattern" when in actual

fact the face is a "lumpy surface". Speculating on the role played by the facial surface,

she pointed out that photographs of faces are significantly more recognizable than line
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drawings (Davies et al, 1978) and that negation of a facial photograph which has been

believed to disrupt depth cues from shading and shadow information, has a adverse

effect on its recognition (Phillips, 1972).

In this section, the limitations of line drawings for recognising faces are described. This
is followed by evidence which suggests that the surface of the face may play a role in
face recognition tasks.

9.3.1 Line drawings

Line drawings convey information about sharp turns in the surface away from or

towards the observer and about surface discontinuities. Although they have

conventionally been the domain of artists, recently a method has been developed for

producing line drawings automatically from digitized images. In this method edges and

valleys are extracted at sharp changes in the image intensity (Pearson, 1986; Hanna et

a!, 1985).

Although line drawings are sufficient to recognize an object as a face (Biederman and
Ju, 1988), they have not been found to be adequate for identifying the represented face
(Bruce et al, in pressa). For instance, Davies and Colleagues (Davies et al, 1978) found

that famous faces were very much more recognizable from photographs than line-

drawings.

An evaluation of facial recognition from line-drawings suggested a reason why they are

badly recognized (Laughery and Fowler, 1980). Laughery and Fowler found that faces

reconstructed by artists provided better likenesses than reconstructions which were

produced using the Identi-kit forensic package (which constructs faces from line

segments). They postulated that the reason for this maybe due to the greater flexibility

of the artist and to his addition of shading and age-lines. The addition of shading to line

drawings has indeed been found to enhance recognition (Davies et al, 1978; Bruce et al,

in pressa) whilest the addition of wrinkles and blemishes to Photo-fit reconstructions

has been shown to provide more believable representations (Kitson et al, 1978). These

findings suggest that using changes in edge intensity information alone to extract facial

features for automatic recognition systems is not likely to be produce a terribly accurate

identification system.

9.3.2 Facial surfaces
In order to investigate whether the shape of the face is important for recognition,

information about the shape of the face must first be isolated from other psychological

cues such as texture and colour. In order to achieve this a number of volunteers had

their faces optically surface scanned at UCL with the hair concealed under a stocking.

Images of the facial surface were obtained from the 3D data sets. These images were
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devoid of texture and hair information and thus only contained information about the

shape of the face. Psychological experiments were conducted using hard copies of full-

face, profile and 3/4 views.

These "facial surface images" were found to be rather badly recognised for both

familiar faces, where internal facial features, such as the eyes and mouth, are believed

to be important for recognition (Ellis et al, 1979), and for unfamiliar faces. In neither

case was recognition of these images 100% (ceiling) (Bruce et al, 1991c). The

recognizability of the female heads was impaired the most, even when a list of same sex

names were given to aid identification. Comparison of the facial surface images with

photographs of the same individuals, again with their hair concealed, showed that the

facial surface images were much harder to recognise (Bruce, 199lc). Thus these

findings imply that some important recognition cue (maybe texture or eyebrows?) is

lacking from facial surface images and that something is more salient for women's faces

than men's.

The accuracy of judging the sex of these facial surfaces compared with photographs,

where the hair is also concealed, has recently been reported (Bruce et at, in pressb). In

general, subjects were found to be less accurate at judging the facial surface images,

performing best when the heads were displayed in 14 view. Bruce and colleagues

suggested that this was because the 3/4 view is the viewpoint from which the 3D shape

of the face is easiest to see and therefore these results imply that the 3D structure of the

face is one source of information contributing to the perception of its sex. Other

evidence that suggests 3D information is used in sex judgement was obtained from

displaying the faces in photographic negative (see section 9.3.2) and altering the shape

of the nose and chin (section 9.2.1). Some other concurrent work of the Nottingham

group has also supported this theory. In this work, a discriminant function was sought to

categorize faces according to sex using 2D and/or 3D measures (Burton et al, in press).

It was found that both 2D and 3D measures were needed in order to obtain a function

that performed as well at sex classification as humans (see chapter 4).

The majority of work on the recognition of faces and the design of automatic systems to

recognise faces has used full-face views. However, for unfamiliar faces, a definite

advantage for recognition has been found for 3/4 views compared with full-face views, -

although for familiar faces 3/4 and full-face views are equally good. In both cases, 3/4 and

full-face are better than profile views (Bruce et a!, 1987). This is thought to be because

familiar face representations rely more heavily on the "internal" features of the face,

and 3/4 views provide no more information about these features than full-face views.

The recognition of unfamiliar faces believed to be more dependant on "external"

features and the 3/4 view may provide more information about those, eg. hairstyle. More
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information is provided about the shape of the nose and cheeks in 3/4 view. This

provides a possible reason for its recognition advantage.

A recent study by Harries et al (1991) investigated the viewpoints from which subjects

inspected 3D head models mounted on a turntable that could be rotated through 360

degrees. They found that most attention was paid to the full face and profile views.

There are several possible interpretations of this observation. It may be that a longer

time was needed to examine these views because the information contained in the view

took longer to process or that these views were more important for recognition or

simply that they were easiest to encode. It is not clear why subjects should pay

particular attention to these viewpoints if the 3/4 view is the most useful for recognition.

Harries and colleagues postulated that the reason why the 3/4 view is the most efficiently

recognized maybe because it activates the structural descriptions of both the full face

and profile views.

The precise role that 3D information may play in recognition is as yet unclear. It is

possible that the visual system may represent the surface structure of a face explicitly.

The work described in this thesis encoding the face into eight surface type primitives,

will enable the importance of an explicit encoding of this sort to be investigated. Other

possibilities are that an implicit knowledge of the 3D structure of faces is used or that a

general knowledge of surfaces is used to invoke the operation of 2D algorithms (such as

ones which extract line-drawing of objects eg. Hanna et al, 1985) (see Bruce et a!,
1991 b).

9..4	 Preliminary investigations using surface type analysis

Using the surface type methodology, we have begun to investigate the role (if any) that

the facial surface shape may play in various facial recognition tasks. In this section, our

preliminary investigations into the questions of sex judgement and distinctiveness are

reported.

A set of 13 female faces and 14 male faces were optically scanned and facial surface

images were produced. These images were rated on a scale of one to ten by unfamiliar

observers for, masculinity/femininity (where 1 is female, 10 is male), distinctiveness

(where 1 is typical and 10 is distinctive) and attractiveness (where 1 is unattractive and

10 is attractive).

9.4.1 Investigation of sex judgement

The surface type analysis was used to investigate the misclassification of the sex of a

face. Three faces were selected from the 27 faces; one which was considered to be very

feminine (rating 1.92), one which was considered to be very masculine (rating 9.17) and

one with considerable confusion regarding sex (rating 5.83). The facial surface images
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for these faces, together with their surface type encodings at a medium threshold level

are shown in figure 9.1. Comparison of the surface type descriptions for these faces

with each other were made for the nose, eyes and lower face regions (figure 9.2).

The surface type images shown in figure 9.1 show that the masculine face has more

peaks (red) on the brow ridge than the feminine face. Other differences include, smaller

peaks on the cheeks, and more saddle valleys (brown) at the sides of the nose, a larger

nose tip peak and a larger saddle valley surface across the soft tissue B point, the upper

and lower lip peak are more extended horizontally and a larger chin peak. The feminine

face has saddle valley surfaces across the lower eye orbitals which are not present in the

masculine face. These differences imply that the male face has more prominent brows,

lips and chin than the female face but less prominent cheeks and a bulbous tip to the

nose.

is) ii') _______________
Figure 9.1: Faces that were rated as I) very feminine ii) Sc unknown (actually female) iii) very
masculine.

The face which suffers from confusion over sex (in the centre of figure 9.1) is actually

female, but it has a large chin peak, a large amount of peak surface on the brows, a

small amount of saddle valley surface at the sides of the nose and a large nose tip peak.

In comparison with the masculine and feminine face, the presence of these surface types
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suggest that the face may be male. However, the face also has small peaks on the

cheeks and a little saddle valley surface on the lower eye orbitals, these surface types

suggest that face maybe female.

In the nose region and for all curvatures, the masculine face had more peak, ridge, pit,

valley and saddle valley surfaces than the feminine face and less flat and minimal

surfaces. At low curvatures, the masculine face had more saddle ridge surfaces but at

high curvatures, the feminine face had more saddle ridge surface. This indicates that the

nose of this man was more curved than this woman.

For the woman, the sex of whose face was found to be hard to judge, there was

considerably more peak, ridge, pit and saddle valley surfaces than the feminine woman

but somewhat less of these surface types than for the masculine man. There was also

less minimal surfaces than the feminine woman but more than the masculine man. She

also had less saddle ridges than either the masculine man of the feminine woman. The

valley surfaces showed no clear trend. These results indicate that this woman's nose is

more curved than the feminine woman, although not as curved as the masculine man,

provided a possible explanation of the sex confusion.

In the lower face region, masculine face has more peak and ridge surfaces and less

saddle ridges, flat, pit and saddle valleys than the feminine face. The indistinct face has

more flat surface and less minimal, pit, valley and saddle valley surfaces than either the

masculine or feminine face.

24%

16%

12%

8%
.01

Minimal

.02	 .03

threshold on H

Saddle Valleys

24%

20%

16%

12%

8%

4%

0%
.01	 .02	 .03

threshold on H

-*- average male -4- feminine	 —4--- masculine

-- average female °' indistinct

Figure 9.2: Comparison of the amount of peak (left), minimal (centre) and saddle valley (brown) surfaces
in the nose region for faces that were rated as very feminine, very masculine and of indistinct sex
(actually female).
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In the eye region, the masculine face has more peak, highly curved ridges, saddle ridges

and pits but less valleys and saddle valleys than the feminine face. The indistinct face is

closer to the feminine face in terms of peak, ridge, saddle ridge, shallowly curved

minimal and valley surfaces and closer to the masculine face in terms of saddle valley

and highly curved minimal surfaces. She also has considerably less shallowly curved

pits than either of the other faces. In this region, the indistinct face appears closer to the

female face.

Comparison of surface types for these three faces has shown the ways in which the

facial surfaces of the indistinct face resembles both the masculine and feminine faces. It

provides a possible explanation for the confusion regarding its sex. It is interesting to

note that, as one would imagine, the average male and average female appear to be

closer to each other, in terms of their surface types, than the extremely feminine woman

and extremely masculine man are to each other. However, these analysis must be

treated with caution, due to the small sample size used for the averages and the small

number of exemplars considered, and are not very conclusive. This is an area which

would benefit from further research.

9.4.2 Investigation of facial distinctiveness.

Extensive psychological research has established that faces rated as "distinctive" are

recognised and remembered better than those rated as more typical in appearance. In

related research Bruce and colleagues showed reasonably high correlations between the

extent to which faces deviate from an "average" face (measured by summing deviations

across a number of different measures) and their distinctiveness and memorability

(Bruce et al, in pressc). Research using computer-generated caricatures has shown that

an individual face can be made more recognisable if it is made to deviate more from an

"average" face (Rhodes et al, 1987; Benson and Perrett, 1991a). Considering these

findings, we reasoned that distinctive faces should deviate more from average faces in

terms of surface measures than faces rated more typical in appearance, to the extent that

the surface types capture psychologically meaningful variations of a face.

For our preliminary investigation into what role may be played by the shape of the

facial surface in facial distinctiveness four faces were selected from the set of optically

scanned faces. These were one male and one female face that were rated as distinctive

in appearance and one male and one female that were rated typical in appearance. On a

scale where 10 is distinctive and I is typical, the ratings for these faces were as follows:

distinctive male 7.2, distinctive female 7.0, typical male 4.3 and typical female 4.3.

Surface type images for these faces were produced and these are shown, together with

facial surface images of these faces, in figure 9.3. Graphical representations were

produced to describe how the amount of each surface type varies with threshold level

for the nose, eyes and lower face regions of the face. In these graphs, the distinctive and
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typical male faces were compared to the average male and the distinctive and typical

female faces were compared to the average female. Figure 9.4 shows some of these

comparisons. The comparisons made and described below are reported in Bruce et al

(submitted).

It was hypothesized that if the proportion of a surface type, in a region, gives a

quantitative measure of interfacial variation which is of psychological relevance, then

the absolute deviation from the average face should be greater for distinctive faces than

typical exemplars for that surface type. Comparing these exemplars with the average

face eliminates any effect of averaging per se (such as smoothing), since a constant

amount would be added to the deviations of both typical and distinctive exemplars.

We found that several of the comparisons do show greater deviations from the average

for distinctive faces, eg. in the lower face region, distinctive faces have a smaller

amount of flat surface and a greater amount of pit surfaces than typical ones. Also in the

nose region, distinctive faces have a smaller amount of minimal surface and a greater

amount of saddle valley surface than typical exemplars. However, not all the

comparisons showed this consistency (eg. the peaks and saddle ridges in the eye

region). Observations of the surface type images shows that some of these comparisons

can be directly related to specific surface type patches, eg. the pits in the lower face

region correspond to the corners of the mouth and the saddle valleys in the nose region

correspond to the side of the nose.

An investigation was undertaken in order to discover if there was any statistically

significant tendency for the distinctive faces to deviate more from the average than the

typical faces. For all three regions and all eight surface types, the absolute deviation

from the average was calculated at the (mean curvature) threshold levels 0.01, 0.02 and

0.03 for both the distinctive and typical faces. At the 0.01 threshold, 60% of the

comparisons showed a greater deviation for the distinctive faces. This result is just

statistically significant. At the 0.02 and 0.03 thresholds 64.5% of the comparisons

showed a greater deviation for the distinctive faces. These results are statistically

significant. At the lowest threshold, the surface type description is more susceptible to

noise in the data and the analysis is least conclusive. At higher thresholds larger

curvatures are detected. Analysis of the male and female faces separately also showed

similar trends.

For the small number of faces examined, the hypothesis that distinctive faces deviate

more from the average than typical faces was supported. These analyses are based on

the relative surface deviations within a local region of the face and do not address any

contribution to distinctiveness that may arise from the relationships between these parts

of the face. Whilst it would certainly be valuable to examine the overall configuration

of the face, a combinatorial explosion problem is encountered in attempting to quantify

relationships between different measures in different regions.
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Figure 9.4: Comparison of the amount of surface types in three regions of the face for male (left) and
female (right) faces rated as distinctive, typical and average.
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Figure 9.4 (continued): Comparison of the amount of surface types in three regions of the face for male
(left) and female (right) faces rated as distinctive, typical and average.
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Automatic face recognition systems

So far in this chapter, the psychological literature has been reviewed which describes

the importance of various features in the perception of faces and the configural

arrangement of these features which places emphasis on the need to treat the face as a

whole entity. In the last section, it was shown that the surface type analysis could be

used to investigate the role played by facial shape in specific face recognition tasks. In

this section, the methods which have been devised by computer vision scientists for

automatically recognising, or distinguishing between, faces are briefly described. This

task involves differentiating between faces which differ from each other in subtle ways.

All of the systems devised to date have worked with 2D images, taking little or no

account of the surface structure, consequently individual variation is considered only in

terms of measurements on the picture plane. The psychological evidence to date implies

that automatic recognition systems will need to incorporate a greater degree of

knowledge about the structure of faces (Burton et al, in press). This was also the

conclusion reached by Samal and Iyengar (1992) in their recent review of the subject. It

is important to take great care in interpreting research on these systems since picture

recognition can become confounded with face recognition (Gordon, 1991a). Thus
extreme care must be taken to standardize photography conditions and cues such as

expression, clothing, jewellery and even hair style which would allow recognition to be
made on a picture difference basis.

9.5.1 Explicit measurement of facial features

A number of computer-based systems have been devised for automatic face recognition.

The goal of these systems is the unambiguous identification of a target face for security

and forensic purposes. They involve a classification stage followed by a recognition

stage. These systems have been based either on measuring, or otherwise describing,
facial features to form "feature lists" which can be compared with a stored database of
such measures, or, more recently, on globally extracted information. In this section, the

first kind of approach is described. The second approach is reviewed in the following
section.

Initially, explicit measurements of the face were made manually on photographs but

later digitized images were used and to extract measurements automatically. A

prerequisite for interfacial comparison is that the facial size should be standardized.

This has mainly been achieved using the interoccular distance. The measures used for

comparison have been either geometric - measuring specific distances between
landmark points, or syntactic - classifying a feature by some aspect of it (such as the

shape of the nose). In face recognition systems, the measures used have usually been

taken from anterior views of the face (Burton et al, in press) and have been difficult to
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extend to multiple viewpoints. Comparison of salient measures to a database has been

made either sequentially or by matching one extreme measure first, followed by the

rest. This latter method enables the size of the search to be reduced and results in a

faster convergence on an candidate match. Unfortunately, it is also more likely to

produce false matches. The number of features needed to distinguish between

individual faces has been found to be a logarithmic function of the size of the database

(Goldstein et al, 1971).

a) Descriptions from an anterior view
The first attempts at producing a facial recognition system were made by Bledsoe

(1964; 1966) and Bisson (1965). Bledsoe manually marked the coordinates of various

points on a photograph and tried to recognise an individual from a database of 2000 by

computing a pseudo-distance between two points. His best results were obtained when

the measurements were first assigned to groups representing the eyes, the nose etc. and

the pseudo-distance between those groups was computed. He observed that the locating

and classification of facial features can be affected by rotation, tilt, lighting conditions,

aging and expression but he only corrected for tilt and rotation. Bledsoe also pointed out

the need for invariance in viewpoint for the comparison of two faces.

Bisson's (1965) method searched a photograph horizontally and vertically for the

maximum value of the "average intensity difference". This was then used to extract the

edges of features effectively. Measurements were then made between these edges. One

weakness in this method, and other intensity based methods, is that the presence of

shadows affects the image intensity and leads to false measurements.

The idea of using a syntactic description to classify the shape of facial features was

introduced by a team working at the Bell Labs (Goldstein et al, 1971; Harmon, 1973). A

panel of assessors were used to assign ratings on a scale of 1-5 to 21 features and the

average rating for each feature was stored for each face. An operator would then

describe a face to the computer, which would search for the best match within the

database. The model was later refined to allow for errors in the description of the face

(Goldstein et al, 1972). In this refinement questions such as "is the nose long?", which

has only a binary answer, thereby giving a poor separation of the population, were

rephrased to provide answers with a rank-order (ie. the answer would contain categories

such as very long, longish, middle, shortish and short rather than yes or no), thus

providing a better discrimination for well distributed features. Goldstein and colleagues

stated that a face could be recognised by the shape and size of its features and especially

by any extreme or "distinguishing" features. It is interesting to recall in this context the

difficulty of distinguishing between two identical twins, especially if they are

encountered separately. Twins have many features in common which are almost exactly

the same shape and size. The main disadvantage of this method is that the
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computational cost increases with increasing population size and hence gets very large

for a reasonable sized database. However, the ability of the system to reduce the set of

255 faces to 10 including the target face with 99% success and identify the target face

with 70% accuracy demonstrated that the explicit encoding of shape information may

well be a useful method for producing an automatic system. If this method were

supported by a parallel computing facility the computational cost could well be made

sufficiently small.

A similar combination of geometric and syntactic measures were used by Isreali police

researchers to construct an Identi-kit image of a crime suspect (Riccia and Iserles;

1977). A similarity coefficient was calculated between the Identi-kit reconstruction and

mugshots of criminals to identified possible suspects.

bi Descriptions based on the facial profile

All the above methods have used anterior views of the face. A few researchers have

attempted to recognise facial profiles by segmenting the profile and classifying the

profile according to the curvature of the segments. These systems seem to work quite

well.

Kaufman and Breeding (1976), working with silhouettes, obtained 12 profile

components using a circular autocorrelation function. From these they were able to

obtain 90% accuracy for 12 profiles of 10 subjects (120 total).

In 1910, Francis Galton discussed the possibility of classifying midline profiles using a

numerical coding scheme for various shapes of noses, chins etc. These ideas were used

by Harmon and his colleagues for a scheme for the recognition of midline profiles

(Harmon et al, 1978; 1981). They identified curvature extrema along the profile and

calculated various distances and angles between them. This method enabled the

identification a target face within a database, implying that curvature extrema can be

used to distinguish between faces. Later, Wu and Huang (1990) used a similar method

to recognise profile, extracting curvature extrema by B spline fitting. They commented

that it was difficult to produce algorithms which are stable to noise. Wu and Huang's

database consisted of faces which were as dissimilar as possible (all ages and sizes)

which rather defeats the object of their research, to investigate the use of profile

recognition in security systems, since it is vital for such systems to be able to

distinguish between similar faces! Neither of these two approaches tested whether the

method could recognise a "foreign" face ie. one not included in the database.

One problem with the kinds of explicit descriptions described above is the difficulty of

locating features, such as the tip of nose, which are easily identified by humans (Craw

and Cameron, 1991). An advantage of working with 3D data is that these landmark
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points can be located precisely, as points of maximum and minimum curvature, either

by looking directly at the horizontal and vertical profiles through the surface (see

section.-7.1) or by using the Gaussian and mean curvatures, used in calculation of the

surface type description (see section 8.3). Another problem for this method is that the

inherent mobility of the face means that it is extremely difficult to use exact distance

measures for systems designed for security purposes (Sherman, 1990). This difficulty

led to interest in methods for automatically detecting facial features and in more

statistical and global approaches to face recognition.

9.5.2 Automatic location of facial features

The automatic extraction of facial features is not simple, and moreover the more

specific the information used for the feature identification, the easier the task becomes.

Unfortunately, this leads to increasingly rigid algorithms which are unable to cope with

novel faces!

Facial features have been located and classified on digitized photographs or frame-

grabbed images using a number of different techniques. Early methods used low-level

vision techniques to identify individual features in a predetermined order (Sakai et al,

1969; 1972; Kanade, 1977; Craw et al, 1987). Others have included statistical and

probabilistic methods, these include; peak and valley detectors derived from

morphological filters (Serra, 1982), template matching (Kelly, 1970; Baron, 1981) and

geometric models called deformable templates (Yuille et al, 1989; Shackleton and

Welsh, 1991; Hallinan, 1991; Bennett and Craw, 1991). Techniques which explicitly

use the image intensity have also been used. These include intensity graphs (Nixon and

Jia, private communication; Buhr, 1986) isodensity maps (Nakamura, 1991) and the use

of Gaussian maps (Pearson, 1991). The Hough transform has been used to measure eye

spacing (Nixon, 1985) and edge detection has been used to identify features by their

distance from the head outline (Wong et al, 1989).

The extraction of the head outline has been attempted using "Snakes" or adaptive

contour models (Waite and Welsh, 1990). These were developed by Kass, Witkin and

Terzopoulos (1987). The results of this application are not impressive. This maybe

because snakes are not really suitable for this task since they do not take into account

the a priori knowledge available and, additionally, are quite computationally expensive

(YuilIe et al, 1989).

Of all the methods proposed, deformable templates have provided the best method of

extracting facial features. Deformable templates act over the entire template region,

compared to snakes which are local in range and need some time for the propagation of

a deformation from one end of the snake to the other. They work by defining an energy

function which contains terms that incorporate a priori knowledge about the shape of
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peaks, valleys, edges and intensities of the feature. This energy function is minimized to

give the best fit of the template to the image. These systems have performed well to

date, locating eyes with a reliability of 90% (Hallinan, 1991; Bennett and Craw, 1991).

9.5.3 Systems utilizing automatic feature extraction

A number of systems have been developed using the automatic feature extraction

methods listed above. These systems are briefly described here, in chronological order.

Sakei and colleagues (1972) extracted line-drawing type pictures from grey-level

photographic images by convolution with a Laplacian filter. From these line-drawings,

features were sequentially searched for by making use of a priori knowledge about their

position and shape. This method involved placing templates of certain sizes over

portions of the image to define a search region (Sakai et al, 1969). Characteristic

contours were found within these regions which located the required feature. The

success rate obtained was 552 out of 607, with the failures being evenly distributed

between the features used. However, this method fails completely for faces with glasses

or beards.

The first system to be fully automated was Kanade's (1977). He extracted a binary

image from digitized photographs using a Laplacian filter. A top-down control strategy

was used to locating features using a priori knowledge about their location and shape.

Failures were able to be recovered from at the later stages of analysis by instructing the

earlier stages re-analyse the image. After the eye, nose and mouth region were

identified, a higher frequency filter was applied to the original image in these areas to

obtain a more detailed description. A nearest neighbour algorithm was used to derive

several different distance metrics, based on 16 parameters. The best of these recognised

75% of his set of 20 faces. Pattern classification was used to match the target face to a

known set using statistics.

Baron's model (1981) combined a global description with local parts in a hierarchical

template matching scheme. This first sought to match anterior views and then went on

to compare the features. He found that lighting had a significant effect on the ability to

extract the right target face and that rotations of more than 20 degrees led to failure. His

model was a serious attempt to relate face recognition to neural processes.

Another method developed by Craw and colleagues started out by using a coarsely

quantized image to locate the more global features and proceed through a series of

successively higher resolution images to find more local features (Craw et al, 1987).

Deformable template methods have recently been incorporated into a more flexible

approaches (Tock et al, 1990). Here a model of the features to be found is described.
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These features are then located on the photograph and the found feature is then matched

to the modelled feature using a control module to execute, and refine, a matching

strategy and to determine the accuracy of the match. Potential applications of such

techniques in facial recognition include encoding facial measurements onto identity

cards (Tock et a!, 1990).

A recognition method using isodensity maps extracted from photographs at a hierarchy

of intensity levels has recently been reported (Nakamura et al, 1991). Nakamura and

colleagues report that this method is able to correctly recognise, and discriminate

between, known individuals with 100% accuracy. It will, of course, be strongly affected

by changes in lighting conditions.

Nixon and Jia (private communication) have used the image intensity to extract head,

eyes and mouth regions. Various features have been located by a variety of methods

including curve fitting to extract the chin and moments to find the eyes. Buhr (1986)

analysed grey-level images applying a spatial filtering mask within a search area. This

allowed him to detect zero-crossings in intensity which he used to identify features. Jia

and Nixon's work builds on Buhr's (1986) work and on Wong's outline detection (Wong

et al, 1989) research.

9.5.4 Connectionist models
The first statistically based approaches to automated face recognition examined the

entire facial pattern on a pixel by pixel basis using neural net based systems. Again,

these treated the face as a 2D pattern but sought to capture the configural aspect of the

face (the "gestalt").

The first of these was an associative network, termed a "matrix memory model"

developed by Kohonen and colleagues (Kohonen, 1977; 1984; Kohonen et al, 1981).

This system was able to recognise face images and recover a face from incomplete or

noisy images. Their ideas were later extended by Cottrell and Fleming (1990).

A system with a similar performance was WISARD developed by Wilke, Stonham and

Aleksander (Aleksander, 1983; Stonham, 1986). This could also discriminate between

different faces, given fairly consistent viewpoint and lighting conditions and a flexible

rejection criteria. WISARD could also be trained to recognise faces in different facial

expressions, but it required a larger number of training instances than Kohonen system.

The cost to the neural net in terms of increasing complexity for every new face learnt

limits the usefulness of this method (see Bruce; 1988 p.103-107, for a further critique).

However, there is continuing interest in this method and one company (SD-Scicon UK

Ltd) are currently attempting to use it to produce "smart cards" to allow automatic

verification of identity.
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The argument behind these systems is that it is not necessary to specific the nature of

the representations abstracted and constructed from face as somehow the human visual

systems extracts statistical regularities from the patterns with which it is presented and

that is really all that is necessary to understand about the basis of recognition (Bruce et

al, 1991d). In response to this, Bruce and colleagues point out that the "hidden units" in

the neural nets systems end up looking very much like "feature detectors" and also that

humans describe faces in terms of features even if they are not explicitly encoding them

(Bruce et al, 1991d)!

9.5.5 Principal component analysis (PCA)

Another approach to building a face recognition system was proposed by Kaya and

Kobayashi (1972). They described the application of principal component analysis,

essentially an information theory method, to face recognition (see appendix 1 of their

paper for the mathematical detail of this method). Kaya and Kobayashi calculated the

number of faces that can be distinguished between using nine geometric parameters by

assessing the amount of information carried by them. They found that, in theory, the

correct face could be found from a set of 5 000 faces with a probability of 92% using an

average of six parameters.

The potential of this technique for recognition systems has recently led to its

implementation on digitized images (Kaya and Kobayashi had made measurements on

photographs manually). PCA involves the derivation of a set of principal components,

which turn out to be eigenvectors, each of which describe an independent source of

variation amongst the face images. Each image location contributes an amount to each

eigenvector, which can be displayed as an "eigenface". The subspace spanned by the

eigenvectors is referred to as "face space" (Turk and Pentland, 1991). A face is

characterised as a weighted sum across the eigenvectors and can be approximated by

the "best" eigenface. An individual face can be identified by comparison of the weights

of each component to the corresponding weight values for each of the faces in the

database. Although this method does not naturally capture salient psychological

information, it has nevertheless been demonstrated to be able to recognise a small

number of individuals (Turk and Pentland, 1991; Kirby and Sirovich, 1990). However,

Kirby and Sirovich (1990) found that 50 "eigenfaces" were needed to account for 95%

of the total variance in a fairly homogeneous set of 100 faces. This method is amenable

to implementation on a simple connectionist network (O'Toole et al, 1991).

In order for a PCA to be made, it is essential that the face images are normalised for

differences in size, location and orientation within the image. This is because the

method has the effect of averaging between the faces. This normalization requires a

certain amount of a priori knowledge about the images being used. One method of

ensuring coincidence of the facial features is to select a number of control points and
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map them, and the face, onto a standard position (Benson and Perrett, 1991b; Tock et al,

1990). This normalization has enabled unknown faces to be reconstructed using the

PCA methodology (Craw and Cameron, 1991). Another way of ensuring the

coincidence of features has been to locate the head in the image either as a blob

template (Turk and Pentland, 1991) or by finding its outline using snakes (Waite and

Welsh, 1990) or deformable templates (Bennett and Craw, 1991). If facial features can

be successfully isolated, then PCA can be used to compare them also.

9.5.6 Depth-based comparisons

Despite the abundance of different techniques that have been used to generate automatic

face recognition systems, all of which have been based on intensity images, none of

these has been very successful at producing a general purpose solution for automated

face recognition (Gordon, 1991a). Techniques such as principal component analysis

which appear to work well, are in fact too inflexible to use with large databases and

require a substantial amount of standardization of the images used for recognition.

Techniques that have been based on feature extraction have met with varied success,

but often neglect to report the consistency with which the features can be extracted.

Identification schemes based on these methods rely on the extraction of edges which

correspond to the boundaries of facial features such as the eyes from two dimensional

images. These "boundaries" are actually three dimensional in nature. Thus the accuracy

of these systems will be substantially affected by variation in lighting conditions and

viewing angle. Extracting features based on properties of the surface avoids this

difficulty and should led to a more robust system since these are independent of

viewpoint and lighting conditions. Intensity based methods have also been limited by

their ability to identify features, usually only locating the eyes, mouth, nose etc.

Surface-based descriptions of the face allow less obvious features such as the cheeks

and forehead to be located and described consistently adding new features which can be

used for identification purposes.

Recently, interest has been shown in using a depth based approach to face recognition.

Researchers at the Nippon Telephone and Telegraph's Human Interface Lab have used a

depth comparison over the entire head, matching between two normalised face data sets

with a minimised distance criteria (Masui et al, 1990). They report a success rate for

recognition of between 94% and 99% for a set of 20 faces. At present the method's

usefulness is restricted by its non-exclusion of differences in hair or clothing and the

fact that the depth comparison is made on a cartesian grid, implying that differences in

facial widths will contribute more strongly than differences in feature shape.

Gordon (1991a) described two methods for recognising faces based on range data. In

the first, various features such as the nose base, inner canthii and nose ridge, are used to
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register two facial surfaces. Comparison can then be made between faces based on a

depth map of entire facial surface, with similarity being measured by the approximate

volume of space between the facial surfaces. She tested this method using 3 views for

each of 24 faces and achieved a 97% correct recognition rate. Errors that occurred were

due to either error in extraction of the features used for registration or from the

inclusion of the neck area in the comparison.

Her second comparison method was based solely on the facial features. Each face was

described by a vector of scalar features containing both absolute distances, of eyes and

nose widths and heights, and curvature measures; the maximum Gaussian curvature of

nose ridge (ie. tip of nose), the average minimum curvature on ridge above tip of nose

(the naison) and the Gaussian curvature of the nose bridge and the nose base.

Comparison was made based on the Euclidean distance between points and cluster

analysis was used to evaluate the results of the comparison (Duda and Hart, 1979).

Gordon investigated different methods of dealing with missing features and the use of

specific sub-sets of features. The sets of features she used were very primitive and did

not fully exploit the curvature information available to her. Her comparison

concentrated only on the curvature of the nose and nose and eye geometric measures.

Nevertheless, she achieved a recognition of better than 79% even using only a small set

of features.

Gordon concluded that descriptors based on depth and curvature data have the

following advantages over intensity based descriptors: they are potentially more

accurate in characterizing surface events, they make available a larger feature set

through their ability to describe even low contrast areas on the face and they are

naturally invariant to viewpoint and lighting changes.

Gordon's work could be built on by using a more extensive sets of curvature and

gmetric measures. Appropriate curvature measures could be extracted from the

surface type representation of a face (see section 8.3).

Implications for forensic identification

The ability to reconstruct a face, seen only briefly, is of tremendous importance to

forensic scientists, the police and the legal profession. To aid the eye-witness in his/her

recollection of a face, a number of face retrieval systems have been developed to

construct the faces of criminal suspects. These systems must be based on the explicit

encoding of facial features and dimensions. Facial features are construed as two-

dimensional parts embedded in a two-dimensional configuration (Bruce et al, 1991d).

Those systems that have been used in the U.K. are Identi-kit (based on line drawings of

facial features), Photo-fit (based on photographs) and E-fit (a computerised version of

Photo-fit). However, the face representations produced by these systems have been

226



Face Recognition

found to be inadequate for consistent identification (Ellis et al, 1975a; 1978; Laughery

and Fowler, 1980).

These face retrieval systems involved a witness laboriously searching through a

database of many hundreds or thousands of photographs for appropriate features and

faces. Large searches such as these have been shown to severely fatigue the witness,

strongly impairing his/her ability to retrieve the correct face (Davies et al, 1979c). A

system originally rather unfortunately named FRAME (for Face Retrieval And

Matching Equipment) is currently being developed to automatically retrieve suitable

photographs from a database (Shepherd, 1986; Ellis et al, 1989). In this system, certain

parameters of a face (eg, hair style, face length or nose shape) are described on a scale

by a witness (similar to Goldstein's system). These are fed into the computer which

searches the database for close matches. For typical target faces, FRAME has been

found to perform better than album searches but for distinctive faces, which are

generally better remembered (Valentine and Bruce, 1986), no difference in performance

was noticed. This system was later re-named FACES and underwent a 2 year Home

Office trial using a database of 8000 faces.

Another concern that has been expressed about these systems is the assumption that

witnesses can remember separate parts of the face. The Isreali police devised a system

for retrieving faces based on rating the overall similarity of each photograph in their

database to every other photograph. A witness then selects the most similar faces from a

small subgroup of the database and similar photographs are retrieved. Averages of these

photographs are then computed in order to improve the match (Levi et al, 1990). Neural

nets systems have also been tested in the context of face retrieval (Starkey and

Aleksander, 1990).

It has been postulated that the facial characteristics used to positively identify an

individual are similar in only a small number of attributes (Harmon, 1973; Davies et al,

1978). Davies and his colleagues pointed out that faces often share similarity in certain

facial dimensions but subjects are infrequently confused by these similarities (Davies et

a!, 1979b). It seems that there are certain salient attributes which distinguish between

faces. These having been suggested to be face shape, age, hairstyle and eyes (Davies et

a!, 1979b). This has grave implications for the identification of suspects by witnesses to

a crime.

Some faces are better remembered than others. A number of factors may affect the

accuracy of eyewitness descriptions and identification. These have been discussed by

Deffenbacher and colleagues (Deffenbacher et al, 1978), Davies (1978) and Clifford

(1978) and others. Lord Devlin's report on Identification Evidence in Criminal Cases

drew attention to unreliability of eyewitness evidence and especially to the problem for
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the witness of comparing similar faces in the absence of distracting faces (Devlin,

1976).

Recently, methods for the comparison of faces of suspects and robbers, caught on

security video systems have been devised. Usually this takes the form of comparing

facial proportions and making explicit measurement of a few distances and angles

salient for the particular case. One method that Linney and I have used in preparing

expert evidence in these cases is to optically scan the accused. The head can then be

orientated to match the viewpoint from which the robber's head is depicted, using

interactive software, and thus compared.

Currently, progress is being made towards providing photographic based

representations of a suspects face from a different viewpoints. This may be done by

texture-mapping a photograph onto a 3D head model (Duffy and Yau, 1988; Yau and

Duffy, 1988; Duffy, 1990; Aitchison and Craw, 1991). A suitable head model can be

provided by optically scanning the suspect. This system is likely to be of substantial aid

to witnesses asked to recognize criminals, since the number of photographs available of

an individual suspect are usually small and not taken from the angle from which

witnesses has observed the criminal. Difference in viewpoint, as well as changes in

expression, has been shown to considerably reduce recognition accuracy for once-

viewed faces (Bruce, 1982).

One of the weaknesses of all the face reconstruction and retrieval systems produced to

date, may be due to no account being taken of the 3D surface of the faces. They make

no allowance for the case where a witness thinks that the eyebrows, for example, were

more protuberant than a reconstruction shows. This is because no methodology exists

for either automatically searching for more protuberant brows within the database or for

automatically altering the existing brows interactively. A description method which

took greater account of the 3D shape of features, together with the kind of software

described in this thesis for altering the facial surface in a manner which corresponds to

facial features and utilization of texture mapping techniques would enable this sort of

requirement to be meet.

Finally, two other applications that have made use of 3D facial data. Firstly, a 3D model

of the face has been manipulated to create different facial expressions and simulate

speech, altering the 3D shape of the face in accordance with muscle movements

(Waters, 1987; 1989; Waters and Terzopoulos, 1990; 1991). Secondly, assessment of

the identifiability of unknown faces from a 3D model is important for determining the

identity of some deceased individuals. Attempts at producing likenesses of murder

victims have been made by combination of 3D data obtained for a found skull and a

known face of similar age, sex and build to the victim (Vanezis et al, 1989). However, it
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is not known as yet how well such a model conveys identity or whether the addition of

texture or hair, that may be incorrect, would aid or hinder recognition.

Summary

In this chapter, 3D data and shape analysis of the facial surface have been demonstrated

to be useful for addressing a number of psychological questions about face recognition

which have previously been limited by 2D material. The application of these techniques

has been initiated by myself and my collaborators.

Specifically, the surface type description method has enabled investigations to be

carried out into the role played by the shape of the face in sex judgement and in making

a face distinctive. In the first investigation, possible reasons for the misclassification of

a female face as male were suggested by the surface type analysis. In the second

investigation, analysis of the surface type composition of the face, in the eyes, nose and

lower face regions, showed the distinctive faces tend to deviate from the average by a

greater amount than typical faces.

In addition to these investigations, the technique described in chapter 7 for altering the

3D data represented by a surface type patch may allow the relative importance of each

facial feature for recognition tasks to be assessed.

To date no recognition systems have been built based on 3D data and little account of

the surface differences in faces has been taken. The advantages of a surface based

approach are that a larger feature set is available and the description produced is

invariant to viewpoint and illuminations.

A better understanding of the projective geometry of the face, afforded by the ability to

view it from any chosen direction and the ability to perform systematic alterations to its

surface, as described at the end of chapter 7, should enable the limitations of today's

face retrieval systems to be better understood. The 3D surface type description

produced in this thesis may be viewed from any angle, enabling the limits of validity of

2D comparisons to be determined.

3D data has been found to be useful in two forensic areas: the reconstruction of found

skulls and the generation of viewpoint determined silhouettes.
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DISCUSSION AND CONCLUSION

"For now we see but a poor reflection, but then we shall see face to face".
1 Corinthians 13 v 25

In this thesis, a methodology has been developed for the mathematical description of

the shape of the facial surface and the quantification of changes in facial shape arising

from reconstructive surgery or differences due to interfacial variation.

From examination of the literature concerning shape, I have found common ground

between the work reported by computer vision scientists dealing with the mathematical

description of shape and the concepts that have been formed by psychologists regarding

how the brain perceives shape. This has allowed me to look at shape description in a

novel way. The tenets of one field of study have been shown to reinforce those of the

other. For instance, the idea of abstracting shape information from edges and parts has

been related to mathematical descriptions of shape that are global or local in nature.

The discovery of a close relationship between the perception of an object's shape and

the recognition of that object led me, in the latter stages of this work, to address

questions regarding the recognition of faces.

Mathematical descriptions of shape in three dimensions have not been as well

developed as those in two dimensions. Nevertheless some characteristics of a good 3D

shape descriptor have been realised and these have served as pointers for my own work.

The method that I have developed for describing the shape of the face answers some of

the criticisms raised against other methods. The principal criticisms concerned lack of

objectivity and degree of abstraction. Landmarks, for example, have to be identified by

an observer and represent the surface by only a very small sample of points. Some

highly complex methods have been used to analyse the landmarks and to establish

connections between them, but these do not go any way to answering the principal

objections of landmark methods. A further criticism of current methods is the lack of

statistical theory associated with them. Some statisticians have taken an interest in

developing this theory, but their progress has so far been limited.

Methods which show potential for describing biological surfaces, but have not yet been

developed in 3D, include Leyton's process history of shape changes and techniques

based on bending energy.

One of the restrictions affecting the development of other ideas for characterizing 3D

shape and change has been the absence of a method for recording sufficient data on

surfaces. Fortunately for this work, methods for acquiring 3D measurements of the
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human body, and in particular the face have now become available. The method chosen

for collecting 3D facial data sets was optical surface scanning. This method is non-

invasive, quick and provides structured digital data. I had easy access to a system which

had already been evaluated and its stability and reproducibility of data sets has been

demonstrated. The data it produced were sufficiently accurate for unambiguous results

to be obtained from the surface type description method. The advantage of deriving 3D

shape from range data compared to intensity data is that it is not affected by

illumination conditions.

The use of differential geometry for describing surfaces, has been explored by other

researchers. They have proposed segmenting the surface using lines and patches of

curvature. Their investigations have influenced my own work in pioneering the

application of differential geometry to descriptions of the face.

Selection of an approach for describing facial shape which is based on differential

geometry inherently met some of the requirements that I identified as important for a

successful facial shape descriptor. These requirements included describing the geometry

of the surface and producing a description of the face which is independent of the

viewpoint from which it is seen. Other important criteria were that the description

produced should be robust against noise in the acquired data, have a hierarchical nature,

be easy to visualize and be sensitive to small scale changes.

In seeking to produce a description of the face that met these requirements, three

algorithms for calculating the Gaussian and mean curvatures of a surface were

considered. These were Besi and Jam's convolution filters, Yokoya and Levine's bi-

quadratic surface fit and a least squares algorithm for irregularly sampled surfaces. The

latter is a novel algorithm. The first two are based on the extraction of a depth map from

the surface range data whereas the latter computes the surface curvatures directly from

the acquired data. Although, the latter algorithm takes a far longer time to compute, it is

truly independent of the direction from which the surface is viewed and free from

"edge" effects. The problem of the long computation time is presently a hindrance to the

general clinical application of this method. However, this problem is surmountable by

the parallelization of the algorithm, implemented on an array of Transputers.

The eight fundamental surface types, that were defined from the sign of the Gaussian

and mean curvatures, allowed a surface type image (STI) representation to be produced.

This representation provides a visual representation of a large amount of facial data. It

was encouraging to find that the patches of the different surface types, formed on the

representation, have perceptually meaningful interpretations and, likewise, that changes

in the patches between two STI's are understandable in terms of movements of the face.
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Because hierarchical methods have been so successful, I was interested to try to obtain a

hierarchical description of the facial surface. This objective was achieved by alteration

of the thresholds on the surface curvatures, which delineate between zero and other

curvatures. The hierarchical structure enabled small scale changes in shape to be

described, as well as changes to the major facial features such as the nose and eyes.

The STI and KH-map representations were used to evaluate the performance of the

three curvature algorithms for describing both geometrical regular objects and the facial

surface. This assessment had not previously been undertaken and clearly demonstrated

the advantage of the least squares algorithm in terms of accuracy.

Confirmation of our belief that the optical scan data was good enough to enable facial

shape to be described came from the assessment which was made of the amount of

noise in the optical surface scan data and the subsequent demonstration that the STI

representation was robust against noise in the acquired data. The STI representation was

also shown to not be drastically affected by smoothing the data. Although the Si'!

representation is affected by facial expression, it was shown to be reproducible for four

different scans of an individual face with a neutral expression. The demonstration of the

reproducibility of the STI and its stability against noise indicate that a relatively high

degree of confidence can be placed in the surface type description to faithfully represent

the surface shape.

Because of the great value for many applications, of being able to compare two or more

surfaces, methods for the comparison of surface type descriptions were considered. The

development of these methods help answer the question "What are the most significant

differences (similarities) between faces?" in an objective rather than subjective manner.

Two useful prerequisites for a comparison of facial surfaces are registering the two data

se to be compared together and obtaining an average face in order to provide a

standard against which comparisons can be made. A qualitative description of the

differences between two facial scans, as represented by the surface type images (STIs),

allowed shape differences to be related to facial features. In addition to this, a method

was described for the quantitative comparison of portions of the STIs using graphical

representations of the amount of each surface type in a defined region. The patches

formed by different surface types on the STI can also be compared and with the shape

of the patch boundaries being quantified using some of the computer vision methods

described in chapter 1, and the concept of bending energy. In order for this technique to

be viable for a large number of patches, a method for automatically comparing

corresponding patches must be found. This relies on the automatic identWcation of

corresponding patches. An approach based on the artificial intelligence techniques of
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frame representation and rule-based comparisons and on fuzzy logic was outlined which

may ultimately provide a solution to this problem. This development, together with

reducing the run-time of the surface curvatures algorithm, would enable the method

described here to be implemented for clinical applications.

The development of these methods for comparing STIs enabled an evaluation to be

made of its sensitivity for comparing global changes to the data (produced by 3D

caricatures) and local changes to the data (produced by altering portions of the data

with a B spline or by altering portions of the data set that correspond to a particular

surface type patch). The perceptibility of these changes, together with the quantification

of the change to the surface as measured in terms of surface type composition, will be

of benefit in face recognition questions and assessing the aesthetic impact of surgery.

Many groups of people have been interested in measuring the face and for different

reasons. Orthodontists and facial surgeons wish to know the way in which a face

changes with growth and due to disease in order to improve the timing and precision of

their operations. Anthropologists have been concerned with the interfacial variation

between cultures, people-groups and races as well as within families. Psychologists

have been interested in the way in which faces are recognized and the accurate

identification of faces is of benefit to police, security and forensic services. Previous

analyses of the face, have been limited by the lack of availability of 3D data. The recent

availability of this data led maxillo-facial surgeons to articulate their need for a more

quantitative description of how the face changes due to surgery. This plea provided an

impetus for this work. The availability of large amounts of 3D data has allowed the face

to be more easily measured and analysed and has enabled us to make progress with

some of these questions.

The methodology developed has been applied to clinical cases. The potential of this

method for meeting the challenge, laid down by facial surgeons, for analysing the

complex changes in facial shape, has been demonstrated. Quantitative analyses of the

changes to different types of faces with reconstructive surgery were made, using the

region based graphical method described in chapter 7. The hierarchical nature of this

method allows an assessment of the importance of the shape changes to be made.

However, its use for charting the growth of the face has not yet been demonstrated.

The method has also been used to define landmark points consistently, free from

observer error, from the surface type patches. This development may enable an

automatic method for registering two 3D data sets to be produced.
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There are different perceptions of an aesthetically pleasing face and difficulties have

been experienced in defining an aesthetic standard or standards for faces. The surface

type analysis may eventually allow a mathematical basis for facial aesthetics is be

defined.

Considering the application of this method to questions regarding the recognition of

faces, we have seen that cognitive psychologists have hypothesized a role for the shape

of the face in a variety of face recognition tasks. The description of facial shape in

terms of surface type components, has enabled us to begin investigating whether facial

surface shape does play a role in face recognition. In the first of two preliminary

investigations we found that the perceived ambiguity regarding the sex of a facial image

might be explicable in terms of facial shape. These shapes shared characteristics of

masculine and feminine faces. Secondly, we found that in terms of their surface type

composition, distinctive faces deviated more from an average face, of the same sex,

than the typical faces. Further work along these lines of enquiry, with larger data sets

and improved comparison techniques should allow firmer conclusions to be reached

about the role that is played by 3D facial shape in face recognition.

Conclusions

From this work, the following have been found:

1) Differential geometry techniques are useful for describing the facial surface.

2) 3D data obtained from optical surface scanning is a suitable database for the

production of a description of the shape of the face.

3) Segmentation into surface types (shapes) provides a useful way of producing an

objective description of the face which is stable and repeatable.

4) The concept of surface types appears to be closely related to the human

perception of facial features. Thus the description of facial shape produced by

segmenting the facial surface in surface types is perceptually meaningful, and its

correspondence to facial features is apparent.

5) The method allows a hierarchical description of facial shape.

6) The surface type method is useful for analysing changes in facial shape and

allows changes in facial shape to be appreciated both qualitatively and

qualitatively.
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7) The method is suitable for evaluating the effects of facial surgery on facial

shape.

8) The method provides a way of investigating the role that 3D shape plays in

human perception and facial recognition.

9) It provides a way of objectively locating landmark points on a surface. This

could enable the automatic registration of the 3D data sets.

10) It has potential for developing an automatic facial recognition system.

Areas for future research

A number of areas for further work have been identified. These are listed below in no

particular order.

1) The objective definition of landmark points, as the maximum curvature of a

surface type patch, could enable a method for automatically registering the

optical surface scan data. This method would improve on Fright's current

technique which relies on the interactive marking of landmark points.

2) Further work is needed on automatically locating the surface type patches on the

surface type image. The development of a robust method for this, will enable the

shape of the face before and after surgery, or between two individuals, to be

automatically compared and will enable this technique to be more widely used.

An outline of a possible approach to this problem was presented in chapter 7.

3) The development of a method for automatically recognizing faces, based on the

position, extent etc. of different surface type patches. This may eventually

enable an automatic facial recognition system to be produced.

4) The development of a statistical theory for the method. Statisticians at Leeds

university have become interested in the surface type representations and their

attempts to attach statistical meaning to the distribution of the surface type

patches between faces may enable statistical rules to be established with regard

to the surface type representation.

5) The application of this technique to describing the shape of other parts of the

body.
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6) The application of this method to produce a classification of facial features

based on shape.

7) The production of a set of images of the same individual's face, where the 3D

data has been systematically altered in a known manner to produce slightly

different faces. Smooth, well-constrained alterations to the 3D data could be

made by altering the portion of the data which corresponds to one or more

surface type(s) using the method described in chapter 7. This will be of benefit

for psychological research into the relative importance of the shape of facial

features for recognition.

8) The systematic alteration of the facial data and the visualization of the changed

face could be of benefit in improving both clinicians and patients awareness of

facial aesthetics and in the planning of operations.
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APPENDIX A

Equations of fundamental solids

Sphere:

r2=(x-h)2+(y-k)2-F(z-1)2

for a sphere is centred on (h,k,1) where r is its radius.

Ellipsoid:

1 = 2 + x2 + z?
a2 b2 C2

Elliptic Paraboloid: (This was used to generate a peak or pit surface)

cz 2+32

a2 b2

Hyperbolic Paraboloid: (This was used to generate a saddle surface)

-cz = Xl -
a2 b2

Plane:

ax + by + cz + d =0

Ridge or Valley surface:

z=x2:z=y2:x=z2:x=y2:y=x2:y=z2

Figure Al: Calculation of a depth map of a sphere.
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Appendix A
OCCAM Code to generate mathematical models of geometrically regular objects

L	 A plane

--(((
-- NB must be positive.
VAL scanlines IS 100:
REAL32 rad,dist,arig.deg: --dist of plane from centre
SEQ
nprof : 64
centre : 500.0(REAL32)
rad : 50.0(REAL32)
SEQ A-0 FOR nprof -- profiles

SEQ
pist[A] :- 10
plst[A] : scanlines+9
-- angle in deg * 1024/360 :- ishaft
ishafti (A] : ((nprof-A) *256) /nprof
-- between profs: ideg : 1024/360
ishaft2 [A] := ((nprof-A) *256) /nprof
ang.deg := (PI*(REAL32 ROUND A))/(REAL32 ROUND (nprof *2))
dist :	 (rad/(SQRT(2.0(REAL32)))) /

(COS((PI/4.0(REAL32)) - ang.deg)) --x + r
--({( check dist very small, like zero
IF
dist < 0.01 (REAL32)

dist := 0.01(REAL32)
TRUE

SKIP
--))}
SEQ 8=0 FOR scanlines

SEQ
hsiv(A] (B] := (centre - dist)

done := TRUE
--111

A paraboloid

--1((
-- NB must be positive
VAL scanlines IS 100:
VAL min.point IS 50.0(REAL32): --a
VAL offset IS 50.0(REAL32):
SEQ

nprof :- 128
centre := 500.0(REAL32)
SEQ A=0 FOR nprof -- profiles

SEQ
pist[A]	 10
plst(A] : scanlines+9
-- angle in deg * 1024/360 := ishaft
ishaftl[A] := (nprof_A)*8 -- between profs: ideg := 1024/360
ishaft2(A] :- (nprof_A)*8
REAL32 x, ysquared,top:
SEQ 8=0 FOR scanlines/2

SEQ
ysquared	 ((REAL32 ROUND((scanlines/2)_B))*

(REAL32 ROUND ( (scanhines/2) -B)))
x := (ysquared/(4.0(REAL32)*min.point))
--((( check x very small, like zero
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Appendix A
IF
x < 0.1 (REAL32)

x :- 0.1(REAL32)
TRUE

SKIP
--}}}
hsiv[A][B] :- (centre - (x+offset))
hsiv(A] [(scanlines-1)-B] :- hsiv(A] [B]

done := TRUE
-- ) 1)

3. A hyberboloid

--{((
-- NB must be positive
VAL scanlines IS 100:
VAL min.point IS 50.0(REAL32): --a
VAL b IS 25.0(EAL32): --b
SEQ
nprof := 128
centre :- 500.0(REAL32)
SEQ A=0 FOR nprof -- profiles

SEQ
pist[A] : 10
plst[A] :- scanlines+9
-- angle in deg * 1024/360 : ishaft
ishaftl[AJ : (nprof_A)*8 -- between profs: ideg : 1024/360
ishaft2[A) : (nprof_A)*8
REAL32 x, ysquared,top:
SEQ 0 FOR scanlines/2

SEQ
ysquared :- ((REAL32 ROUND((scanhines/2)_B))*

(REAL32 ROUND ( (scanlines/2) -B)))
x := ((min.point/b)*(SQRT(Cb*b) + ysquared)))
--{{( check x very small, like zero
IF
x < 0.01 (REAL32)
x :- 0.01(REAL32)

TRUE
SKIP

--H)
hsiv(A] [B] :- (centre - x)
hsiv[A] ((scanlines-1)-B] : hsiv[A] [B]

done := TRUE
--}}}

4. An ellipsoid

-- NB a*a(1_e*e) >= ysquared!!!! or top is -ye
VAL scanlines IS 100:
VAL maj.axis.len IS 76.0(REAL32): --a
VAL eccent IS 0.75(REAL32): --e
SEQ
nprof := 128
centre :- 500.0(REAL32)
SEQ A-0 FOR nprof -- profiles

SEQ
pist[A] :- 10
plst[A] :- scanlines+9
-- angle in deg * 1024/360 :- ishaft
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ldeg := 1024/360
if nprof= 128)

ishaftl(A] := (nprof_A)*8 -- between profs:
ishaft2(A] : (nprof_A)*8 --(8 - 360 object
REAL32 x, ysquared,top:
SEQ B=0 FOR scanhines/2

SEQ
ysquared := ((REAL32 ROUND((scanhines/2)_B))*

(REAL32 ROUND ( (scanlines/2) -B)))
top :- (((maj.axis.len*maj.axis.len)*

(1.0 (REAL32) - (eccent*eccent)) ) -ysquared)
x :- (top/(1.0(REAL32)_(eccent*eccent)))
x :- SQRT(x)
--((f check x very small, like zero
IF
x < 0.01 (REAL32)

x :- 0.01(REAL32)
TRUE

SKIP
-- ) 1)
hsiv[A] (B] := (centre - x)
hsiv(A] ((scanlines-1)-B] : hsiv[A] [B]

done : TRUE
-- ) } }

£	 A sphere

--{ (
-- contains modifications to simulate noise
SEQ

INT RADIUS, scanlines:
REAL32 radius:
SEQ
--f{( set radius and scanlines required
write.text.line(scr,"Enter radius of sphere required in mm

[REAL]")
read.echo. real32 (key, 3cr, radius, result)
RADIUS := INT ROUND (radius)
IF

(RADIUS	 45)
scanlines := 90

(RADIUS = 90)
scanlines :- 180

(RADIUS - 125)
scanlines := 250

TRUE
SEQ
write.text.line(scr,"Enter no of scanlines (INT]")
read, echo. mt (key, scr, scanlines, result)

--VAL scanlines IS 180:
--VAL radius IS 90.0(REAL32):
--} }
BOOL noise,q.noise:
INT respond, nl, n2, quan:
REAL32 sd:
SEQ

nprof := 128
centre :- 500.O(REAL32)
--((f ask about noise
noise := FALSE
q.noise := FALSE
write.text.line(scr, "Do you wish to add noise to object?

(Y]")
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key ? respond
IF

respond = (INT'y')
SEQ
write.text.line(scr, "Gaussian noise? (Y]")
key ? ni
--1(1
IF
nl - (INT'y')

SEQ
noise :- TRUE
write.text.line(scr, "Enter standard deviation of

noise in mm (REAL32]")
read.echo . real32 (key, scr, sd, result)

TRUE
SKIP

--}}}
write.text.line(scr, "Quantization noise? (Y]")
key ? n2
--( ( {
IF

n2	 (INT'y')
SEQ
q.noise := TRUE
write.text.line(scr, "Select option for standard

deviation")
write.text.line(scr," of noise in mm (REAL32]")
write.text.line(scr," 1 - 1 mm")
write.text.line(scr," 2 	 0.5 mm")
write.text.line(scr," 3 - 0.25 mm")
key ? quan

TRUE
SKIP

--}))
TRUE

SKIP
-- ) } )
SEQ A=0 FOR nprof -- profiles

SEQ
pistLA) :- 10
p1st [A] := scanlines+9
-- angle in deg * 1024/360 := ishaft
ishaftl[A] :- (nprof_A)*8

-- between prof 5: ideg := 1024/360
ishaft2[A] : (nprof_A)*8
REAL32 x:
SEQ B=0 FOR scanlines/2

SEQ
x :- (radius *radius) -

((REAL32 ROUND ( (scanlines/2) -B) ) *
(REAL32 ROUND((scanlines/2) - B)))

x := SQRT(x)
--({{ add normal noise if needed
IF
noise
--({( add noise
SEQ

1NT32 seed:
REAL32 randoml, random2, sd, error:
SEQ

seed := 42(1NT32)
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randoml,seed := RAN(seed)
random2,seed := RAN(seed)
error :=

(SQRT( (2.0 (REAL32) ) 	 (randomi)) ) *
COS ((2.0 (REAL32) *PI) *rando)

x :- x + (sd*error)
-- } } }

TRUE
SKIP

-- } } }
--((( add quantization noise if needed
IF
q.noise

-- C C C

INT X:
SEQ
X :- INT TRUNC(x) --trunc rounds towards zero

--	 (1.6 ->1, -1.6 ->-1)
CASE quan

INT ( ' 1')
--(U to nearest mm

IF
((x-(REAL32 ROUND(X))) < 0.5(REAL32))
x := REAL32 ROUND (X)

((x-(REAL32 ROUND(X))) > 0.5(REAL32))
x : REAL32 ROUND((X+1))

TRUE
write, text, line (scr, "error in
quantization noise")

--}))
INT ( '2')
--((( to nearest 0.5 mm
IF

((x-(REAL32 ROUND(X))) <0.25(REAL32))
x : REAL32 ROUND CX)

(((x-(REAL32 ROUND(X))) > 0.25(REAL32))AND
((x-(REAL32 ROUND(X))) <

0 .75(REAL32)))
x : (REAL32 ROUND CX)) + 0.5(REAL32)

((x-(REAL32 ROUND(X))) >= 0.75(REAL32))
x := REAL32 ROUND((X+1))

TRUE
write.text.line(scr,"error in

quantization noise")
--111

INT C '3')

--{(( to nearest 0.25 mm
IF

((x-(REAL32 ROUND(X))) <0 .125 (REAL32))
x := REAL32 ROUND (X)

(((x-(REAL32 ROUND(X))) >
D.125(REAL32)).AND

((x-(REAL32 ROUND(X))) <=
0.375 (REAL32)))

x : (REAL32 ROUND (X)) + 0.25(REAL32)
(((x-(REAL32 ROUND(X))) >

0.375(REAL32))AND
((x-(REAL32 ROUND(X))) <

0.625(REAL32)))
x : (REAL32 ROUND (X)) + O.5(REAL32)
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(((x-(REAL32 ROUND(X))) >

0. 625 (REAL32) ) AND
((x-(REAL32 ROUND(X))) <-

O.875(REAL32)))
x :- (REAL32 ROUND CX)) + 0.75(REAL32)

((x-(REAL32 ROUND(X))) >= O.875(REAL32))
x :- REAL32 ROUND((X+1))

TRUE
write.text.line(scr, "error in

quantization noise")
--))}

ELSE
SKIP

--write. real32 (ncr, x, 3,4)

TRUE
SKIP

--{(( check x very small, like zero
IF
x < 0.01 (REAL32)
x :- 0.01(REAL32)

TRUE
SKIP

-- I I I

hsiv(A][B] :- (centre - x)
hsiv[A] [(scanlines-1)-B] :- hsiv[A] [B]

done : TRUE

--} I }

A Saddle

VAL scanlines IS 100:
VAL radius IS 50.0(REAL32):
SEQ
nprof : 120
centre : 500.0(REAL32)
SEQ A=0 FOR nprof -- profiles

SEQ
pistEA) : 10
p].st[A] : scanlines+9
-- angle in deg * 1024/360 :- ishaft
ishaftl[A] :- (nprof_A)*2 -- between profs: ideg : 1024/360
ishaft2[A] :- (nprof_A)*2
REAL32 temp:
SEQ B=0 FOR scanlines/2

SEQ
temp : (REAL32 ROUND((scanlines/2)-B))
temp :- (temp*temp)/(REAL32 ROUND (scanlines/2))
--((( check temp very small, like zero
IF
temp < 0.01 (REAL32)

temp :- 0.01(REAL32)
TRUE

SKIP
--I))
hsiv[A] (B] :- centre - (temp+radius)
hsiv(A] [(scanlines-1)-B] := hsiv[A] [B]

done := TRUE
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-- I } I

L	 A Cylinder

--({(
VAL scanlines IS 100:
VAL radius IS 35.0(REAL32):
SEQ
nprof : 128
centre :- 500.0(REAL32)
SEQ A=0 FOR nprof -- profiles

SEQ
pist[A] :- 10
plst(A] : scanlines+9
-- angle in deg * 1024/360 :- ishaft
ishaftl[A) :- (nprof_A)*8 -- between profs: ideg := 1024/360
ishaft2(A] :- (nprof_A)*8
SEQ B=0 FOR scanlines
hsiv[A] [B] : centre - radius

done : TRUE

-- I } I

& ACone

--((C
VAL scanlines IS 100:
VAL radius IS 50.0(REAL32):
REAL32 x:
SEQ
nprof : 128
centre :- 500.0(REAL32)
SEQ A=0 FOR nprof -- profiles

SEQ
pist[A] :- 10
plst[A) := scanlines+9
-- angle in deg * 1024/360 := ishaft
ishaftl[A] := (rlprof_A)*8 -- between profs: ldeg := 1024/360
ishaft2[A] : (nprof_A)*8
SEQ B=0 FOR scanlines

SEQ
x:= (REAL32 ROUND(B))
--((( check x very small, like zero
IF
x < 0.1 (REAL32)

x := 0.l(REAL32)
TRUE

SKIP
--1))
hsiv[A) [B] : centre - x

--((C COMMENT fill gap !!!
-- } I I

done : TRUE
-- I I }

BIBL

LONDON

UNIV

263




	DX191240_1_0001.tif
	DX191240_1_0002.tif
	DX191240_1_0003.tif
	DX191240_1_0004.tif
	DX191240_1_0005.tif
	DX191240_1_0006.tif
	DX191240_1_0007.tif
	DX191240_1_0008.tif
	DX191240_1_0009.tif
	DX191240_1_0010.tif
	DX191240_1_0011.tif
	DX191240_1_0012.tif
	DX191240_1_0013.tif
	DX191240_1_0014.tif
	DX191240_1_0015.tif
	DX191240_1_0016.tif
	DX191240_1_0017.tif
	DX191240_1_0018.tif
	DX191240_1_0019.tif
	DX191240_1_0020.tif
	DX191240_1_0021.tif
	DX191240_1_0022.tif
	DX191240_1_0023.tif
	DX191240_1_0024.tif
	DX191240_1_0025.tif
	DX191240_1_0026.tif
	DX191240_1_0027.tif
	DX191240_1_0028.tif
	DX191240_1_0029.tif
	DX191240_1_0030.tif
	DX191240_1_0031.tif
	DX191240_1_0032.tif
	DX191240_1_0033.tif
	DX191240_1_0034.tif
	DX191240_1_0035.tif
	DX191240_1_0036.tif
	DX191240_1_0037.tif
	DX191240_1_0038.tif
	DX191240_1_0039.tif
	DX191240_1_0040.tif
	DX191240_1_0041.tif
	DX191240_1_0042.tif
	DX191240_1_0043.tif
	DX191240_1_0044.tif
	DX191240_1_0045.tif
	DX191240_1_0046.tif
	DX191240_1_0047.tif
	DX191240_1_0048.tif
	DX191240_1_0049.tif
	DX191240_1_0050.tif
	DX191240_1_0051.tif
	DX191240_1_0052.tif
	DX191240_1_0053.tif
	DX191240_1_0054.tif
	DX191240_1_0055.tif
	DX191240_1_0056.tif
	DX191240_1_0057.tif
	DX191240_1_0058.tif
	DX191240_1_0059.tif
	DX191240_1_0060.tif
	DX191240_1_0061.tif
	DX191240_1_0062.tif
	DX191240_1_0063.tif
	DX191240_1_0064.tif
	DX191240_1_0065.tif
	DX191240_1_0066.tif
	DX191240_1_0067.tif
	DX191240_1_0068.tif
	DX191240_1_0069.tif
	DX191240_1_0070.tif
	DX191240_1_0071.tif
	DX191240_1_0072.tif
	DX191240_1_0073.tif
	DX191240_1_0074.tif
	DX191240_1_0075.tif
	DX191240_1_0076.tif
	DX191240_1_0077.tif
	DX191240_1_0078.tif
	DX191240_1_0079.tif
	DX191240_1_0080.tif
	DX191240_1_0081.tif
	DX191240_1_0082.tif
	DX191240_1_0083.tif
	DX191240_1_0084.tif
	DX191240_1_0085.tif
	DX191240_1_0086.tif
	DX191240_1_0087.tif
	DX191240_1_0088.tif
	DX191240_1_0089.tif
	DX191240_1_0090.tif
	DX191240_1_0091.tif
	DX191240_1_0092.tif
	DX191240_1_0093.tif
	DX191240_1_0094.tif
	DX191240_1_0095.tif
	DX191240_1_0096.tif
	DX191240_1_0097.tif
	DX191240_1_0098.tif
	DX191240_1_0099.tif
	DX191240_1_0100.tif
	DX191240_1_0101.tif
	DX191240_1_0102.tif
	DX191240_1_0103.tif
	DX191240_1_0104.tif
	DX191240_1_0105.tif
	DX191240_1_0106.tif
	DX191240_1_0107.tif
	DX191240_1_0108.tif
	DX191240_1_0109.tif
	DX191240_1_0110.tif
	DX191240_1_0111.tif
	DX191240_1_0112.tif
	DX191240_1_0113.tif
	DX191240_1_0114.tif
	DX191240_1_0115.tif
	DX191240_1_0116.tif
	DX191240_1_0117.tif
	DX191240_1_0118.tif
	DX191240_1_0119.tif
	DX191240_1_0120.tif
	DX191240_1_0121.tif
	DX191240_1_0122.tif
	DX191240_1_0123.tif
	DX191240_1_0124.tif
	DX191240_1_0125.tif
	DX191240_1_0126.tif
	DX191240_1_0127.tif
	DX191240_1_0128.tif
	DX191240_1_0129.tif
	DX191240_1_0130.tif
	DX191240_1_0131.tif
	DX191240_1_0132.tif
	DX191240_1_0133.tif
	DX191240_1_0134.tif
	DX191240_1_0135.tif
	DX191240_1_0136.tif
	DX191240_1_0137.tif
	DX191240_1_0138.tif
	DX191240_1_0139.tif
	DX191240_1_0140.tif
	DX191240_1_0141.tif
	DX191240_1_0142.tif
	DX191240_1_0143.tif
	DX191240_1_0144.tif
	DX191240_1_0145.tif
	DX191240_1_0146.tif
	DX191240_1_0147.tif
	DX191240_1_0148.tif
	DX191240_1_0149.tif
	DX191240_1_0150.tif
	DX191240_1_0151.tif
	DX191240_1_0152.tif
	DX191240_1_0153.tif
	DX191240_1_0154.tif
	DX191240_1_0155.tif
	DX191240_1_0156.tif
	DX191240_1_0157.tif
	DX191240_1_0158.tif
	DX191240_1_0159.tif
	DX191240_1_0160.tif
	DX191240_1_0161.tif
	DX191240_1_0162.tif
	DX191240_1_0163.tif
	DX191240_1_0164.tif
	DX191240_1_0165.tif
	DX191240_1_0166.tif
	DX191240_1_0167.tif
	DX191240_1_0168.tif
	DX191240_1_0169.tif
	DX191240_1_0170.tif
	DX191240_1_0171.tif
	DX191240_1_0172.tif
	DX191240_1_0173.tif
	DX191240_1_0174.tif
	DX191240_1_0175.tif
	DX191240_1_0176.tif
	DX191240_1_0177.tif
	DX191240_1_0178.tif
	DX191240_1_0179.tif
	DX191240_1_0180.tif
	DX191240_1_0181.tif
	DX191240_1_0182.tif
	DX191240_1_0183.tif
	DX191240_1_0184.tif
	DX191240_1_0185.tif
	DX191240_1_0186.tif
	DX191240_1_0187.tif
	DX191240_1_0188.tif
	DX191240_1_0189.tif
	DX191240_1_0190.tif
	DX191240_1_0191.tif
	DX191240_1_0192.tif
	DX191240_1_0193.tif
	DX191240_1_0194.tif
	DX191240_1_0195.tif
	DX191240_1_0196.tif
	DX191240_1_0197.tif
	DX191240_1_0198.tif
	DX191240_1_0199.tif
	DX191240_1_0200.tif
	DX191240_1_0201.tif
	DX191240_1_0202.tif
	DX191240_1_0203.tif
	DX191240_1_0204.tif
	DX191240_1_0205.tif
	DX191240_1_0206.tif
	DX191240_1_0207.tif
	DX191240_1_0208.tif
	DX191240_1_0209.tif
	DX191240_1_0210.tif
	DX191240_1_0211.tif
	DX191240_1_0212.tif
	DX191240_1_0213.tif
	DX191240_1_0214.tif
	DX191240_1_0215.tif
	DX191240_1_0216.tif
	DX191240_1_0217.tif
	DX191240_1_0218.tif
	DX191240_1_0219.tif
	DX191240_1_0220.tif
	DX191240_1_0221.tif
	DX191240_1_0222.tif
	DX191240_1_0223.tif
	DX191240_1_0224.tif
	DX191240_1_0225.tif
	DX191240_1_0226.tif
	DX191240_1_0227.tif
	DX191240_1_0228.tif
	DX191240_1_0229.tif
	DX191240_1_0230.tif
	DX191240_1_0231.tif
	DX191240_1_0232.tif
	DX191240_1_0233.tif
	DX191240_1_0234.tif
	DX191240_1_0235.tif
	DX191240_1_0236.tif
	DX191240_1_0237.tif
	DX191240_1_0238.tif
	DX191240_1_0239.tif
	DX191240_1_0240.tif
	DX191240_1_0241.tif
	DX191240_1_0242.tif
	DX191240_1_0243.tif
	DX191240_1_0244.tif
	DX191240_1_0245.tif
	DX191240_1_0246.tif
	DX191240_1_0247.tif
	DX191240_1_0248.tif
	DX191240_1_0249.tif
	DX191240_1_0250.tif
	DX191240_1_0251.tif
	DX191240_1_0252.tif
	DX191240_1_0253.tif
	DX191240_1_0254.tif
	DX191240_1_0255.tif
	DX191240_1_0256.tif
	DX191240_1_0257.tif
	DX191240_1_0258.tif
	DX191240_1_0259.tif
	DX191240_1_0260.tif
	DX191240_1_0261.tif
	DX191240_1_0262.tif
	DX191240_1_0263.tif
	DX191240_1_0264.tif
	DX191240_1_0265.tif
	DX191240_1_0266.tif
	DX191240_1_0267.tif
	DX191240_1_0268.tif
	DX191240_1_0269.tif
	DX191240_1_0270.tif
	DX191240_1_0271.tif
	DX191240_1_0272.tif
	DX191240_1_0273.tif
	DX191240_1_0274.tif
	DX191240_1_0275.tif
	DX191240_1_0276.tif
	DX191240_1_0277.tif
	DX191240_1_0278.tif
	DX191240_1_0279.tif
	DX191240_1_0280.tif
	DX191240_1_0281.tif
	DX191240_1_0282.tif
	DX191240_1_0283.tif
	DX191240_1_0284.tif
	DX191240_1_0285.tif
	DX191240_1_0286.tif
	DX191240_1_0287.tif
	DX191240_1_0288.tif
	DX191240_1_0289.tif
	DX191240_1_0290.tif
	DX191240_1_0291.tif
	DX191240_1_0292.tif
	DX191240_1_0293.tif
	DX191240_1_0294.tif
	DX191240_1_0295.tif
	DX191240_1_0296.tif
	DX191240_1_0297.tif
	DX191240_1_0298.tif
	DX191240_1_0299.tif
	DX191240_1_0300.tif
	DX191240_1_0301.tif
	DX191240_1_0302.tif
	DX191240_1_0303.tif
	DX191240_1_0304.tif
	DX191240_1_0305.tif
	DX191240_1_0306.tif
	DX191240_1_0307.tif
	DX191240_1_0308.tif
	DX191240_1_0309.tif
	DX191240_1_0310.tif
	DX191240_1_0311.tif
	DX191240_1_0312.tif
	DX191240_1_0313.tif
	DX191240_1_0314.tif
	DX191240_1_0315.tif
	DX191240_1_0316.tif
	DX191240_1_0317.tif
	DX191240_1_0318.tif
	DX191240_1_0319.tif
	DX191240_1_0320.tif
	DX191240_1_0321.tif
	DX191240_1_0322.tif
	DX191240_1_0323.tif
	DX191240_1_0324.tif
	DX191240_1_0325.tif
	DX191240_1_0326.tif
	DX191240_1_0327.tif
	DX191240_1_0328.tif
	DX191240_1_0329.tif
	DX191240_1_0330.tif
	DX191240_1_0331.tif
	DX191240_1_0332.tif
	DX191240_1_0333.tif
	DX191240_1_0334.tif
	DX191240_1_0335.tif
	DX191240_1_0336.tif
	DX191240_1_0337.tif
	DX191240_1_0338.tif
	DX191240_1_0339.tif
	DX191240_1_0340.tif
	DX191240_1_0341.tif
	DX191240_1_0342.tif
	DX191240_1_0343.tif
	DX191240_1_0344.tif
	DX191240_1_0345.tif
	DX191240_1_0346.tif
	DX191240_1_0347.tif
	DX191240_1_0348.tif
	DX191240_1_0349.tif
	DX191240_1_0350.tif
	DX191240_1_0351.tif
	DX191240_1_0352.tif
	DX191240_1_0353.tif
	DX191240_1_0354.tif
	DX191240_1_0355.tif
	DX191240_1_0356.tif
	DX191240_1_0357.tif
	DX191240_1_0358.tif
	DX191240_1_0359.tif
	DX191240_1_0360.tif
	DX191240_1_0361.tif
	DX191240_1_0362.tif
	DX191240_1_0363.tif
	DX191240_1_0364.tif
	DX191240_1_0365.tif
	DX191240_1_0366.tif
	DX191240_1_0367.tif
	DX191240_1_0368.tif
	DX191240_1_0369.tif
	DX191240_1_0370.tif
	DX191240_1_0371.tif
	DX191240_1_0372.tif
	DX191240_1_0373.tif
	DX191240_1_0374.tif
	DX191240_1_0375.tif
	DX191240_1_0376.tif
	DX191240_1_0377.tif
	DX191240_1_0378.tif

